杂草稻中胚轴伸长生长的调节机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻直播,是世界水稻生产发展的主要趋势之一。但是直播稻出苗难导致出苗迟,最终导致抽穗期推迟、成熟期延长,给栽培稻带来巨大的损失。中胚轴伸长与直播栽培出苗率显著相关,目前生产上所用的半矮秆栽培稻中许多品种中胚轴较短、伸长能力差,在浅土覆盖播种下,顶土出苗能力较好,在旱地直播或深土直播条件下,中胚轴短、出苗速度慢、出苗率下降,严重影响直播稻的秧苗素质。因此,发掘中胚轴较长、顶土能力强、出苗率高的水稻种质资源,才能克服短中胚轴带来的出苗不齐及其出苗难等问题,能够更好的培育出中胚轴伸长特性良好的品种,推动直播技术的发展。
     杂草稻(Weedy Rice)遗传变异类型丰富,适应性和抗逆性都较强,在水稻改良特别是抗性育种上是优良的种质资源库。本实验室研究发现,杂草稻具有较长的中胚轴,对于中胚轴伸长能力,杂草稻强于栽培稻,籼稻又强于粳稻。本研究以长中胚轴WR04-6和WR04-43,短中胚轴栽培稻秋光为供试材料,通过内源激素、生理酶学、对外源激素的响应及其遗传机制的研究,系统探讨了杂草稻中胚轴伸长的机理,从细胞形态学明确中胚轴伸长的实质。主要研究结果如下:
     1、利用人工气候箱,在黑暗条件下培养幼苗,采用石蜡切片法对杂草稻WR04-6、WR04-43和栽培稻秋光的中胚轴伸长进行了细胞形态学观察。研究发现,杂草稻幼苗的中胚轴只有在黑暗条件下才进行伸长生长,材料幼苗初期苗高的差异主要来自中胚轴的伸长。中胚轴伸长初始阶段,其细胞数目达到整个时期数目的80%以上,随后分裂增殖基本停止;杂草稻在纵向长度上细胞数目比秋光高100%,而细胞长度比秋光则长400%;在中胚轴伸长生长初期,细胞分裂增殖和细胞伸长共同促进中胚轴伸长生长,后期则依靠细胞纵向延伸促进中胚轴伸长生长。杂草稻中胚轴的伸长生长由细胞数量增加和细胞伸长共同起作用,细胞长度纵向延伸对中胚轴伸长生长起决定作用。中胚轴细胞中部细胞长度明显高于基部和顶部细胞,且长中胚轴材料较之于短中胚轴材料更加明显,而基部和顶部两区段细胞长度相差不大。
     2、对中胚轴内源激素测定表明,在整个中胚轴伸长生长阶段,WR04-6和WR04-43的内源GA、IAA和CTK含量都高于秋光,其中GA的差异最大,CTK的差异最小,但3个激素的含量变化趋势不同,随着幼苗生长,GA和CTK含量下降,而IAA含量持续稳步增长,不论培养几天,材料间激素含量的差异仍保持大约一致的差距。中胚轴伸长的内源激素研究表明,GA、IAA、CTK都可促进中胚轴的伸长。GA和IAA的作用较大,对中胚轴的伸长生长起着决定性作用,而CTK作用相对较小。
     3、中胚轴伸长的动力学研究表明,中胚轴长的材料α-淀粉酶和β-淀粉酶活性及其可溶性糖含量高,淀粉酶活性的提高,导致淀粉贮藏物质的降解以提供丰富的能量底物和结构碳架,同时可溶性糖含量与淀粉酶活性变化一致,α-淀粉酶和β-淀粉酶及可溶性糖为中胚轴的伸长提供强大的能量来源。
     4、中胚轴细胞壁的组份研究表明,细胞壁纤维素含量随着幼苗的生长而有所增加,且长中胚轴的杂草稻低于短中胚轴的秋光;中胚轴细胞壁酶学的研究表明,p-1,3-葡聚糖酶活性随着幼苗生长均有不同程度的增加,WR04-6的p-1,3-葡聚糖酶活性为供试材料中最高,WR04-43次之,秋光最低,与中胚轴的长度差异一致,p-1,3-葡聚糖酶活性的高低在很大程度上影响着中胚轴的伸长;细胞壁纤维素酶活性变化在整个中胚轴伸长生长阶段呈现小幅上升趋势,加速细胞壁纤维的水解,使细胞壁松弛,促进细胞的延伸;IAA氧化酶呈现稳步下降的趋势,下降幅度较大;POD酶活性在整个中胚轴生长阶段同IAA氧化酶变化趋势一致,表现出长中胚轴WR04-6、WR04-43极显著的低于秋光,细胞壁氧化酶活性较低加大了结合态IAA向游离态IAA转变的效率,使细胞中存在更多的游离态IAA,提高中胚轴内IAA含量。
     5、3种外源激素GA、IAA、CTK均能显著促进中胚轴的伸长,其中GA对WR04-6的促进作用最大,其次为WR04-43;IAA对WR04-43的促进作用最大,其次为WR04-6; CTK对3个材料的促进作用无显著性差别。从总体上看,GA对促进中胚轴伸长的作用最大,IAA的促进作用次之,CTK的作用最小。外加GA能刺激生长素的合成,使细胞壁松弛,细胞壁的伸展性加大,减少细胞的纵向延伸阻力,加快生长,促进细胞伸长;外加IAA促进中胚轴伸长生长,主要是提高细胞壁水解酶活性和降低细胞壁氧化酶活性,从而使细胞壁松弛,诱导细胞的伸长生长。
     6、杂草稻中胚轴细胞微管在快速伸长时解聚明显,微管更趋向于垂直于细胞伸长轴的T型;低浓度的黄草消(25nM)显著促进中胚轴长度的增加,高浓度黄草消(≥100nM)也抑制中胚轴伸长;1μM或更高浓度MTs稳定药剂紫杉醇显著抑制中胚轴伸长;随着中胚轴伸长,细胞微管骨架结合蛋白基因MAP65家族表达量总体趋势为下降,同时微管结合蛋白稳定基因MORl表达量上升;微管结合蛋白解聚基因KataninP60(1)、 KataninP60(2)、KataninP80表达量下降。在杂草稻中胚轴伸长过程中,动态不稳定性的MTs起着是至关重要的作用。
     7、以02428、WR04-6杂交后得到的F2群体,构建的水稻分子遗传图谱共包含131对标记座位,总图距约为1384.4cM,覆盖整个基因组的90.5%,标记的平均距离为10.6cM。共检测到4个控制中胚轴伸长的基因,分别位于第1、第2、第3和第4号染色体上,LOD值在2.54-3.77范围内,单个QTL对表型贡献率在6.39-16.75%之间。
Rice direct sowing is one of the main trends of rice production and development in the world. The difficulty of seedling emergence of direct-seeded rice lead to delay the heading time and prolong the ripening stage which also effect full heading and yield. Significant correlation was found between the mesocotyl elongation and the emergence rate of direct sowing. The variety of semi-dwarf cultivated rice have a better emergence capacity with the shallow soil covered because of its shorter mesocotyl and poor elongation capacity. But it influenced the quality of rice shoot seriously at a dry land direct sowing or deep soil direct sowing. Therefore, excavation of the rice germplasm of longer mesocotyl and high emergence rate should be done to overcome the difficult of seeding emergence and then it is to be better breed the variety have longer mesocotyl and promote development of direct seeding.
