激光(1.064μm)/红外(3~5μm)光学系统中滤光膜技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于蓝宝石在近红外波段以及中红外波段有较高的透过率,同时常温下蓝宝石光学、力学以及热冲击、抗雨蚀有很好的性能,因而是激光红外光学系统的首选材料。由于目前材料加工的工艺水平的不足,使得蓝宝石的透过率低于理论值,另外,蓝宝石较差的高温强度限制了蓝宝石其他性能的发挥。而在蓝宝石头罩/窗口沉积增透保护膜层是提高光学性能和改善高温强度的一种有效方法。
     由于激光/红外光学系统对(1.064μm)和(3-5μm)波段的透过率要求较高,而常用的DLC、SiC、Si3N4保护膜虽然有很高的硬度且在3-5μm有较好的透明性,但在1.064μm波长处都有不同程度的吸收,所以无法作为激光红外系统的保护膜。考虑到激光/红外系统对透过率及膜层机械性能的特殊要求,选择在(1.064μm)和(3-5μm)都有较高透过率的非晶Al2O3作为保护膜。
     本文将SiO2和TiO2作为增透膜系的高低折射率材料,Al2O3作为保护膜材料,利用等离子体化学气相沉积(PECVD)的方法在蓝宝石基底上沉积增透保护膜,对薄膜的制备工艺及其性能进行了系统的研究,具体内容如下:
     根据激光(1.064μm)红外(3-5μm)光学系统的波段特点,采用等离子体化学气相沉积(PECVD)的方法,在蓝宝石衬底上设计并制备了SiO2、TiO2作为高、低折射率的增透膜以及非晶Al2O3的保护膜。可实现1.064μmm和3-5μm波段的增透和保护作用,满足激光红外光学系统的使用要求。
     采用等离子体化学气相沉积(PECVD)的方法,在蓝宝石衬底上设计并制备了SiO2、TiO2薄膜。揭示了主要工艺参数对SiO2和TiO2薄膜的沉积速率、附着力、内应力和透过率的影响规律。利用Femm软件对真空室内的电场进行模拟,同时借助田口试验方法指导实验,解决了由于头罩形状的特殊性给增透膜和保护膜带来的厚度均匀性差的问题。本实验中膜层厚度的非均匀度小于8%,满足激光红外光学系统对膜层厚度均匀性的要求。
     利用等离子体化学气相沉积(PECVD)的方法,采用ATSB作为反应前驱物、Ar为运载气体来制备Al2O3保护膜,揭示了主要工艺参数对Al2O3薄膜硬度沉积速率、附着力、内应力和透过率的影响规律。
     根据最终确定的SiO2、TiO2、Al2O3的光学色散数据进行膜系设计,并对增透保护膜进行制备,镀膜后头罩总的透过率增加了约8%,满足了使用要求。
     对保护膜进行了硬度测试,对不同温度下镀膜和没有镀膜的蓝宝石衬底进行弯曲强度试验。试验发现,在同等条件下镀膜后蓝宝石的平均抗弯强度高于未镀膜蓝宝石的抗弯强度。在600℃时,镀增透保护膜的蓝宝石样品的平均抗弯强度是未镀膜蓝宝石的1.27倍,说明镀膜可以改善蓝宝石的表面质量,进而改善蓝宝石的高温强度。
Because of good performance in near middle infrared waveband with high transmittance, as well as optical, mechanical, thermal and shock resistance property in normal temperature, sapphire is the preferred selection of material for laser infrared optical system. The lack of material processing technology makes transmittance of sapphire less than its theoretical value. Moreover, the poor strength at high temperature limits other performance of the sapphire. Depositing AR coating and protecting coating on the sapphire dome or window is an effective way to improve both optical properties and strength at a high temperature.
     The laser infrared optical system always requires a high transmittance at1.064μm and3-5μn band. Although DLC, SiC, and Si3N4possess high hardness and good transparency at3-5μm waveband, the absorption there at1.064μm stays in an unacceptable level, so they cannot be the protecting film of the laser infrared system. Amorphous Al2O3have been chosen as the protecting film considering the good mechanical properties and high transmittance at1.064μm and3-5μm waveband.
