基于TSP多波关系的围岩稳定性等级判定方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从岩石介质中的弹性波特征分析入手,深入研究地震反射波法超前地质探测中多波拾取与分离方法,研究地震反射波多波关系与围岩分级指标的关系,基于可变模糊集理论对岩体等级分级判定方法进行建模研究,得到了一种利用TSP多波关系进行围岩稳定性等级分级判定的原位、快速判定方法。
     1、岩石介质中弹性波的特征分析及地震反射波法超前地质探测中多波拾取与分离方法研究。地震反射波超前预报法是利用弹性波的动力学原理,采用多分量勘探技术,用P波震源激发,用x、y、z三分量检波器接收地震波信息,获得多波多分量地震记录信息。利用运动学原理进行P、S波分离,根据入射波的角度信息,对P、SV、SH三分量处理修正,以便得到完整的P-SV、P-SH波和P-P波的地震波记录。
     2、地震反射波多波关系与围岩分级指标关系研究。波在岩石体中的传播速度取决于其组成的成分和孔隙充填物的弹性,纵波和横波在岩石中传播的速度,是由岩石的体积弹性模量、刚性率和密度决定的。通过对地震波在岩石中传播的特点可以反演出岩体坚硬程度、完整程度以及含水性等围岩等级分级指标参数。
     3、基于可变模糊集的围岩稳定性分级判定方法研究。可变模糊集理论是在传统模糊集理论的基础上,融入了物质演化所具有的三个规律发展而来的新成果,融入了辩证唯物主义关于差异、共维、中介、两极的概念,它从定性和定量两个方面解决事物变化过程中的矛盾问题。将该评价方法创新性地引入到围岩等级分级判定算法中,来解决当前围岩等级分级判定方法介于定性与定量判定之间的问题。
     针对隧道施工中所面临的安全掘进问题,利用现场超前地质预报TSP测试数据反演出围岩硬度、完整度及含水性特征参数,通过基于可变模糊集的围岩分级判定模型进行围岩稳定性等级判定。可以利用现有的超前地质预报手段的既有成果,在不增加额外方法成本的基础上,利用先进、科学的算法对围岩稳定性等级进行原位、快速判定,既减少了经济投入,又减少了检测程序,从检测技术投入、经济投入和时间效率等方面相对于原有方法有了极大的改善,对指导施工、节约造价、施工方案设计起到积极的作用。该方法不仅具有深远的理论价值,也具有显著的社会效益和巨大的经济效益。
From the analysis on the character of elastic wave through a rock medium, amethod of seismic reflection in the advanced geological exploration is studied in thepaper for the multiwave picking and seperation, the relationship between the multiwaveof seismic reflection and classification indexes of the surrounding rock, based on theoryof variable fuzzy sets for modeling of the rock mass rating in classification methods, arapid determination method for judgement is proposed by use of relationship of TSPmultiwave for classification of surrounding rock in situ.
     1、Study on analysis of characteristics of elastic wave in rock medium and seismicreflection wave method in the advanced geological exploration the multi wave pickingand seperation. Method of seismic reflection wave in advanced prediction is anapplication of the dynamics theory of elastic wave with exploration technology of multicomponent as well as using P wave source and the x, y, z three component geophonereceiving seismic information to get fullwave with multi-component in seismic record.Using the kinematics principle P and S wave is separated according to the informationof incident wave angle of P, SV, SH three-component as well as processing to get acomplete P-SV, P-SH wave and P-P seismic wave record.
     2、Research on the relationship between the multiwave seismic reflection wave andthe surrounding rock classification indexes. Waves of the speed of propagation inlithosome depend on its composition and pore fillings of flexibility, speeds oflongitudinal wave and transverse wave in rock, are mainly determined by the elasticmodulus of the rock, stiffness ratio and density. Based on the characteristics of seismicwave propagation in the rock, the hard degree, complete degree and level of containingwater as well as classification indexes of surrounding rock as a series of parameterscan be calculated by a backward method.
