上海地区人群甲型流感HA抗原进化与基因进化关系研究及H1N1流感潜在免疫显性位点的筛选
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流感是由流感病毒引起的具有高度传染性的一种急性呼吸道疾病,由于它的传播速度比较快,且流感病毒容易发生变异,所以每年都会造成不同规模的流感流行。本研究首先借助近几年对上海地区的流感监测信息通过构建抗原进化图谱和基因进化图谱呈现上海地区近年人群甲型H3N2和H1N1亚型流感病毒的抗原进化和基因进化特点,并深入探讨了其差异的原因。同时我们筛选出了人群甲型H1N1亚型流感病毒HA1片段的潜在免疫显性位点并建立了其抗原变异预测模型,主要内容和研究结果如下:
     1.为研究上海地区近年来人群甲型H3N2和H1N1亚型流感病毒血凝素抗原进化和基因进化的特点,并深入探讨其抗原变异的规律,我们构建了相应的抗原进化图谱和基因进化图谱。结果显示上海地区2007-2008年甲型H3N2亚型流感病毒的抗原进化和基因进化基本上按各年份有聚集趋势,大体来说比较相似。2007和2008年的部分病毒株之间存在着抗原交叉,可能会有交叉保护。2008年上海流行株和现在的疫苗株A/Brisbane/10/2007虽然HA1基因上变异不大,但在可能的潜在免疫显性位点194处发生了变异,所以现行疫苗株可能对上海地区人群不能提供足够有效的免疫保护。研究结果同时显示上海地区2005-2008年甲型流感病毒H1N1亚型的抗原进化图谱和基因进化图谱大体上都是按各年份聚集。我们发现140位点的变异可能是近年上海地区H1N1亚型流感病毒抗原进化的主要原因。虽有一定进化,但是部分病毒株彼此存在抗原交叉保护说明这几年H1N1进化还是比较缓慢。而对于病毒株A/Shanghai/MH79/2008由于疫苗株A/Brisbane/59/2007不能对其形成有效保护,应该对它以后在上海的流行要提高警惕。
     为研究上海地区历年人群甲型H3N2亚型流感病毒的抗原进化和基因进化特点,我们根据H3N2抗原变异预测模型用基因序列数据预测了其抗原进化图谱,同时我们也构建了其HA1基因进化图谱。结果显示抗原进化和基因进化特点比较相似,都按年份呈现一定的规律性。
     为研究全球历年人群甲型H1N1亚型流感病毒血凝素抗原进化和基因进化特点,我们构建了其抗原进化图谱和基因进化图谱。结果都显示各年份进化呈现一定的规律性,但各年份之间交叉比较明显,同时看出其基因进化呈现连续进化的过程,而抗原进化是个跳跃进化的过程,在氨基酸位点N54K、T127N、H193R处的变异可能是抗原进化跳跃最主要的原因。
     2.我们重点研究了筛选人群甲型H1N1亚型流感病毒HA1片段潜在免疫显性位点的方法并建立其抗原变异预测模型。采用了SVM-RFE(linear)、SVM-RFE(RBF)以及随机森林模型作为筛选位点的方法,同时用支持向量机、随机森林模型和Ridge偏最小二乘回归作为预测模型,共10种组合方法,通过重复抽样技术在相同条件下比较了10种组合方法的预测效果,用验证分类误差、特异度和灵敏度作为预测效果好坏的评价指标。研究发现随机森林模型作为预测模型比其它预测模型的效果都要好,所以选用随机森林模型作为H1N1亚型流感病毒抗原变异的预测模型。随后确定了纳入模型的变量个数为30,此时SVM-RFE(linear)/RF、SVM-RFE(RBF)/RF和RF/RF的预测一致率分别为88.05%、88.05%和87.66%,预测效果都比较好。
     本研究筛选出了人群甲型H1N1亚型流感病毒HA1片段的23个潜在免疫显性位点,分别是36,43,54,69,71,73,80,96,121,125,127,128,140,165,169,189,192,193,204,251,270,271,282,其中有10个属于抗原决定簇区域。我们识别出了上海H1N1亚型流感病毒抗原进化图谱中两簇差异最重要的位点140。同样全球历年人群甲型H1N1亚型流感病毒抗原进化图谱中两大类间发生变异的位点N54K、T127N、H193R也属于我们筛选出的23个潜在免疫显性位点,进一步映证了我们的研究结果可靠。
     3.比较研究了新甲型H1N1流感病毒和中国分离的甲型H1亚型流感病毒HA基因序列,构建了其基因进化图谱。结果显示中国流行的人甲型H1亚型流感病毒以及WHO近年推荐的疫苗株和目前流行的新甲型H1N1流感病毒在HA基因进化上相距很远,从基因层面上提示我国人群既往免疫和疫苗可能不能提供有效保护。此外,新甲型H1N1流感和中国猪甲型H1亚型流感病毒在HA基因进化上仍然存在有一定的距离,表明这次始于北美的新甲型H1N1流感并不是来自于中国。
     通过本研究,对上海地区近年来人群甲型流感病毒的抗原进化和基因进化过程有了直观的理解,同时深入了解了其抗原变异和基因变异的规律,为防控流感提供了有价值的线索。另外,筛选出的人群甲型H1N1亚型流感病毒HA1片段的潜在免疫显性位点为WHO选择流感疫苗和H1N1亚型流感病毒的进化研究提供了科学依据。我们建立的H1N1抗原变异预测模型可在不进行HI试验的情况下预测抗原变异情况,节省了大量的人力、物力和时间,提高了WHO选择流感疫苗株的效率。
Influenza is a highly contagious acute respiratory disease which was caused by influenza virus. Because of high genetic variation of the virus, it infected the population again and again with high incidence. Antigenic evolution map and genetic evolution map were used to visualize antigenic and genetic evolution of human influenza A/H1N1 and A/H3N2 viruses in Shanghai area in recent years. Potential immunodominant positions of human influenza A/H1N1 viruses were identified and bioinformatics models for predicting antigenic variants of human influenza A/H1N1 viruses were proposed.