     Plasma enhanced chemical vapor deposition (PECVD) method, which has been used for deposition of AR and protecting film, choosing SiO2and TiO2as the low and high refractive index material respectively, and Al2O3as the external protection material, the preparation processing and performance of the film has been studied. The specific contents are as follows:According to the characteristics of the laser infrared optical system,AR and protecting film have been deposited with assistance of plasma enhanced chemical vapor deposition (PECVD) technology on the sapphire substrate, the requirements of the laser infrared optical system has been met.
     The SiO2and TiO2thin films has been fabricated on the substrate of sapphire using PECVD method. The effection of dominating processing on deposition rate, adhesion, and residual stress has been revealed. With simulation of the electrical field by Femm software, and the aid of taguchi method, the uniformity of the film thickness on Dome has been greatly improved. The uniformity of film thickness is less than8%, the requirements of film uniformity on laser infrared optical system has been achieved.
     The Al2O3protective film have been prepared using PECVD method, and choosing ATSB as the precursor and Ar as the carrier gas,revealing the effect of the main processing parameters on deposition rate, hardness, adhesion, residual and stress.
     According to the optical dispersion data of SiO2, TiO2, and Al2O3, the AR protection film system have been designed to increase the transmittance of the whole dome by8%, which made it meet the using requirements successfully.
     The hardness test and the bending strength test on coated and uncoated substrate have all been made to show that the average flexural strength of coated substrate, which is better than the uncoated sample. The average flexural strength of coated substrate turns out to be1.27times stronger than the uncoated sapphire at600℃. It has been proved that, Coating can improve the surface quality of sapphire,and then enhanced the strength at high temperature.
引文
[1]于怀之,红外光学材料[M],国防工业出版社,2007.
    [2]付秀华,姜会林,付新华,王崇娥.多波段红外增透与保护膜技术的研究.兵工学报,2007,28(10):1183-1185.
    [3]王庆良,孙彦敏,张磊PECVD法制备类金刚石薄膜的摩擦学性能[J].材料研究学报.2011,第25卷,第1期.
    [4]徐均琪,杭凌侠,惠迎雪.非平衡磁控溅射无氢DLC增透膜的研制[J].真空2005.24卷,第五期.
    [5]L. L. Alt, S. W. Ing, Jr., K. W. Laendle, J. Electrochem. Soc.,1963,110,465.27.
    [6]赵利,薛亦渝,王学华等.膜系自动设计中的几种新型评价函数.武汉理工大学学报.2002,24(5):125-127.
    [7]S. W. Ing, Jr., W. Davern, J. Electrochem. Soc.,1965,112,285.
    [8]A. R. Reinbergh, Electrochem. Soc. Ext. Abstr.,1974,6,19.
    [9]D. E. Carlson, C. W. Magee, A. R. Triano, J. Electrochem. Soc.:Solid-State Sci.Technol.,1979,126, 688.
    [10]W. C. O'Mara, Liquid Crystal Flat Panel Displays Manufacturing Science and Technology, VAN NOSTRAND REINHOLD, New York,1993.
    [11]S. Sherman, S. Wagner, J. Mucha, R. A. Gottscho, J. Electrochem. Soc.,1997,144,3198.
    [12]E. Cianci, A. Schina, A. Minotti, S. Quaresima, V. Foglietti, Sensors and Actuators A,2006,127,80.
    [13]D R Gibson, E M Waddell, A D Wilson and K Lewis, Opt. Eng.,33,957-966 (1994).
    10. D R Gibson, E M Waddell, and K Lewis, Proc. SPIE.2286,335-346 (1994).
    [14]A. Grill, Cold Plasma in Materials Fabrication, IEEE press, New York 1993.
    [15]A. Lieberman, A. J. Lichtenberg, Principles of Plasma Discharges and Material Processing, Wiley, New York 1994.
    [16]A. von Keudell, Plasma Sources Sci. Technol.,2000,9,455.