     3、Study on decision method of the classification of rock mass based on variablefuzzy sets. On the basis of theory of traditional fuzzy sets, theory of variable fuzzy setsis integrated into the evolution of the material by three law of development in a newachievement and blended in dialectical materialism on difference, total direction, themediation, the concept of the poles from two aspects of qualitative and quantitative tosolve contradictory problems of things in the process of change. As an innovation theevaluation method is introduced into the algorithm of decision for the gradeclassification of surrounding rock to solve the current problem that methods of surrounding rock classification is only between qualitative and quantitativedetermination
     According to the safety driving problems faced in tunnel construction geologicalprediction, using TSP test data inversion of rock hardness, integrity and watercharacteristic parameters, the determination model of surrounding rock classificationbased on the variable fuzzy sets for surrounding rock classification. You can use theexisting geological forecast means the achievements, with no increase in additional costmethod, the use of advanced, scientific method, in situ on surrounding rock stabilitygrade determination, not only reduced the economic investment, and reduce thedetection procedure, have greatly improved invest, from detection technologyinvestment and time efficiency compared to the original method, to guide theconstruction, save the cost, construction scheme design plays a positive role. Thismethod not only has the profound theory value, but also has significant social benefitsand huge economic benefits.
引文
Amberg Measuring Technique Ltd. ComParison of Various Tunnel Geological ForecastTechniques [M].2003.
    Andisheh A.,Ali M. Prediction of geological hazardous zones in front of a tunnelface using TSP-203and artificial neural networks. Tunnelling and UndergroundSpaee Technology,2008,23:711-717.
    Ashida,Y. Seismic imaging ahead of a tunnel face with three-component geophones:International Journal of rock Mechanies and Mining Sciences,2001,38,823-831
    Barton N,Lien R,Lunde J. Engineering classifieation of rock masses for the designof tunnels support. RoehMeeh,1974,6(4):183-236.
    Bieniawski ZT. Engineering Rock Mass Classifieation一A Complete Manual forEngineering and Geologists in Mining, Civil and Petroleum Engineering. Wiley:Interseience Publieation,1989.
    BohlenT.,UlriehLorang,Wolfgang Rabbel,et al. Rayleigh-to-shear wave conversionat the tunnel face From3D-FD modeling to ahead-of-drillexploration[J」.GeoPhysies,2007,72:67-79.
    Borm G, Giese R,Otto P. Integrated seismic imaging system for geological predictionduring tunnel construetion. In: Technology roadmap for rock mechanies, TheSouthern African Institute of Mining and Metallurgy. SymPosiumSeries,2003,533:137-141.
    Borm,G.,R.Giese,C.Klose,5.,et al.2003ISIS-integrated seismie imaging systemfor the geologie predietion ahead in underground Construction:65th AnnualConference and Exhibition,EAGE,Extended Abstracts.
    Cengiz Esmersoy.Inversion of P and SV waves from multcomponent offset vertical seismicproiles[J].Geophysics,1990,55(1):39-50
    Daniel O. Trad, Tadeusz J. Ulrych. Accurate interpolation with high-resolutiontime-variant Radon transforms [J]. Geophysice,2002,67(2):644-656.
    Dickmann,T., and B. Sander,Drivage concurrent tunnel seismic Prediction:FelsbauRock and soil Engineering,1996,14,406-411.
    Dunne,J., and Beresford, G. A review of the transorm, its implementation and itsapplications in seismic processing[J]. Exploration Geophysics,1995,(26):19-36.
    Einar maeland. Sampling, aliasing, and inverting the linear Radon transforms[J].GEOPHYSICS,2004,69(3):859-861.
    Franklin J A, Louis C, Masure P. Rock material classification.Proe2nd Int.Cong.Eng.Geol.,IAEG,Sao Paulo,1974:325-341.
    Grodner,M.,2001. Delineation of rock burst fraetures with ground Penetrating radarin the Witwatersrand Basin, SouthAfriea.International Journal of Rock Mechaniesand Mining Sciences38,885-891.
    Inazaki,T., IsahaiH., Kawamura5.,et al. Stepwise application of horizontal seismicprofiling for tunnel prediction ahead of the face:The Leading Edge,1999,18,1429-1431.
    Kneib,G.,A.Kassel,and K.Lorenz. Automated seismie prediction ahead of the tunnelboring machine:First Break,2000,295-302.
    Madani,H. Tunneling,seconded. Tehran Polyteehnie University Press,Tehran(inPersian),1998.
    Neil,D.,K.Haramy,D.Hanson,et al. Tomography to evaluate site conditions duringtunneling:3rd National Conference of the Geo-Institute,American Society of CivilEngineers,Geoteehnical Special Publication,1999,89:13-17.