     Weedy rice is fine in rice improvement especially in resistance breeding which has preferably genetic variation、adaptability and stress-resistance. Mesocotyl elongation is important for emerging, mesocotyl length materials of WR04-6and WR04-43and mesocotyl short materials of Akihikari of weedy rice were used in this study to discuss the essence of mesocotyl elongation and discuss its regulation of hormone、mechanism of physiology enzyme^response of exogenous hormone and the molecular base. The main findings are as follows:
     1. To observed the cytomorphology of mesocotyl in the dark condition by artificial climate chamber, the study used varieties as WR04-6、WR04-43and Akihikari,then the result showed that the elongation growth of seedling mesocotyl could occurred only at dark condition; The difference of height between varieties at seedling stage were caused by mesocotyl elongation. To observed mesocotyl cell morphology by the paraffin method and the result showed that the number of mesocotyl cell account for80%of total at whole period and then cell division and proliferation stop. The cell number of longitudinal and cell length of long mesocotyl material of weedy rice were higher100%to Akihikari, and400%than those of short mesocotyl material respectively. The cell division and elongation promoted elongation growth of seedling mesocotyl together during early stage of that and then it depended cell longitudinal extending later. The added cell number and cell elongation promoted mesocotyl elongation together while cell longitudinal extending made a decision effect on elongation growth of mesocotyl.
     2. Study on endogenous hormone of mesocotyl elongation show that GA、IAA and CTK could promote elongation of mesocotyl. On all stage, GA、IAA and CTK of WR04-6and WR04-43were higher than those of Akihikari. Among these endohormone, GA has the greatest difference than the IAA and CTK. Content trend of these hormonal were different. With seedling growth, GA and CTK were decline but IAA was growing continually. No matter days, differences of hormone content with materials were keep accordance and also the mesocotyl elongation.
     3. The dynamics research of mesocotyl elongation showed that the materials with long mesocotyl could improve activity of α-amylase and (3-amylase, and had a high content of soluble sugar. The improvement of amylase activity could result in the degradation for starch storage material, as well as priovide abundant energy substrate and carbon frame. Meanwhile, the content of solube sugar had consistent change with amylase activity.a-amylase,(3-amylase and soluble sugar provided powerful energy sources for elongation of mesocotyl.
     4. Research on the components of cell wall of mesocotyl showed that the content of cellulose had a increase with the seedling growth, and which of weedy rice with long mysocotyl was lower than that of akimitsu with short mesocotyl; Rusults of cell wall enzymology of mesocotyl showed that activity of β-1,3-glucanase had varying increase with seedling growth, WR04-6was the highest, WR04-43took a second place, and akimitsu was the lowest in tested materials, the changes manifested as consistent with length of mysocotyl. The activity of β-1,3-glucanase had a vary influence on elongation of mesocotyl; The changes of activity of cell wall ecllulose presented as a modest increase in the whole growth stage of hypocotyl elongation, it could accelerate hydrolysis of cell wall fiber, make cell wall loosening, and promote cell elongation; IAA oxidase was declined steadily; POD avtivity had a consistent change with IAA oxidase in the whole growth stage of mesocotyl elongation, but the weedy rice of WR04-6and WR04-43were significantly lower than akimitsu. The lower acitivity of cell wall oxidase promoted the transformation rate of conjugated IAA to free IAA. increased more free IAA in cells, and then enhanced content of IAA in mesocotyl.
     5. Three exogenous hormones such as GA、IAA、CTK can significantly promote mesocotyl of extension, which of GA is playing important role for promotion of WR04-6, secondly for WR04-43; IAA is playing important role for promotion of WR04-43, secondly for WR04-6; CTK was no significant difference for promotion of three materials. On the whole, GA is the most important for promoting extension of mesocotyl, IAA take a second place, effect of CTK is least. Applied GA can stimulate synthesis of IAA and make cell wall relax, extensibility of cell wall increase, and reduce longitudinal extension resistance of cell, accelerate the growth, promoting extension of cell. Applied IAA can promote extension growth of mesocotyl. The main effect was improve activity of cytohydrolist and decrease oxidase activity of cell wall, so as to make cell wall relax, induced elongation growth of cell.