     The details as follow:
     1. Antigenic evolution map and genetic evolution map of human influenza A/H1N1 and A/H3N2 viruses in Shanghai area in recent years were constructed. The results showed that strains of influenza A/H3N2 viruses from 2007 to 2008 were gathered together according to the year in the antigenic evolution map and genetic evolution map. There existed cross protection between some strains from 2007 and 2008. The mutation at the amino acid position 194 makes vaccine may not provide a effective protective immunity. The results also showed that strains of influenza A/H1N1 viruses from 2005 to 2008 were gathered together according to the year in the antigenic evolution map and genetic evolution map. The mutation at the amino acid position 140 may be responsiable for the antigenic variation of influenza A/H1N1 viruses in Shanghai area in recent years. There existed cross protection between some strains, which shows that influenza A/H1N1 viruses evolve relatively slowly in Shanghai area in recent years. The cross protection between A/Shanghai/MH79/2008 and A/Brisbane/59/2007 was feeble, which should arouse our attention.
     Antigenic prediction models of human influenza A/H3N2 viruses were implemented to predict antigenic distances based on the differences of amino acid sequences. Antigenic evolution map of human influenza A/H3N2 viruses in Shanghai area over the years was constructed. The results showed that the characteristics of antigenic evolution and genetic evolution were generally similar.
     Antigenic evolution map and genetic evolution map of human influenza A/H1N1 viruses in the world over the years were constructed. The results showed that there exist some regularity in the evolution and some strains were interspersed. The results also showed the genetic evolution was continuous and the antigenic evolution was puctuated. The mutation at the amino acid position 54,127,193 may be responsiable for the antigenic gap.
     2. Statistical models for predicting antigentic variants of human influenza A/H1N1 viruses were studied. SVM-RFE(linear), SVM-RFE(RBF), Random forest were used for variable selection. SVM, Random forest, RidgePLS were used as prediction models. Agreement rate, sensitivity, specificity were calculated for evaluating the qualitative performance of the models. The results showed that Random forest was the best model for predicting antigentic variants of human influenza A/H1N1 viruses. The number of variables for prediction models was chosen, which is 30. The agreement rate for SVM-RFE(linear)/RF, SVM-RFE(RBF)/RF, RF/RF were 88.05%,88.05%,87.66%.
     Therefore,23 positions (position 36,43,54,69,71,73,80,96,121,125,127, 128,140,165,169,189,192,193,204,251,270,271 and 282) were identified as potential immunodominant positions of human influenza A/H1N1 viruses.
     3. Comparative study on genetic evolution of hemagglutinin between novel influenza A (H1N1) virus and influenza A virus subtype H1 from China. The results showed that there were distant evolutionary relationships between novel influenza A (H1N1) virus HA gene and human influenza A virus subtype H1 HA gene from China, influenza vaccine. At the gene level in China population immunity and vaccine might not provide protection against novel influenza A (H1N1) virus. There was still a little evolutionary distance between novel influenza A (H1N1) virus HA gene and swine influenza A virus subtype H1 HA gene from China. There was no evidence that novel influenza A (H1N1) virus might originate in China.
     While carrying out the above work, antigenic and genetic evolution of human influenza A/H1N1 and A/H3N2 viruses in Shanghai area in recent years were intuitively understood. The genetic evolution and antigenic variation rule of influenza A viruses were explored. Valuable clues were provided for the prevention and control of influenza. Meanwhile, identifying potential immunodominant positions can assist the annual selection of influenza vaccine strains. The prediction models for antigentic variants of human influenza A/H1N1 viruses may further improve the selection of vaccine strains.