    Rabcewiez L. The new Austrian tunneling method.WaterPower,1964:453-457.
    Sacchi Mauricio D, Ulrych Tadeusz J. High-resolution velocity gathers and offset spacereconstruction[J]. Geophysics,1995,60(4):1169-1177.
    Sudo,H,Tanaka,T,Kobayashi,T,et al. Permeability imaging in granitic rocks basedon surface resistivity Profiling[J].ExPloration GeoPhysies,2004,35:56-61.
    Tsai,D.T.,Hwang,F.L.,Shih,H.M.,et al.2005.Application of tunnel seismiePredietion for the Hsuehshan Tunnel.In:InternationalSymPosium.
    TSP_Evaluation_Manual.Processing&Evaluation Software Manual Version1.1,2001:26-27.
    ZHAO Y.G.,JIANG H., ZHAO X.P. Tunnel seismic tomographymethod forgeologicalprediction and its application [J]. Applied Geophysies,2006,3(2):69-74.
    按开挖稳定性的岩层分类[J].译文见:隧道译,1972(4).
    曾昭磺.隧道地震反射法超前预报[J].地球物理学报,1994,37(2):218-230.
    陈建勋,杨忠,袁雪截.秦岭终南山特长公路隧道大埋深段施工监测及分析[J].建筑科学与工程学报,2006,23(3):71-75.
    陈立成,许帮保,王大为,等.隧道施工掌子面前方层界面层析成像预报[J].计算物理,1994,11(1):68-74.
    邓谊明,李圣涛.大瑶山隧道坍方分析和处理简介[J].岩土工程学报,1987(9):12-20
    杜炜平.隧道开挖地质灾害规律与防治对策研究[M].长沙:中南大学,2001.
    公路工程地质勘察规范(JTJO64-98)[S].北京:人民交通出版社,1999.
    公路隧道设计规范(JTJ026-90)[S].北京:人民交通出版社,1990
    公路隧道施工技术规范(JTJ042-94)[S].北京:人民交通出版社,1995.
    谷德振.岩体工程地质力学基础[M].北京:科学出版社,1979.
    关于地下结构的岩石分级[J].译文见:隧道译,1972(4).
    关于岩石的合理分类[J].译文见:隧道译,1992(4).
    国家自然科学基金委员会工程与材料学部.重大工程灾害与防治论证报告[R].北京:国家自然科学基金委员会,2000.
    黄润秋,王贤能.深埋隧道工程主要灾害地质问题分析[J].水文地质工程地质,1998,4(4):21-24.
    黄润秋,王贤能.深埋隧道工程主要灾害地质问题分析[J].水文地质工程地质,1998,4(4):21-24.
    江亦元,王星华.高原冻土隧道支护技术及工艺[J].试验研究.2006,27(8):1339-1343.
    蒋忠信,秦小林.云贵高原区南昆铁路隧道溶洞的预测与检验[J].铁道工程学报,1997,(1):94-103.
    李铜基.极化滤波[J].海洋技术,1996,15(4):130~137.
    李月,刘立,李玉梅等.地基层状岩石纵波波速与密度相关性试验研究.四川建筑科学研究,2009,(2):125-127。
    刘宝深.综合利用城市地面及地下空间的几个问题[J].岩石力学与工程学报,1999,18(l):109-111
    刘财,董世学,杨宝俊,等.极化滤波在广角地震P,S波场分离中的应用[J].物探化探计算技术,1995,17(2):15~18.
    刘喜武,刘洪,李幼铭.高分辨率Radon变换方法及其在地震信号处理中的应用[J].地球物理学进展,2004,19(1):008~015.
    刘喜武,刘洪.高分辨率Radon变换方法及其在地震信号处理中的应用[J].地球物理学进展,2004,19(1):8-15.
    刘志刚,刘秀峰. TSP(隧道地震勘探)在隧道隧洞超前预报中的应用与发展[J].岩石力学与工程学报,2003,22(8):1399-1402.
    罗省贤,李录明. F-K域多波变速波场分离[J].物探化探计算技术,1995,21(2):127~132.
    马在田.共炮检距二维弹性波地震剖面的偏移方法[J].地球物理学报,1995,38(1):2~4.
    毛建安.秦岭特长隧道施工地质超前预报技术的应用[J].世界隧道,1998,(4):36-39.