     6. The depolymerization of mesocotyl cells of weedy rice in rapid elongation in microtube was significant, and microtubules tend t-type perpendicular to the axis of cell elongation. The application of low concentration of oryzalin (25nM) further increases the mesocotyl length in both weedy rice and cultivared rice Akihikari. In contrast, MTs-stabilizing drug taxol significantly inhibit the elongation of mesocotyl at the concentration of1μM or over. Here, we found that several genes encoding MAP65s were downregulated during the later stage of weedy rice mesocotyl elongation which may be closed relationship with the reorganization of MTs in weedy rice mesocotyl elongation. At the same time, morl, a gene coding for microtubule binding protein has higher gene expression. However, p60(1), p60(2) and p80.Which were encoding MT-serving enzymes have significant lower gene expression. In this study, we provided the evidence that dynamic instability of MTs in mesocotyl cells is essential for rice mesocotyl elongation.
     7. Using an F2population derived from the parents of short-mesocotyl WCVS02428and long-mesocotyl WR04-6and131SSR molecular markers built genetic linkage map.There were131pair primer had polymorphism between parents in all of935pairs SSR primer and its frequency was13.7%.The total distance was1384.4cM of the131markers and cover90.5%of whole genome, mean distance of makers was10.6cM. The four genes control the length of mesocotyl was mapped on chromosome1,2,3and4, the range of LOD was 2.54-3.77, phenotype contribution rate of single QTL was6.39-16.75%. This genetic linkage map established foundation for researching various traits of WR04-6and mesocotyl QTL
引文
1. 敖和军,肖安民,黄敏等.2011.湖南省直播稻生产现状及发展策略.中国稻米,17(3):28-31
    2. 比弗斯.1981.植物的氮代谢.科学技术出版社,253-255
    3. 边杉,王颖,于涛等.2004.聚丙烯酰胺凝胶银染技术在半定量RT-PCR中的应用.中国药科大学学报,35(2):178-182
    4. 蔡建华,陈洪礼,吴同源.2009.沿江地区直播稻生产现状及发展对策.北方水稻,(3):127-129,138
    5. 曹立勇,袁守江,周海鹏等.2005.外源激素对水稻中胚轴伸长的影响.作物学报,31(8):1098-1100
    6. 曹立勇,朱军,颜启传等.2002.水稻籼粳交DH群体幼苗中胚轴长度的QTLs定位和上位性分析.中国水稻科学,16(3):221-224
    7. 曹立勇,朱军.2002.水稻幼苗活力相关性状的QTLs定位和上位性分析.作物学报,28(6):809-815
    8. 曹立勇.2002.水稻籼粳交DH群体幼苗中胚轴长度的QTLs定位和上位性分析.中国水稻科学,16(3):221-224
    9. 曹尚银,张俊昌,魏立华.2000.苹果花芽孕育中内源激素的变化.果树科学,17(4):244-248
    10.常仁华,王朋,唐成等.2006.水稻根和籽粒细胞分裂素和脱落酸浓度与籽粒灌浆及蒸煮品质的关系.作物学报,32(4):540-547
    11.陈爱国,陈进红.2002.胚芽鞘的伸长机理和生理生态响应.山东农业大学学报,33(4):438-441
    12.陈惠哲,玄松南,王渭霞等.2004.丹东杂草稻种子的耐冻能力和低温发芽特性研究.中国水稻科学,18(2):109-112
    13.陈金桂,张玉宗,周燮.1997.赤霉素和脱落酸对谷子黄化幼苗中胚轴伸长生长的调节.南京农业大学学报,20(1):13-17
    14.程式华,李健主编.2007.现代中国水稻.北京:金盾出版社,1-31
    15.丁国华,马殿荣,马巍等.2010.杂草稻幼苗期耐旱性的初步筛选与评价.北方水稻,40(1):11-14
    16.丁颖.1983.丁颖稻作论文选集编辑组编,丁颖稻作论文选集,北京:农业出版社,74-93
    17.杜娟,刘国华.2007.水稻栽培方式研究进展.作物研究,21(5):593-597
    18.段伟,高金鹏,王鹏.2004.硫灯和氙灯下生长的黄瓜幼苗植物激素水平的差异.植物生理与分子生物学学报,30(6):687-690.