引文
[1]Holmes EC, Ghedin E, Miller N, et al. Whole-Genome Analysis of Human Influenza A Virus Reveals Multiple Persistent Lineages and Reassortment among Recent H3N2 Viruses[J]. PLoS Biology,2005,3(9):e300.
    [2]Kobasa D, Takada A, Shinya K, et al. Enhanced virulence of influenza A viruses with the haemagglutinin of the 1918 pandemic virus[J]. Nature,2004,431: 703-707.
    [3]Johnson NPAS, Mueller J. Updating the accounts:global mortality of the 1918-20 'Spanish'influenza epidemic[J]. Bull Hist Med,2002,76:105-115.
    [4]Handbook for Journalists:Influenza Pandemic[M]. WHO,2005:1.
    [5]Russell CA, Jones TC, Barr IG, et al. The Global Circulation of Seasonal Influenza A(H3N2) Viruses[J]. SCIENCE,2008,320:340-346.
    [6]Stohr K. Influenza-WHO cares[J]. Lancet Infect. Dis,2002,2(9):517.
    [7]Webby RJ, Webster RG. Are We Ready for Pandemic Influenza?[J]. Science,2003, 302(5650):1519-1522.
    [8]Stephenson I, Zambon M. The epidemiology of influenza[J]. Occup Med,2002, 52(5):241-247.
    [9]Finkelman BS, Viboud C, Koelle K. Global Patterns in Seasonal Activity of Influenza A/H3N2, A/H1N1, and B from 1997 to 2005:Viral Coexistence and Latitudinal Gradients[J]. PLoS ONE,2007,12:e1296.
    [10]Gerdil C. The annual production cycle for influenza vaccine[J]. Vaccine,2003, 21(16):1776-1779.
    [11]黄文林.分子病毒学[M].北京:人民卫生出版社,2002:283.
    [12]董丽波,张烨,温乐英,等.1995-2005年中国H3N2亚型人流感病毒血凝素基因变异与流行相关性研究[J].病毒学报,2007,24(5):339-344.
    [13]许慧琳,张文彤,等.H3N2亚型人甲型流感病毒HA1序列进化正向选择位点研究[J].中华流行病学杂志,2007,28(4):385-389.
    [14]修文琼,翁育伟,沈晓娜,等.1996-2004年中国福建省甲3亚型流感病毒(H3N2)的分子进化[J].中国科学C辑:生命科学,2008,38(6):513-520.
    [15]Chi XS, Bolar TV, Zhao P, et al. Molecular Evolution of Human Influenza A/H3N2 Virus in Asia and Europe from 2001 to 2003[J]. Journal of Clinical Microbiology,2005,43(12):6130-6132.
    [16]Blackburne BP, Hay AJ, Goldstein RA. Changing Selective Pressure during Antigenic Changes in Human Influenza H3[J]. PLoS Pathogens,2008,4(5): e1000058.
    [17]金奇.医学分子病毒学[M].北京:科学出版社,2001:633-658.
    [18]Wilson IA, Cox NJ. Structural basis of immune recognition of influenza virus hemagglutinin[J]. Annu. Rev. Immunol,1990,8:737-771.
    [19]Scholtissek C, Burger H, Kistner O, et al. The nucleoprotein as a possible major factor in determining host specificity of influenza H3N2 viruses[J]. Virology, 1985,147(2):287-294.
    [20]刘颂,王京燕.抗流感病毒药物的研究进展[J].国外医学药学分册,2005,2:111-115.
    [21]徐翠玲,向妮娟,张烨,等.2004-2005年中国A(H1N)亚型流感病毒抗原性及基因特性研究[J].中华实验和临床病毒学杂志,2006,20(2):27-29.
    [22]王勇,陈淑霞,薛颖,等.中国历年H3N2亚型人流行性感冒病毒血凝素基因的序列测定及分析[J].病毒学报,2002,18(2):118-125.
    [23]Redlberger M, Stephan W, Aberle, et al. Dynamics of antigenic and genetic changes in the hemagglutinins of influenza A H3N2 viruses of three consecutive seasons (2002/2003 to 2004/2005) in Austria[J]. Vaccine,2007,25:6061-6069.
    [24]Lavenu A, Leruez-ville M, Chaix ML, et al. Detailed analysis of the genetic evolution of influenza virus during the course of an epidemic[J]. Epidemiol.Infect,2006,134:514-520.
    [25]Agaro PD, Rossi T, Burgnich P, et al. The molecular epidemiology of influenza viruses a lesson from a highly epidemic season[J]. J.Clin.Pathol,2008,61: 355-360.
    [26]Nelson MI, Simonsen L, Viboud C, et al. Phylogenetic Analysis Reveals the Global Migration of Seasonal Influenza A Viruses[J]. PLoS Pathogens,2007, 3(9):e131.