    [17]F Jansen Plasma-Enhanced Chemical Vapour Deposition Handbook of Thin Film Process Technology IOP 1997.
    [18]J.G. Kim, C.S. Park, J.S. Chun, Thin Solid Fihns 97 (1982) 97.
    [19]E. Fredriksson, J,O. Carlsson, Surf. Coat, Technol.56 (1993) 165.
    [20]J. Fournier, W, DeSisto, R. Brusasco, M. Sosnowski, R. Kershaw, J. Baglio, K. Dwight, A. Wold, Mater. Res. Bull.23 (1988) 31.
    [21]K.M. Gustin, R.G. Gordon, J. Electron, Mater.17 (6) (1988) 509.
    [22]唐晋发,顾培夫,刘旭等.现代光学薄膜技术.杭州:浙江大学出版社,2006.
    [23]T. Maruyama, T. Nakai, Appl, Phys, Lett.58 (19) (1991) 2079.
    [24]H, Kumagai, K. Toyoda, M. Matsumoto, M, Obara, Jpn. J. Appl. Phys.32 (1993) 6137.
    [25]T.H. Roth, E. Broszeit, K.H. Kloos, Surf. Coat, Technol.36 (1988) 801.
    [26]T.C. Chou, T.G. Nieh, S.D. Mcadams, G.M. Pharr, Scripta Met.25(1991).
    [27]P. Vuoristo, T. Man@a, P. Kettunen, Thin Solid Films 204 (1991) 297.
    [28]F. Ramos, M.T. Vieira, Mater. Manuf. Proc.7 (2) (1992) 251.
    [29]C.H. Lin, H,L. Wang, M.H. Hon, Thin Solid Films 283 (1996) 171.
    [30]C,H. Lin, H.L. Wang, M.H. Hon, Surface and Coatings Technology, accepted (1996),
    [31]C.J. Kang, J.S. Chum W.J. Lee, Thin Solid Films 189 (1990) 161.
    [32]M.S. Al-Robaee, G.N. Subbanna, K.N. Rao, S. Mohan, Vacuum 45(1) (1994) 97.
    [33]J, Ullmann, U. Falke, W. Scharff, A. Schroer, G.K. Wolf, Thin Solid Films 232 (1993) 154.
    [34]S. Kaplan, F. Jansen, M. Machonkin, Appl. Phys, Lett.47 (7) (1985) 750.
    [35]R. Kleber, K. Jung, H. Ehrhardt, I. Muhling, K. Breuer, H. Metz, F. Engelke, Thin Solid Films 205 (1991)274.
    [36]M. Ohring, The Materials Science of Thin Films, AP, U.S., t991, p.561.
    [37]J.J. Gilman, J. Appl. Phys.41 (4) (1970) 1664.
    [38]J.J. Gilman, Covalent Ceramics Ii:Non-Oxides, Mat. Res. Soc. Syrup. Proc.327 (1994) 357.
    [39]R.F. Eduljee, R.L. McCullough, Structure and Properties of Composites, T.W. Chou, R.W. Cahn, P. Haasen, E.J. Kramer (Eds,),Materials Science and Technology:A Comprehensive Treatment, VCH, NY, 1993, p.410.
    [40]H. Maupas, J.L. Chermant, R. Hillel, Mater. Res. Bull.29 (8) (1994) 895.
    [41]S.W. Rynders, A. Scheeline, P.W. Bohn, J. Appl. Phys.69 (5) (1991) 2951.
    [42]LiLi Vescan Thermallly Activated Chemical Vapour Deposition Handbook of Thin Film.
    [43]张贵锋,新型红外增透保护膜.红外技术[J].1995年,Vol.17:1-8.
    [44]N.C. Tombs, H.A. Wegener, R. Newman, B.T. Kenny, A.J. Coppola, Proc. IEEE 55 (1967) 1168.
    [45]K.H. Zaininger, A.S. Waxman, IEEE Trans. Electron. Dev.16(1963) 333.[46] G.P. Schulman, M. Trusty, J.H. Vickers, Thermochim. Acta 85 (1963) 907.