    19.范玉琴.2005.高空诱发水稻半矮化突变体的生物学特性及赤霉素调控.华南师范大学,硕士学位论文
    20.费槐林,邓建平,吴九林等.2000.水稻良种高产高效栽培.北京:金盾出版社,224-237
    21.高灿红,胡晋,郑昀晔.2006.玉米幼苗抗氧化酶活性、脯氨酸含量变化及与其耐寒性的关系.应用生态学报,17(6):1045-1050
    22.高桥清.1985.ABA对水稻中胚轴的伸长作用.植物的化学调节(日),20(1):53-60
    23.何绍恒.1989.苏联水稻的生产.世界农业,(4):19-20
    24.何生根.1998.花生种子萌发过程中胚轴多胺氧化酶的活性变化.植物学通报,15(5)
    25.黄成,姜树坤,冯玲玲等.2010.水稻中胚轴长度QTL分析.作物学报,36(7):1108-1113
    26.黄祥辉.1984.植物细胞的延长生长.植物生理学通讯,(2):6-11
    27.黄祥辉,顾英.1997.钙信使系统抑制剂对生长素诱导的小麦芽鞘切段仲长生长影响的研究.华东师范大学学报(植物生物学专辑)
    28.季兰,杨仁崔.2002.水稻茎伸长生长与植物激素[J].植物学通报,19(1):109-115
    29.蒋荷,吴竞仑,王根来等.1985.连云港稽稻研究.作物品种资源,2:4-7
    30.蒋彭炎.1996.直播稻的生育特点和增产对策.中国稻米,(4):30-33
    31.角田重三郎,闵绍楷译.1989.稻的生物学.北京:农业出版社
    32.金千瑜,欧阳由男,陆永良等.2001.我国南方直播稻若干问题及其技术对策研究.中国农学通报,17(5):44-48
    33.金千瑜.1997.韩国的直拨水稻生产与技术.世界农业,(9):16-18
    34.匡银近.1998.猕猴桃种子经赤霉素处理后几种酶的活力变化的初步研究.孝感师专学报(自然科学版),18(4):58-61
    35.兰平,娄成后.2001.乙酰胆碱对黄化玉米幼苗中胚轴通透性与物质运转的调控效应.植物学报,43(12):1229-1232
    36.李贵勇,袁平荣,杨从党等.2005.韩国直播稻栽培研究概况.云南农业科技,(2):47-48
    37.李木英,石庆华,潘晓华.2008.江西省直播稻发展趋势与存在的问题及对策.现代农业科技,21:236-238
    38.李素梅,张自立,姚彦如.2003.植物激素检测技术的研究进展.安徽农业大学学报,30(2):227-230
    39.李雄彪.1991.植物细胞壁的分子结构与生理功能.植物生理学通讯,27(4):246-252
    40.林建荣,张光恒,吴明国等.2006.水稻中胚轴伸长特性的遗传分析.作物学报,32(2):249-252
    41.凌启鸿,张洪程,丁雁峰等.2005.论我国栽培科学的发展方向.中国作物栽培专业委员会.全国第十一届水稻优质高产理论与技术研讨会,武汉
    42.凌启鸿.1997.关于水稻轻简栽培问题的探讨.中国稻米,(5):3-9
    43.刘伟明.1995.日本等国的水稻直播栽培技术.中国稻米,(4):34-36
    44.龙程,张志良.1997.红光和Ca2+对与绿豆下胚轴伸长有关的细胞壁酶的影响.植物生理学报,23(2):199-203
    45.卢百关,秦德荣,樊继伟等.2009.江苏省直播稻生产现状、趋势及存在问题探讨.中国稻米,(2):45-47
    46.马殿荣,陈温福,徐正进等.2005.辽宁省杂草稻的初步考察.辽宁农业科学,6:22-24
    47.欧阳由男,张秋英,张克勤,等.2005.水稻幼苗中胚轴长度QTL及与Fe2+浓度的互作效应的遗传分析,遗传学报,32(7):712-718
    48.潘瑞炽.1984.植物生理学.北京:高等教育出版社
    49.彭少兵,杨建昌.2003.水稻高产高效优质栽培研究现状.中国水稻科学,17(3):275-280
    50.孙海正.2012.直播栽培在黑龙江省水稻生产中的应用与技术措施中国种业,2:60-61
    51.尚玉磊,李春喜,邵云等.2004.禾本科主要作物生育初期内源激素动态及其作用的比较.华北农学报,19(4):47-50
    52.沈恒胜,陈君琛,倪德斌.2001.稻草硅化和溶解特性对稻草纤维降解率及其利用的影响.中国农业科学,34(6):672-678
    53.沈恒胜,陈君琛,谢华安.2001.汕优63稻草营养质量与品种特性的关系.福建农业科学,16(2):1-5
    54.沈恒胜,陈君琛,种藏文等.2003.近红外漫反射光谱法(NIRS)分析稻草纤维及硅化物组成.中国农业科学,36(9):1086-1090
    55.寺岛一男.1997.国际竞争时代下东北地区的稻作技术研究I.直播栽培的现状和课题.农业与园艺,72
    56.宋建农,庄乃生,王立臣等.2000.21世纪我国水稻种植机械化发展方向.中国农业大学学报,5(2):30-33
    57.田中孝庆著,朱庆森译.1987.水稻的基础生理和生态.上海:科技技术出版社,92-93
    58.王洋,张祖立,张亚双等.2007.国内外水稻直播种植发展概况.农机化研究,(1):48-50
    59.王宏,项时康,陈健华等.1997.棉花种子发芽过程中生理生化变化及赤霉素的调节.棉花学报,9(2):95-101
    60.屈振国.1998.浅谈水稻轻简高产栽培中的品种应用问题.中国稻米,(1):7-8
    61.王人豪,罗利敏.2002.水稻直播的生育特点及主要栽培技术.浙江农业科学,(1):12-13
    62..王瑞英,于振文,潘庆民等.1999.小麦籽粒发育过程中激素含量变化.作物学报,25(2):227-231
    63.王渭霞,朱延恒,邵国胜等.2005.杂草稻分类、起源及利用研究进展.杂草科学,(2):1-5
    64.王莹,马殿荣,陈温福.2008.北方杂草稻中胚轴伸长特性的初步研究.中国稻米,(3):47-49
    65.王振林.1989.麦类作物产量形成与激素的关系.麦类作物,(6):35-38
    66.吴三桥,丁锐,李新生.2002.赤霉素和脱落酸对黑稻黄化幼苗中胚轴伸长生长的作用研究.氨基酸和生物资源,24(3):44-45
    67.吴文革,陈烨,钱银飞.2006.水稻直播栽培的发展概况与研究进展.中国农业科技导报,8(4):32-36
    68.吴文凯,刘成前,周志刚.2009.用于莱茵衣藻荧光定量PCR分析的内参基因选择.植物生理学通讯,(45):667-672
    69.席章营,朱芬菊,台国亲等.2005.作物QTL分析的原理与方法.中国农学通报,21:88-92
    70.许聪,吴万春.1996.海南岛杂草稻的生态考察和鉴定.中国水稻科学,10(4):247-249
    71.许聪,吴万春.1996.杂草稻的分类地位和利用途径探索.海南大学学报自然科学版,4(2):146-150
    72.许莉,郑文竹,周涵韬等.1999.玉米α-微管蛋白分子生物学研究进展.植物学通报,16(5):488-494
    73.严寒静,谈锋.2001.自然降温过程中栀子叶片脱落酸、赤霉素与低温半致死温度的关系.西南师范大学学报,26(2):195-199
    74.颜季琼,张孝琪.1992.高等植物细胞壁的结构和功能的分子生物学基础.植物生理与分子生物学 (余叔文主编),科学出版社,84-98
    75.颜启传等.种子学.2001.北京:中国农业出版社,110-117
    76.杨文钰,屠乃美.2003.作物栽培学各论(南方本).北京:中国农业出版社
    77.杨兴洪,王玮,孙学振.1999.生长调节剂和营养物质协同作用对棉苗下胚轴形态和解剖结构的影响,14(2):58-62
    78.游修龄.中国稻作史.1995.北京:中国农业出版社
    79.余柳青,Mortimer A M,周勇军等.2005.杂草稻落粒粳的生物学特性与防治.植物保护学报,32(3):319-323
    80.余柳青.1989.美国水直播水稻稻田杂草综合防治.世界农业,(5):48-50
    81.袁晓丹,赵国臣,柳参奎.2006.东北地区杂草稻主要农艺性状的评价.吉林农业科学,31(6):6-9
    82.张光恒,林建荣等.2005.水稻出苗顶土动力源研究.中国水稻科学,19(1):59-62
    83.张洪程,黄以澄.1988.麦茬机械少免耕旱直播稻产量形成特栽培技术的研究.江苏农学院学报,9(4):25-29
    84.张丽娜,牛吉山,于玲.2005.用半定量RT-PCR方法分析小麦TaM lo-Alc基因的表达.西北植物学报,25(7):1368-1371
    85.张涛,黄秀华,贾军.2008.江淮地区直播稻生产现状及高产栽培措施.农业科技通讯,(4):91-93
    86.张玉烛.2004.水稻稀直播强化栽培技术研究.中国作物栽培专业委员会.全国第十届水稻优质高产理论与技术研讨会,哈尔滨
    87.张忠林,彭桂峰,田卫东.2004.杂草稻种质资源农艺性状的主成分及聚类分析.西南农业学报,17:236-240
    88.张忠林,谭学林,邓安凤.2002.杂草稻种质资源的综合评价.植物遗传资源科学,3(4):47-50
    89.赵挺俊.2008.江苏直播稻发展成因和存在问题及对策.江苏农机化,(5):31-32
    90.赵娜,马殿荣,陈温福.2007.北方杂草稻发芽期耐盐性的初步评价.中国稻米,2:20-24
    92.郑相如,范雅兰.1998.胚轴-有胚植物的一种特殊结构.生物学通报,33(5):10-11
    93.周德超.1991.再谈禾谷类种子萌发过程中胚轴的伸长.生物学通报,(9):10
    94.周拾禄.1978.稻作科学技术.北京:农业出版社,117-124
    95.朱春联,陈娟.2009.滨海县直播稻生产中存在的问题和对策.大麦与谷类科学,(4):15-16