    [27]Plotkin JB, Dushoff J, Levin SA. Hemagglutinin sequence clusters and the antigenic evolution of influenza A virus[J]. PNAS,2002,99(9):6263-6268.
    [28]Ferguson NM, Anderson RM. Predicting evolutionary change in the influenza A virus[J]. Nature Medicine,2002,8:562-563.
    [29]张文彤,姜庆五.聚类技术在大样本序列进化树分析中的应用[J].中国卫生统计,2006,23(5):393-396.
    [30]张文彤,姜庆五.全球历年人甲型流感病毒H3A1抗原的分子进化研究[J].中华流行病学杂志,2005,26(11):843-847.
    [31]张文彤,姜庆五,蒋露芳,等.基于基因序列聚类的甲型流行性感冒病毒H3抗原变异规律研究[J].中华流行病学杂志,2004,25(12):1046-1049.
    [32]Huang JW, Chen CC, Yang JM. Identifying Critical Positions and Rules of Antigenic Drift for Influenza AH3N2 Viruse[C]. IEEE Xplore,2008.
    [33]Smith DJ, Lapedes AS, Jong JC de, et al. Mapping the Antigenic and Genetic Evolution of Influenza Virus[J]. SCIENCE,2004,305:371-376.
    [34]Nelson MI, Holmes EC. The evolution of epidemic influenza[J]. Nature,2007,8: 196-205.
    [35]郭元吉,程小雯.流行性感冒病毒及其实验技术[M].北京:中国三峡出版社,1997:100-106.
    [36]Archetti I, Horsfall FL. Persistent antigenic variation of influenza A viruses after incomplete neutralization in ovo with heterologous immune serum[J]. J Exp Med, 1950,92(5):441-462.
    [37]Weijers TF, Osterhaus ADME, Beyer WEP. Analysis of antigenic relationships among influenza virus strains using a taxonomic cluster procedure. Comparison of three kinds of antibody preparations[J].Journal of Virological Methods,1985, 10(3):241-250.
    [38]Lapedes A, Farber R. The geometry of shape space:application to influenza[J]. Journal of theoretical biology,2001,212:57-69.
    [39]Enserink M. Mapmaker for the World of Influenza[J]. Science,2008,320(5874): 310-311.
    [40]Bush RM, Fitch WM, Bender CA, et al. Positive selection on the H3 hemagglutinin gene of human influenza virus A[J]. Mol. Biol. Evol,1999,16(11): 1457-1465.
    [41]Bush RM, Bender CA, Subbarao K, et al. Predicting the Evolution of Human Influenza A[J]. Science, New Series,1999,286(5446):1921-1925.
    [42]Lee MS, Chen JSE, Cho I. Identifying potential immunodominant amino acid positions in hemagglutinin protein of influenza A H3N2 viruses[C]. International Congress Series,2004,1263:626-631.
    [43]Lee MS, Chen JSE. Predicting Antigenic Variants of Influenza A/H3N2 Viruses[J]. Emerging Infectious Diseases,2004,10(8):1385-1390.
    [44]Lee MS, Chen MC, Liao YC, et al. Identifying potential immunodominant positions and predicting antigenic variants of influenza A/H3N2 viruses[J]. Vaccine,2007,25:8133-8139.
    [45]Liao YC, Lee MS, Ko CY, et al. Bioinformatics models for predicting antigenic variants of influenza A/H3N2 virus[J]. Bioinformatics,2008,24(4):505-512.
    [46]Huang JW, King CC, Yang JM. Co-evolution positions and rules for antigenic variants of human influenza A/H3N2 viruses[J]. BMC Bioinformatics,2009, 10(Suppl1):S41.
    [47]Smith DJ. Predictability and Preparedness in Influenza Control[J]. Science,2006, 312:392-394.
    [48]Garten RJ, Davis CT, Russell CA, et al. Antigenic and Genetic Characteristics of Swine-Origin 2009 A(H1N1) Influenza Viruses Circulating in Humans[J].2009, 10.1126/science.1176225.
    [49]Berkhoff EG, Geelhoed-Mieras MM, Jonges M, et al. An amino acid substitution in the influenza A virus hemagglutinin associated with escape from recognition by human virus-specific CD4+ T-cells[J]. Virus Research,2007,126:282-287.
    [50]de Jong JC, Smith DJ, Lapedes AS, et al. Antigenic and Genetic Evolution of Swine Influenza A (H3N2) Viruses in Europe[J]. JOURNAL OF VIROLOGY, 2007,81(8):4315-4322.
    [51]Guo Yuanji. Influenza activity in China:1998-1999[J]. Vaccine,2002,20: S28-S35.