    [47]C. Taschner, B. Ljungberg, V. Alfredsson, I. Endler, A. Leonhardt, Surf. Coat. Technol.108-109 (1998)257.
    [48]F. Jones, J. Logan, J. Vac. Sci. Technol. A 7 (1989) 1240.
    [49]H.L. Wang, C.H. Lin, M.H. Hon, Thin Solid Films 310 (1997)260.
    [50]R.W. Hoffman, Physics of Non-Metallic Thin Films, B-14, Plenum, New York,1970.
    [51]A.A.R. Elshabini-Riad, F.D. Ⅲ Barlow, Thin Film Technology Handbook, McGraw-Hill International,1997, pp.3-4.
    [52]K. Ramkumar, A.N. Saxena, J. Electrochem. Soc.139 (1992) 1437.
    [53]A.A. Griffith, Philos. Trans. R. Soc. Lond. A 221 (1921) 163.
    [54]T.D. Schemmel, R.L. Cunningham, H. Randhawa, Thin Solid Films 181 (1989) 597.
    [55]P.V. Patil, D.M. Bendale, R.K. Puri, V. Puri, Thin Solid Films 288 (1996) 120.
    [56]J.M. Schneider, W.D. Sproul, A.A. Voevodin, A. Matthews, J.Vac. Sci. Technol. A 15 (3) (1997) 1084.
    [57]S. Zhu, F. Wang, H. Lou, W. Wu, Surf. Coat. Technol.71(1995) 9.
    [58]刘梦夏,强西林.光学薄膜膜系设计方法及发展趋势.西安工业学院学报.2000,20(3):194-199.
    [59]C.S. Bathia, G. Guthmiller, A.M. Spool, J. Vac. Sci. Technol. A 7 (3) (1989) 1298.
    [60]张贵锋,新型红外增透保护膜.红外技术[J].1995年,Vol.17:1-8.
    [61]M. Schierling, E. Zimmermann, D. Neuschutz, J. de Phys. IV 9 (1999) 8-85.
    [62]O. Zywitzki, G. Hoetzsch, F. Fietzke, K. Goedicke, Surf. Coat. Technol.82 (1996) 169.
    [63]苏现军等,射频溅射淀积锥形玻璃窗口红外减反射保护膜[J]2001,303-312.
    [64]R. Cremer, K. Reichert, D. Neuschutz, G. Erkens, T. Leyen decker, Proceedings of Second International Conference on The Coatings in Manufacturing Engineering, Hannover, Ger many, May 9-10,2001 (2001) T8-1.
    [65]赵利,薛亦渝,王学华等.膜系自动设计中的几种新型评价函数,武汉理工大学学报.2002,24(5):125-127.
    [66]Ch. Taschner, B. Ljungberg, V. Alfredsson, I. Endler, A.eonhardt, Surf. Coat. Technol.108-109 (1998)257.
    [67]C.H. Lin, H.L. Wang, M.H. Hon, Surf. Coat. Technol.90(1997) 102-106.
    [68]N. Reiter, U. Konig, H. van den Berg, R. Tabersky, US Patent No.5.173.328 (1992).
    [69]孙杏凡,等离子体及其应用[M].北京:高等教育出版社,1982,162-174.
    [70]V.A.C. Haanappel, H.D. van Corbach, T. Fransen, P.J. Gellings, Surf. Coat. Technol.63 (1994) 145.
    [71]V.A.C. Haanappel, J.B. Rem, H.D. van Corbach, T. Fransen, P.J. Gellings, Surf. Coat. Technol.72 (1995)1.
    [72]钟迪生,真空镀膜·光学材料的选择与应用[J],辽宁大学出版社,2001:199[73]H.Y. Ha,J.S.Lee, S.W. Nam, I.W. Kim, S.A. Hong, J. Mater. Sci. Lett.16 (1997) 1023.
    [74]T. Maruyama, S. Arai, Appl. Phys. Lett.60 (1992) 322.
    [75]T. Maruyama, T. Nakai, Appl. Phys. Lett.58 (1991) 2079.
    [76]彭国贤,气体放电-等离子体物理的应用[M].上海:知识出版社,1988:65-72.