    96.朱德峰,严学强.1997.国外水稻直播栽培发展概况.作物栽培,(增1):102-103
    97.邹应斌.2004.亚洲直播稻栽培的研究与应用.作物研究,(3):133-135
    98.张艳君,朱志峰,陆融.2007.基因表达转录分析中内参基因的选择.生物化学与生物物理进展,34:546-550
    99. Abdrakhamanova A, Wang Q Y, Khokhlova L, et al.2003. Is microtubule disassembly a trigger for cold acclimation. Plant Cell Physiol,44:676-686
    100. Allston R F W.1846. The rice plant. DeBow's Rev,1:320-356
    101. Alpi A, Beevers H.1983. Effect of O2 concentration on rice seedings. Plant physiol,71:30-34
    102. Andersen C L, Jensen J L.2004. Normalization of real-time quantitative reverse transcription-PCR data:a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res,64:5245-5250
    103. Andrade M A, Bork P.1995. HEAT repeats in the Huntingtons-disease protein. Nat Genet,11:115-116
    104. Andrade M A, Ponting C P, Gibson T J, et al.2000. Homol-ogy-based method for identification of protein repeats using statistical significance estimates. Mol Bio,298:521-537
    105. Andrade M A, Petosa C O, Donoghue S I, et al.2001. Comparison of ARM and HEAT protein repeats. MolBiol,309:1-18
    106. Azuma T, Hatanaka T, Uchida N, et al.2003. Interactions between abscisic acid, ethylene and gibberellin in internodal elongation in floating rice:the promotive effect of abscisic acid at low humidity. Plant Growth Regulation,2:105-109
    107. Baas P W, Karabay A, Qiang L. 2005. Microtubules cut and run. Trends Cell Biol,15:518-524
    108.Baki B.B, Maclin D, Amru N B, et al.1999. Allometric response and growth patterns of three accessions of weedy rice and a cultivated rice(Oryza sativa L.CV.MR84) in Malaysia. Weed Sci.Tech, 44(2):115-124
    109.Barreda D.G, Sendra J, Carreres R., et al.1999.Red rice in Spain.In FAO.Global workshop on red rice control,pp:51-54.Report of Workshop,30 August-3 September 1999,Varadero,Cuba.Plant Production and Protection Division,Rome,155.(available at http://www.fao.org)
    110. Bleeker A B, Sehutte J L, Kende H.1986. Antomiealan alysisof growtl landdeveloPmenta attemsintheinternode of deeper water rice. Planta,169:490-497
    111. Bossing T, Barros C S, Fischer B, et al.2012. Disruption of Microtubule Integrity Initiates Mitosis during CNS Repair. Dev Cell,23:433-440
    112.Bouquin T,Mattsson O.Naested H, et al.2003. The Arabidopsis luel mutant defines a katanin p60 ortholog involved in hormonal control of microtubule orientation during cell growth. Cell Sci, 116:791-801
    113. Bownan J L, Floyd S K.2008. Pattern ing and polarity in seed plant shoots. Annu Rev PlantBio,159: 67-88
    114. Boxus M, Letellier C, Kerkhofs P.2005. Real time RT-PCR for the detection and quantitation of bovine res-piratory syncytial virus. Virol Methods,125:125-130
    115. Brenner M L, Cheikh N.1995. The role of hormones in photosyn thate partitioning and seed filling Davices P J, PlantHormones:Physiology, Biochemistry and Molecular Biology. Netherlands:Kluwer Academic Publishers.649-670
    116. Burk D H, Liu B, Zhong R, et al.2001. A katanin-like protein regulates normal cell wall biosynthesis and cell elongation. Plant Cell,13:807-827
    117. Burk D H, Ye Z H.2002. Alteration of oriented deposition of cellu-lose microfibrils by mutation of a katanin-like microtubule-severing protein. Plant Cell,14:2145-2160
    118. Bustin S A.2000.Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. Mol Endocrinol,25:169-193
    119. Chain J L, Joachims M L, Hooker S W, et al.2005. Real-time PCR method for the quantitative analysis of human T-cell re-ceptor γ and β gene rearrangements. Immunol Methods,300:12-23
    120. Chan J, Rutten T, Lloyd C.1996. Isolation of microtubule-associated proteins from carrot cytoskeletons:a 120 kDa map decorates all four microtubule arrays and the nucleus. Plant J,10 (2): 251-259
    121. Chen L J, Lee D S, Song Z P, et al.2004. Gene flow from cultivated rice(Oryza sativa)to its weedy and wild relatives.Annals of Botany (Lond),93(1):67-73
    122. Cho Y, Chung T, Suh H S, et al.1995. Genetic characteristics of Korean weedy riee(Oryza sativa L.)by RFLP analysis.Euphytica,86:103-110
    123. Cho Y C, Soo C, Seong S H, et al.1996. Inheritance of resistance to(Pyricularia Grisea Sacc.)in Korean weedy rice(Oryza sativa L.).Korean Journal of Breeding,28(3):309-316
    124. Clcland R E.1981. Wall extensibility:Hormoner and extensibiliton. Encyclopedia of Pland Physiology,255