    [52]McDonald NJ, Smith CB, Cox NJ. Antigenic drift in the evolution of H1N1 influenza A viruses resulting from deletion of a single amino acid in the haemagglutinin gene[J]. Journal of General Virology,2007,88:3209-3213.
    [53]Centers for Disease Control and Prevention. Information for the vaccines and related biological products advisory committee[C]. Atlanta,2003:10-11.
    [54]Centers for Disease Control and Prevention. Information for the vaccines and related biological products advisory committee[C]. Atlanta,2004:9.
    [55]Centers for Disease Control and Prevention. Information for the vaccines and related biological products advisory committee[C]. Atlanta,2002:12-13.
    [56]Centers for Disease Control and Prevention. Information for the vaccines and related biological products advisory committee[C]. Atlanta,2006(1):9.
    [57]Centers for Disease Control and Prevention. Information for the vaccines and related biological products advisory committee[C]. Atlanta,2006(2):11.
    [58]Centers for Disease Control and Prevention. Information for the vaccines and related biological products advisory committee[C]. Atlanta,2007:11.
    [59]Centers for Disease Control and Prevention. Information for the vaccines and related biological products advisory committee[C]. Atlanta,2008(1):13.
    [60]Centers for Disease Control and Prevention. Information for the vaccines and related biological products advisory committee[C]. Atlanta,2008(2):12-14.
    [61]Centers for Disease Control and Prevention. Preliminary information for FDA advisory panel meeting[C]. Atlanta,2000:1-2.
    [62]Centers for Disease Control and Prevention. VRPBAC MEETING Briefing materials[C]. Atlanta,2009:12.
    [63]World Health Organization Weekly Epidemiological Record[R].1999,74: 321-328.
    [64]World Health Organization Collaborating Centre for Reference and Research on Influenza. Annual report[R]. Australia,2006:25.
    [65]Ndifon W, Dushoff J, Levin SA. On the use of hemagglutination-inhibition for influenza surveillance:Surveillance data are predictive of influenza vaccine effectiveness[J]. Vaccine,2009,27:2447-2452.
    [66]Dubitzky W, Granzow M, Berrar D. Fundamentals of Data Mining in Genomics and Proteomics[M]. New York:Springer,2007:109.
    [67]Torgerson WS. Multidimensional scaling:I Theory and method[J]. Psychometrika,1952,17:401-419.
    [68]Mead A. Review of the Development of Multidimensional Scaling Methods[J]. The Statistician,1992,41(1):27-39.
    [69]Gower JC. Some distance properties of latent root and vector methods used in multivuriate analysis[J]. Biomeirika,1966,53:325-328.
    [70]Everitt BS. An R and S-PLUS Companion to Multivariate Analysis[M]. London: Springer,2005:95.
    [71]Liao YC, Ko CY, Tsai MH, et al. ATIVS:analytical tool for influenza virus surveillance[J]. Nucleic Acids Research,2009,37:W643-W646.
    [72]Shih ACC, Hsiao TC, Ho MS, et al. Simultaneous amino acid substitutions at antigenic sites drive influenza A hemagglutinin evolution[J]. PNAS,2007, 104(15):6283-6288.
    [73]卢亦愚,严菊英,孙朝英,等.1988-2005年甲3亚型流感流行株与疫苗株的HA1区差异探讨[J].中华流行病学杂志,2006,27(12):1069-1072.
    [74]Yang IS, Lee JY, Lee JS, et al. Influenza sequence and epitope database[J]. Nucleic Acids Research,2009,37:D423-D430.
    [75]Ndifon W, Wingreen NS, Levin SA. Differential neutralization efficiency of hemagglutinin epitopes, antibody interference, and the design of influenza vaccines[J]. PNAS,2009,106(21):8701-8706.
    [76]Huang SW, Hsu YW, Smith DJ, et al. Reemergence of Enterovirus 71 in 2008 in Taiwan:Dynamics of Genetic and Antigenic Evolution from 1998 to 2008 [J]. Journal of Clinical Microbiology,2009,47(11):3653-3662.
    [77]Fan JQ, Lv JC. Invited Review Article:A Selective Overview of Variable Selection in High Dimensional Feature Space[J]. Statistica Sinica,2009,20: 101-148.
    [78]Han L, Embrechts MJ, Szymanski B, et al. Random Forests Feature Selection with Kernel Partial Least Squares:Detecting Ischemia from MagnetoCardiograms[C]. Proc. European Symposium on ANN, Burges,2006: 221-226.
    [79]Maldonado S, Weber R. A wrapper method for feature selection using Support Vector Machines[J]. Information Sciences,2009,179:2208-2217.
    [80]胡洁.高维数据特征降维研究综述[J].计算机应用研究,2008,25(9):2601-2606.
    [81]张丽新,王家钦,赵雁南,等.机器学习中的特征选择[J].计算机科学,2004,31(11):180-184.