    孟庆生,何樵登.抛物线拉冬变换算法在近偏移距道数据恢复中的应用[J].吉林地质,2000,19(1):81-85.
    牛滨华,孙春岩.多项式Radon变换[J].地球物理学报,2001,44(2):263-271.
    戚敬华,李萍.利用τ-p变换技术实现多波波场分离[J].煤田地质与勘探.1998,26(5):54-57.
    阮百尧,熊彬.大型对称变带宽方程组的Cholesky分解法[J].物探化探计算技术,2000,22(4):361-363.
    沈操,牛滨华,余钦范. Radon变换的matlat实现[J].物探化探计算技术,2000,22(4):346-350.
    沈鸿雁.反射波法隧道井巷地震超前预报研究[D].长安大学硕士学位论文,2006:5
    水工围岩工程地质分类(GB50287-99)[S].北京:中国建筑工业出版社,2000.
    水利水电工程地质勘察规范(GB50287-99)[S].北京:中国建筑工业出版社,2000.
    孙广忠.军都山隧道快速施工超前地质预报指南[M].北京:中国铁道出版社,1990
    铁路工程施工技术手册一隧道(上、下册)[M].北京:中国铁道出版社,1999.
    王梦恕.国铁路_隧道与地下空间发展概况[J].隧道建设,2010(4).
    王梦恕.可持续发展中的六大难题和对策[J].隧道建设,2002,22(2):1-3.
    王润福,孙国庆,李治国.圆梁山隧道进口填充型溶洞注浆施工技术[J].隧道建设,2003,23(2):28-30.
    王维红,首皓.线性同相轴波场分离的高分辨率τ-p变换法[J].地球物理学进展,2006,21(1):74-78.
    王文,刘志安.深埋、长、大隧道围岩工程地质分类综述[J].成都理工学院学报,1996,23(增刊):141一147.
    吴律,武克奋,孙力. τ-p变换方法及其在地震处理中的应用[J].石油物探,1986,25(1):37~52.
    夏彬伟.公路隧道施工地质灾害预测预报研究:[硕士学位论文].重庆:重庆大学,2006.
    徐济川,黄少霞.大瑶山隧道的突泥涌水机制[J].铁道工程学报,1996,(2):83-89.
    薛云峰,何继善,郭玉松.南水北调西线工程深埋隧道地质超前预报系统研究的思考[J].地球物理学进展,2006,21(3):993-997.
    闫桂京,陈建文,吴志强.地层岩性与地震波速度的关系分析.海洋地质动态,2005,21(9):17-21.
    闫红江.牛岭界隧道施工综合地质预报技术[J].现代隧道技术.2005,42(5):60-65.
    岩土工程勘察规范(GB50021-2001)[S].北京:中国建筑工业出版社,2002.
    姚忠瑞,何惺华,左建军,等.多方位Walk-away VSP处理方法[J].石油物探,2006,45(4):380-384
    姚忠瑞,孙卫国,何惺华,等.三维三分量Walk-away VSP处理方法及效果分析[J].石油天然气学报(江汉石油学院学报),2005,27(6):902-905
    岳建华,刘树才.矿井直流电法勘探[M].中国矿业大学出版社,2000.
    张关泉,周洪波.地面记录的纵、横波分离[J].石油地球物理勘探,1995,30(2):182~185.
    张平松,吴健生.中国隧道及井巷地震波法超前探测技术研究分析[J].地球科学进展,2006,21(10):1033-1038.
    张勇,张子新. TSP超前地质预报在公路隧道中的应用[J].西部探矿工程,20O1,72(5),71-72.
    赵永贵.国内外隧道超前预报技术评价与推介[J].地球物理学进展,2007,22(4):1344-1352.
    钟宏伟,赵凌.我国隧道工程超前预报技术现状分析[J].人民长江,2004,35(9):15-17.
    钟世航. TSP作隧道掌子面前方地质超前预报几例失误原因分析[J].岩石力学与工程学报,2003,22(S1):2443-2446.
    朱宝龙,陈强. TSP超前地质预报在圆梁山隧道施工中的应用[J].水文地质工程地质,2003,(1):81-83.
    朱鲁,李笃远.井下物探多参数综合应用研究[J].山东矿业学院学报,1997,16(3):239-242.
    傅冰骏.国际岩石力学发展动向[J].岩石力学与工程学报,1997,16(4):195-196.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700