    125. Crowell E F, Timpano H, Desprez T, et al.2011. Differential regulation of cellulose orientation at the inner and outer face of epidermal cells in the Arabidopsis hypocotyl. Plant Cell,23:2592-2605
    126. de Forges H, Bouissou A, Perez F.2011. Interplay between microtubule dynamics and intracellular organization. Int J Biochem Cell Biol,44:266-274
    127. Dheda K, Huggett J F, Bustin S A, et al.2004. Validation of housekeeping genes for normalizing RNA expression in real-time PCR. Biotechniques,37:112-119
    128. Diallo S.1999. Probleme pose par le riz rouge en riziculture au Senegal.In FAO.Global workshop on red rice contr-ol, pp,45-49. Report of Workshop,30 August-3 September 1999,Varadero,Cuba.Plant Production and Protection Division,Rome,155 pp.(available at http://www.fao.org)
    129. Dilday R H, Mgonja M A, Amonsila S A.1990. Plant height vs. medocotyl and elongation in rice or linkage leiotropism.Crop Sci,30:815-818
    130. Dodson W R.1900. Rice weeds in Louisiana.Louis. Agric.Exp.Stn.Bull,61:402-433
    131. Domoki M, Gyorgyey J, Biro J, et al.2006. Identi-fication and characterization of genes associated with the induction of embryogenic competence in leaf-protoplast-derived alfalfa cells.Biochim Biophys Acta,1759.543-551
    132. Dongsu C, Yi L,Hyung-Taeg C, et al.2003. Regulation of Expansin Gene Expression Affects Growth and Development in Transgenic Rice Plants.The Plant Cell,45(6):1386-1398
    133. Ehrhardt D W, Shaw S L.2006. Microtubule dynamics and orga-nization in plant cortical arrayAnnu Rev Plant Biol,57:859-875
    134. Etschmann B, Wilcken B, Stoevesand K, et al.2006. Selection ofreference genes for quantitative real-time PCR analysis in canine mammary tumors using the GeNorm algorithm. Vet Pathol,43:934-942
    135. Federici M T, Vaughan D, Tomooka N, et al.2001. Analysis of Uruguayan weedy rice genetic diversity using AFLP molecular markers.Electron J.Biotechnol,4(3)
    136. Ferrero A F, Vidotto, Balsari P, et al.1999. Mechanical and chemical control of red nce(Oryza sativa L. var.sylvatica) in rice(Oryza sativa L.) pre-planting. Crop protection,18:245-251
    137. Ferrero A.2005. Weedy rice, biological features and control. Website:Http://w ww.fao.org//DOCREP/006/y5031e/y5031e09.htm
    138. Fleming 1.1986. A primer on organosilicon chemistry.In:Ciba Foundation Symposium 121, Silicon Biochemistry John Wiley & Sons,112-119
    139. Foland T B, Dentler W L, Suprenant KA, et al.2005. Paclitaxel-induced microtubule stabilization causes mitotic block and apoptotic-like cell death in a paclitaxel-sensitive strain of Saccharomyces cerevisiae. Yeas,22:971-978
    140.Francesco V, Aldo F.2000. Germination behaviour of red rice (Oryza sativa L.) seed in field and laboratory conditions. Agronomie,20:375-382
    141. Fu Y, Li H, Yang Z.2002. Pase controls the formation of cortical fine F-actin and the early phase of directional cell expansion duringArabidopsis organogenesis.Plant Cell,14:777-794
    142. Furutani I, Watanabe Y, Prieto R, et al.1999. The structure of the protein phosphatase 2A PR65/A subunit reveals the conformation of its 15 tandemly repeated HEAT motifs. Cell,96:99-110
    143. Furutani I, Watanabe Y, Prieto R, et al.2000. The SPIRAL genes are required for directional control of cell elongation in Arabidopsis thaliana. Development,127:4443-4453
    144. Gardner F P, Pearce R B, Mitchell R L.1985. Physiology of CropPlants.Ames:Iowa State University Press,201-242
    145. Gu X Y, Chen Z X, Michael E F.2003. Inheritance of seed dormancy in weedy rice. Crop Science, 43:835-843
    146. Hajime W, Kiyoshi T.1997. Effects of abscisic acid, fusicoccin, and potassium on growth and morphogenesis of leaves and internodes in dark-growth rice seedlings. Plant Growth Regulation, 21:109-114
    147. Hajime W, Kiyoshi T.2001. Morphological and anatomical effects of abscisic acid(ABA) and fluridone on the growth of rice mesocotyls.Plant Growth Regulation,34:273-375
    148. Haller F, Kulle B, Schwager S, et al.2004. Equivalence test in quantitative reverse transcription polymerase chain reaction:confirmation of reference genes suitable for normalization. Anal Biochem, 335:1-9
    149. Hamada T.2007. Microtubule-associated proteins in higher plants. Plant Res,120:79-98