    [82]Guyon I, Weston J, Barnhill S, et al. Gene selection for cancer classification using support vector machines[J]. Machine Learning,2002,46:389-422.
    [83]Wu T, Karsmakers P, hamme HV, et al. Comparison of Variable Selection Methodsand Classifiers for Native Accent Identification[C]. In Proc. International Conference on Spoken Language Processing, Brisbane,2008: 305-308.
    [84]Saeys Y, Abeel T, Peer Yvd. Robust Feature Selection Using Ensemble Feature Selection Techniques [A]. In:Daelemans W, et al. ECML PKDD[M]. Berlin Heidelberg:Springer-Verlag,2008:313-325.
    [85]Breiman L. Random Forests[J]. Mach. Learn,2001,45(1):5-32.
    [86]Boser BE, Guyon IM, Vapnik VN. A training algorithm for optimal margin classifiers[A]. In:Haussler D.5th Annual ACM Workshop on COLT[M]. Pittsburgh:ACM Press,1992:144-152.
    [87]黄英辉,李立奇,罗万春.支持向量机在临床疾病诊断中的应用[J].数学的实践与认识,2008,38(23):101-103.
    [88]陈启买,陈森平.支持向量机的一种特征选取算法[J].计算机工程与应用, 2009,45(23):49-51.
    [89]唐发明.基于统计学习理论的支持向量机算法研究[D].武汉:华中科技大学,2005.
    [90]张小丹.基于支持向量机的基因表达数据特征选取方法研究[D].苏州:苏州大学,2008.
    [91]周舒冬,张磊,叶小华,等.支持向量机技术在疾病预后中的应用和比较[J].数理医药学杂志,2007,20(6):760-762.
    [92]李哲谦,刘书朋,严壮志,等.基于支持向量机的蛋白质相互作用预测[J].电子测量技术,2008,31(5):4-8.
    [93]张小丹,吕建平.基于支持向量机的特征提取方法研究[J].计算机与现代化,2008.8:104-109.
    [94]李伟红,龚卫国,陈伟民,等.基于SVMRFE的人脸特征选择方法[J].光电工程,2006,33(5):113-117.
    [95]武晓岩,李康.基因表达数据判别分析的随机森林方法[J].中国卫生统计,2006,23(6):491-494.
    [96]武晓岩,李康.随机森林方法在基因表达数据分析中的应用及研究进展[J].中国卫生统计,2009,26(4):437-440.
    [97]武晓岩,闫晓光,李康.基因表达数据的随机森林逐步判别分析方法[J].中国卫生统计,2007,24(2):151-154.
    [98]李建更,高志坤.随机森林:一种重要的肿瘤特征基因选择法[J].生物物理学报,2009,25(1):51-56.
    [99]Uriarte RD, Andres SAd. Gene selection and classification of microarray data using random forest[J]. BMC Bioinformatics,2006,7:3.
    [100]彭国兰.随机森林在企业信用评估中的应用[D].厦门:厦门大学,2007.
    [101]http://www.stat.berkeley.edu/users/breiman/RandomForests/cc_home.htm. [201 0-04-11]
    [102]张文彤.甲型流感H3抗原进化及变异规律研究[D].上海:复旦大学,2005.
    [103]Wold S, Albano C, Dunn M, et al. Pattern Regression:Finding and Using Regularities in Multivariate Data[A]. In:Martens J, Proceedings of IUFOST Conference on Food Research and Data Analysis, London:Applied Science Publications,1983.
    [104]王惠文.偏最小二乘回归方法及其应用[M].北京:国防工业出版社,1999.
    [105]钱国华,荀鹏程,陈峰,等.偏最小二乘法降维在微阵列数据判别分析中的应用[J].中国卫生统计,2007,24(2):120-123.
    [106]邓念武,徐晖.单因变量的偏最小二乘回归模型及其应用[J].武汉大学学报,2001,34(2):14-16.
    [107]武娇.偏最小二乘回归模型及其在教育统计中的应用[D].西安:陕西师范大学,2002.
    [108]王园园,陈景武.偏最小二乘回归及SAS编程的医学应用[J].数理医药学杂志,2008,21(6):730-733.
    [109]朱尔一,林燕,庄赞勇.偏最小二乘变量筛选法在毒品来源分析中的应用[J].分析化学,2007,35(7):973-977.
    [110]Fort G, Lambert-Lacroix S. Classification using partial least squares with penalized logistic regression[J]. Bioinformatics,2005,21(7):1104-1111.
    [111]Ojala M, Garriga GC. Permutation Tests for Studying Classifier Performance[C]. 2009 Ninth IEEE International Conference on Data Mining,2009:908-913.
    [112]荀鹏程,赵杨,易洪刚,等.Permutation Test在假设检验中的应用[J].数理统计与管理,2006,25(5):616-621.