    [77]Nishi, Y.; Funai, T.; Izawa, H.; Fujimoto, T.; Morimoto, H.; Ishii, M. Jpn. J. Appl. Phys.1992,31, 4570.
    [78]McCurdy, P. R.; Bogart, K. H. A.; Dalleska, N. F.; Fisher, E. R.ReV. Sci. Instrum.1997,68,1684.
    [79]郑伟涛,薄膜材料与薄膜技术[J].北京:化学工业出版社,2004年1月:99-109.
    [80]Fisher, E. R.; Ho, P.; Breiland, W. G.; Buss, R. J. J. Phys. Chem.1993,97,10287.
    [81]Fisher, E. R.; Ho, P.; Breiland, W. G.; Buss, R. J. J. Phys. Chem.1992,96,9855.
    [82]McCurdy, P. R.; Venture, V. A.; Fisher, E. R. Chem. Phys. Lett.1997,274,120.
    [83]Bogart, K. H. A.; Cushing, J. P.; Fisher, E. R. Chem. Phys. Lett.1997,267,377.
    [84]Buss, R. J.; Ho, P. IEEE Trans. Plasma Sci.1996,24,79.
    [85]Buss, R. J.; Ho, P.; Weber, M. E. Plasma Chem. Plasma Process.1993,13,61.
    [86]邵淑英,范正修,范瑞瑛等.薄膜应力的研究[J].激光与光电子学进展,2005,42:73-78.
    [87]J. Saraie, K. Ono, S. Takeuchi, J. Electrochem. Soc.136 (10) (1989) 3139.
    [88]W.S. Jr Rees, CVD of Non-Metals, VCH Publishers, Inc, New York,1996, p.282.
    [89]R. Cremer, M. Witthaut, K. Reichert, M. Schierling, D.Neuschutz, Surf. Coat. Technol.108-109 (1998)48.
    [90]R. Cremer, M. Witthaut, A. von Richthofen, D. Neuschutz, in:I. Olefjord, L. Nyborg, D. Briggs (Eds.), ECASIA 97, Seventh European Conference on Applications of Surface and Interface Analysis, Willey, Chichester,1997, p.927.
    [91]R. Cremer, M. Witthaut, D. Neuschutz, G. Erkens, T. Leyen decker, M. Feldhege, Surf. Coat. Technol.120-121(1999)213.
    [92]李正中,薄膜光学与镀膜技术[M].艺轩图书出版社,2004,8.
    [93]V.A.C. Haanappel, H.D. van Corbach, T. Fransen, P.J. Gellings, Surf. Coat. Technol.72 (1995) 13.
    [94]J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, in:J. Chastain (Ed.), Handbook of X-ray Photoelectron Spectros copy, Perkin-Elmer Corporation, USA,1992.
    [95]S. W. Ing, Jr., W. Davern, J. Electrochem. Soc.,1964,111,120.
    [96]M. Ohring, The Materials Science of Thin Films, Academic Press,1992, p.552.139,2636.
    [97]Ho, P.; Breiland, W. G.; Buss, R. J. J. Chem. Phys.1989,91,2627.
    [98]Cessou, A.; Stepowski, D. Combust. Sci. Technol.1996,118,361.Allan, M. G.; McManus, K. R.; Sonnefroh, D. M.; Paul, P. H. Appl. Opt.1995,34,6287.
    [99]R. Tabersky, H. van den Berg, U. Konig, Int. J. Refractory Metals Hard Mater.14 (1996) 79.
    [100]Ewan Waddell, Des Gibson, Li Lin and Fu Xiuhua. Modelling and optimization of film hickness variation for plasma enhanced chemical vapour deposition processes [J]. spie.2011.
    [101]W.S. Jr Rees, CVD of Non-Metals, VCH Publishers, Inc, New York,1996, p.282.
    [102]P. Vuoristo, T. Man@a, P. Kettunen, Thin Solid Films 204 (1991) 297.
    [103]陈光华,邓金祥新型电子薄膜材料[M].化学工业出版社,2002.9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700