    150. Hartman J J, Mahr J, McNally K, et al.1998. Katanin,a microtubule-severing protein,is a novel AAA-ATPase that targets to the centrosome using a WD40-contain-ing subunit. Cell,93:277-287
    151. Hartman J J, Vale R D.1999. Microtubule disassembly by ATP dependent oligomerization of the AAA enzyme katanin. Science,286:782-785
    152. Heid C A, Stevens J, Livak K J, et al.1996. Real time quantitative PCR. Genome Res,6:986-994
    153. Heu M H.1988. Weed riee"Sharei"showing closer cross-affinity to Japonica type. Rice Genetics Newsletter,5:72-74.
    154. Hirokawa N, Takemura R.2004. Kinesin superfamily proteinsand their various functions and dynamics. Exp Cell Res,301:50-9
    155. Hossain M T, Mori R, Soga K, et al.2002. Growth promotion and increase in cell wall extensibility by silicon in rice and some other Poaceae seedings. Journal of Plant Researcch,115:23-27
    156. Huggett J, Dheda K, Bustin S, et al.2005. Real-time RT-PCR normalization;strategies and considerations. Genes and Immunity,6:279-284
    157. Hussey P J, Hawkins T J.2001. Plant microtubule-associated proteins:the HEAT is off in temperature-sensitive MOR1. Trends Plant Sci,6:389-392
    158. Hussey P J, Hawkins T J, Igarashi H, et al.2002. The plant cytoskeleton:recent advances in the studyof the plant microtubule-associated proteins MAP-65, MAP-190 and the Xenopus MAP215-like protein, MORI. Plant MolBiol,50:915-924
    159. InouyeJ, Anayama T.1970. Stimulation of mesocotyl elongation in japonica rice seedlings by high temperature treatment of seed.Proc. Crop Sci, Soc.Jpn,39:54-59
    160. Jain M, Nijhawan A, Tyagi A K, et al.2006. Vali-dation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem Biophys Res Commun, 345:646-651
    161. James C D, Nilda R B, David R G, et al.2007. Weedy rices:origin, biology, ecology and control. FAO Plant Production and Protection Paper
    162. Jeong Y M, Mun J H, Lee I, et al.2006. Distinct roles of the first introns on the expressionf Arabidopsis profilin gene family members. Plant Physiol,140:196-209
    163. John C.2004. MAPs in plant cells:delineating microtubule growth dynamics and organization. Curr Opin Plant Biol,7:632-640
    164. Kamijma O, Watanabe K.1985. Effeets of dwarf genes on the size and cellulu eharaeteristies of embryonic organs in near-isogenic lines of riee. Japan J Breed,35:243-254
    165. Kawamura E, Himmelspach R, Rashbrooke M C, et al.2006. MICRO-TUBULE ORGANIZATION 1 regulates structure and function of microtubule arrays during mitosis and cytokinesis in the Arabidopsis root. Plant Physiol,140:102-114
    166. Kim B R, Nam H Y, Kim S U, et al.2003. Normalization ofreverse transcription quantitative-PCR with housekeeping genes in rice. Biotechno.l Lett,25:1869-1872
    167. Kline-Smith S L, Walczak C E.2004. Mitotic spindle assembly and chromosome segregation: refocusing on microtubule dynamics. Mo Cell,15:317-27
    168. Knight C T G, Kinrade S D.2001. A primer on the aqueouschemistry of silicon. In:Datnoff L E,Snyder G H,Korndorfer G H.Silicon in Agriculture. Elsevier Science B,57-84
    169. Kuraishi S, Muir R.M. 1963:Naturwissen.schaften,50:337
    170. Kwak K S, Jima M, Yamauchi A, et al.1996. Changes with agingof endogenous abscisic acid and zeatin riboside in the rootsystem of rice. Crop Sci,65:686-692
    171. Lee B T, Martin P, Bangerth F.1988. Phytohormone levels in theflorets of a single wheat spikelet during preanthesis develop ment relationships to grain set. Exp Bot,39:933-937
    172. Lee B W, Myung E J.1995. Seedling emergence of dry-seeded rice under different sowing depths and irrigation regimes. Korean Crop Sci,40(1):59-68
    173.Lee C W, Yun Y D.1993. Seedling emergence and mesocotyl elongation as affected by temperature and seedling depth in direct-seeded rice on dry soil. Korean.Crop Sci,37(6):534-540
    174. Lee H S, Sasaki K, Higashitani A, et al.2012. Mapping and characterization of quantitative trait loci for mesocotyl elongation in rice (Oryza sativa L.). Rice,5:13
    175. Li L, Xu J, Xu Z H, et al.2005. Brassinosteroids stimu-late plant tropisms through modulation of polar auxin transport in Brassica and Arabidopsis. Plant Cell,17:2738-2753
    176. Libault M, Thibivilliers S, Bilgin D D, et al.2008. Identification of four soybean reference genes for gene expression normalization. Plant Genome,7:44-54