    [113]http://www.uccor.edu.ar/paginas/seminarios/Software/SVM-RFE.zip [2010-04-11]
    [114]Rakotomamonjy A. Variable Selection Using SVM-based Criteria[J]. Journal of Machine Learning Research,2003,3:1357-1370.
    [115]Macken C, Lu H, Goodman J, et al. The value of a database in surveillance and vaccine selection[A]. In:Osterhaus ADME, Cox N, Hampson AW, Options for the control of influenza IV, Amsterdam:Elsevier Science,2001:103-106.
    [116]Igarashi M, Ito K, Yoshida R, et al. Predicting the Antigenic Structure of the Pandemic (H1N1) 2009 Influenza Virus Hemagglutinin[J]. PLoS ONE,2010, 5(1):e8553.
    [117]Deem MW, Pan K. The epitope regions of H1-subtype influenza A, with application to vaccine efficacy[J]. Protein Engineering, Design & Selection, 2009,22(9):543-546.
    [118]Svetnik V, Liaw A, Tong C. Variable Selection in Random Forest with Application to Quantitative Structure-Activity Relationship [EB]. www.csie.ntu.edu.tw/-b88052/tmp/vietri.pdf. [2010-04-11].
    [119]Statnikov A, Wang L, Aliferis CF. A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification[J]. BMC Bioinformatics,2008,9:319.
    [120]Yu H, Zhou YJ, Li GX, et al. Further evidence for infection of pigs with human-like H1N1 influenza viruses in China[J]. Virus Research,2009,140: 85-90.
    [121]Brandon K. Swine Flu Genes From Pigs Only, Not Humans or Birds[EB]. http://www. wired. com/wiredscience/2009/04/swinefluupdate/. [2009-04-28].
    [122]程从升,舒跃龙,张智清.流感病毒的反向遗传学研究进展[J].病毒学报,2007,23(1):68-71.
    [1]Kobasa D, Takada A, Shinya K, et al. Enhanced virulence of influenza A viruses with the haemagglutinin of the 1918 pandemic virus[J]. Nature,2004,431: 703-707.
    [2]Johnson NPAS, Mueller J. Updating the accounts:global mortality of the 1918-20 'Spanish'influenza epidemic[J]. Bull Hist Med,2002,76:105-115.
    [3]Russell CA, Jones TC, Barr IG, et al. The Global Circulation of Seasonal Influenza A(H3N2) Viruses[J]. SCIENCE,2008,320:340-346.
    [4]Stohr K. Influenza-WHO cares[J]. Lancet Infect. Dis,2002,2(9):517.
    [5]Webby RJ, Webster RG. Are We Ready for Pandemic Influenza?[J]. Science,2003, 302(5650):1519-1522.
    [6]Stephenson I, Zambon M. The epidemiology of influenza[J]. Occup Med,2002, 52(5):241-247.
    [7]Finkelman BS, Viboud C, Koelle K. Global Patterns in Seasonal Activity of Influenza A/H3N2, A/H1N1, and B from 1997 to 2005:Viral Coexistence and Latitudinal Gradients[J]. PLoS ONE,2007,12:e1296.
    [8]Gerdil C. The annual production cycle for influenza vaccine[J]. Vaccine,2003, 21(16):1776-1779.
    [9]黄文林.分子病毒学[M].北京:人民卫生出版社,2002:283.
    [10]蒋露芳.上海地区人群甲型流感的传播与病毒抗原变异的研究[D].上海:复旦大学,2007.
    [11]杨吉星.上海地区甲型流感病毒HA基因和抗原变异研究[D].上海:复旦大学,2009.
    [12]董丽波,张烨,温乐英,等.1995-2005年中国H3N2亚型人流感病毒血凝素基因变异与流行相关性研究[J].病毒学报,2007,24(5):339-344.
    [13]Plotkin JB, Dushoff J, Levin SA. Hemagglutinin sequence clusters and the antigenic evolution of influenza A virus [J]. PNAS,2002,99(9):6263-6268.
    [14]许慧琳,张文彤,等.H3N2亚型人甲型流感病毒HA1序列进化正向选择位点研究[J].中华流行病学杂志,2007,28(4):385-389.
    [15]Klimov A, Simonsen L, Fukuda K, et al. Surveillance and impact of influenza in the United States[J]. Vaccine,1999,17(Suppl 1):S42-46.
    [16]修文琼,翁育伟,沈晓娜,等.1996-2004年中国福建省甲3亚型流感病毒(H3N2)的分子进化[J].中国科学C辑:生命科学,2008,38(6):513-520.
    [17]Wilson IA, Cox NJ. Structural basis of immune recognition of influenza virus hemagglutinin[J]. Annu Rev Immunol,1990,8:737-771.
    [18]Chi XS, Bolar TV, Zhao P, et al. Molecular Evolution of Human Influenza A/H3N2 Virus in Asia and Europe from 2001 to 2003[J]. Journal of Clinical Microbiology,2005,43(12):6130-6132.
    [19]Blackburne BP, Hay AJ, Goldstein RA. Changing Selective Pressure during Antigenic Changes in Human Influenza H3[J]. PLoS Pathogens,2008,4(5): e1000058.
    [20]Huang JW, Chen CC, Yang JM. Identifying Critical Positions and Rules of Antigenic Drift for Influenza AH3N2 Viruse[C]. IEEE Xplore,2008.
    [21]郭元吉,程小雯.流行性感冒病毒及其实验技术[M].北京:中国三峡出版社,1997:100-106.
    [22]Ndifon W, Wingreen NS, Levin SA. Differential neutralization efficiency of hemagglutinin epitopes, antibody interference, and the design of influenza vaccines[J]. PNAS,2009,106(21):8701-8706.
    [23]Macken C, Lu H, Goodman J, et al. The value of a database in surveillance and vaccine selection[A]. In:Osterhaus ADME, Cox N, Hampson AW, Options for the control of influenza IV, Amsterdam:Elsevier Science,2001:103-106.
    [24]Wiley DC, Wilson IA, Skehel, JJ. Structural identification of the antibody-binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation[J]. Nature,1981,289:373-378.
    [25]卢亦愚,严菊英,孙朝英,等.1988-2005年甲3亚型流感流行株与疫苗株的HA1区差异探讨[J].中华流行病学杂志,2006,27(12):1069-1072.
    [26]Lee MS, Chen JSE. Predicting Antigenic Variants of Influenza A/H3N2 Viruses[J]. Emerging Infectious Diseases,2004,10(8):1385-1390.
    [27]Bush RM, Fitch WM, Bender CA, et al. Positive selection on the H3 hemagglutinin gene of human influenza virus A[J]. Mol. Biol. Evol,1999,16(11): 1457-1465.
    [28]Bush RM, Bender CA, Subbarao K, et al. Predicting the Evolution of Human Influenza A[J]. Science, New Series,1999,286(5446):1921-1925.
    [29]Smith DJ, Lapedes AS, Jong JC de, et al. Mapping the Antigenic and Genetic Evolution of Influenza Virus[J]. SCIENCE,2004,305:371-376.
    [30]Schild GC, Aymard MH, Pereira MS, et al. Antigenic variation in current human type A influenza viruses antigenic characteristics of the variants and their geographic distribution[J]. Bull. Org. mond. Sante (Bull.Wld Hlth Org),1973, 48:269-278.
    [31]Archetti I, Horsfall FL. Persistent antigenic variation of influenza A viruses after incomplete neutralization in ovo with heterologous immune serum[J]. J Exp Med, 1950,92(5):441-462.
    [32]Kodihalli S, Justewicz DM, Gubareva LV, et al. Selection of a single amino acid substitution in the hemagglutinin molecule by chicken eggs can render influenza A virus (H3) candidate vaccine ineffective[J].J Virol,1995,69:4888-4897.
    [33]Jin H, Zhou H, Liu H, et al. Two residues in the hemagglutinin of A/Fujian/411 /02-like influenza viruses are responsible for antigenic drift from A/Panama/2007 /99[J]. Virology,2005,336:113-119.
    [34]Newman RW, Jennings R, Major DL, et al. Immune response of human volunteers and animals to vaccination with egg-grown influenza A(H1N1) virus is influenced by three amino acid substitutions in the haemagglutinin molecule[J]. Vaccine,1993,11:400-406.
    [35]Lee MS, Chen JSE, Cho I. Identifying potential immunodominant amino acid positions in hemagglutinin protein of influenza A H3N2 viruses[C]. International Congress Series,2004,1263:626-631.
    [36]Lee MS, Chen MC, Liao YC, et al. Identifying potential immunodominant positions and predicting antigenic variants of influenza A/H3N2 viruses[J]. Vaccine,2007,25:8133-8139.
    [37]Liao YC, Lee MS, Ko CY, et al. Bioinformatics models for predicting antigenic variants of influenza A/H3N2 virus[J]. Bioinformatics,2008,24(4):505-512.
    [38]Huang JW, King CC, Yang JM. Co-evolution positions and rules for antigenic variants of human influenza A/H3N2 viruses[J]. BMC Bioinformatics,2009, 10(Suppl1):S41.
    [39]程从升,舒跃龙,张智清.流感病毒的反向遗传学研究进展[J].病毒学报,2007,23(1):68-71.
    [40]Hoffmann E, Neumann G, Kawaoka Y, et al. A DNA transfection system for generation of influenza A virus from eight plasmids[J]. PNAS,2000,97: 6108-6113.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700