    177. Lloyd C, Chan J.2004. Microtubules and the shape of plants to come. NatRev Mol Cell Biol,5:13-22.
    178. Ma Y, Szostkiew 11, Korte A, et al.2009. Gu lators of PP2C phospha tase act ivity funct ion as abscisic acid sensors. Science,324:1064-1068
    179.Maclean J L, Dawe D C, Hardy B, et al.2002. lmanac.Malina:IRRI
    180. Mao T, Jin L, Li H, et al.2005. Two microtubule-associated proteins of the Arabidopsis MAP65 family function differently on microtubules. Plant Physiol 138:654-662
    181. Maria T F.2001. Analysis of Urugnayan weedy rice genetic diversity using AFLP molecular markers. Electronic Journal of Biotechnology,4(3):130-145
    182. Martin C, Bhatt K, Baumann K.2001. aping in plant cells.Curr. Opin.Plant Biol,4:540-549
    183. Masuda Y, Yamamoto R.1970. Dev.Growth Differ,11:287-296
    184. McNally F J, Okawa K, Iwamatsu A, et al.1996. Katanin,themicrotubule-severingA TPase.isc oncentrated atc entrosomes. Cell Sci,109:561-567
    185. McNatlly F J,Vale R D. 1993. Identification of katanin, an ATPase that severs and disassembles stable microtubules. Cell,75:419-429
    186. McNally F J.2000. Capturing a ring of samural. Nat Cell Biol,2:E4-7
    187. McNally K P, Bazirgan O A, McNally F J.2000. Two domains of p80 katanin regulate microtubule severing and spindle pole targeting by p60 katanin. Cell Sci,113:1623-1633
    188. McNally K, Audhya A, Oegema K, et al.2006. Katanin controls mitotic and meiotic spindle length. Cell Biol,175(6):881-891
    189. Meier C, Bouquin T, Nielsen ME, et al.2001. Gibberellin response mutants identified by luciferase imaging. Plant J,25:509-519
    190.Meier C, Bouquin T, Nielsen M E, et al.2002. Two newloci. PLEIADE and HYADE, implicate organ-specific regula-tion of cytokinesis in Arabidopsis. Plant Physiol,130:312-324
    191. Morishima H, Sano Y, Oka H I.1984. Differentiation of perennial and annual types due to habitatl conditions in the wild riee Oryza perennis. Plant Systematics and Evolution,144:119-135
    192. Motoyuki H, Mitsuo I.1993. Difference and Temperature Response of Local Soil-Reduction around Germinating Rice Seed.Japan. Jour. Crop Sci,62(1):105-110
    193. Nam T S, Lee B W.2000. Effect of seed-soaked GA3 and inorganic salts on mesocotyl and coleoptile elongation in rice. Korean J Crop Sci,45(1):50-54
    194. Nelson R J.1907.Rice culture.Arkansas Agric.p.Srn.Bull.94:31-45
    195. Nelson R J.1908. Rice growing in Arkansas. Arkansas Agric.Exp.Stn.Bull.98:133-148
    196. Nethra N, Prasad S R, Rame G.2005. Varietal characterization based on seed, seedling and plant morphologicaltraits in rice (Oryza sativa L.) genotypes. Mysore journal of agricultural sciences, 39(3):362-367
    197. Nishitani K, Masuda Y.1982. Roles of auxin and gibberellic acid in growth and maturation of epicotyls of Vigna angularis:Cell wall changes. Physiol Plant,56:39-46
    198. Nogales E.2000. Structural insights into microtubule function.Annu. Rev Biochem,69:277-302
    199. Oka H I.1988. Weedy form of rice:In Origin of cultivated rice. Amsterdam Tokyo:Japan Sci Soc Press,107-114
    200. Opik H.1973. Effect of an aerobiobiosis on respirating rate.cytochrome oxidase activity and mitochondrial structures in coleoptiles of rice. Cell Sci, 12:725-739
    201. Park J S, Cho Y C, Han S W.1999. Characteristics of weedy rice on paddy field in Kyonggi area. Korean Journal of Weed Science,19(4):299-306
    202. Philippar K, Buchsenschutz K, Abshagen M, et al.2003. The K+ chan -nel KZM1 mediates potassium uptake into the phloem and guard cells of the C4 grass Zea mays. Biol Chem,78:16973-16981
    203. Radonic A, Thulke S, Mackay I M, et al.2004. Guideline for reference gene selection for quantitative real-time PCR. Biochem. Biophys.Res.Commun,313:856-862
    204. Ransbotyn V, Reusch T B H.2006. Housekeeping gene selection for quantitative real-time PCR assays in the seagrass Zostera marina subjected to heat stress. Limnol Oceanogr Methods,4:367-373
    205. Redona E D, Mackill D J.1996. Mapping quantitative trait loci for seedling vigor in rice using RFLPs. Theor Appl Genet,92:395-402
    206.Roll-Mecak A, Vale R D.2005. The Drosophila homologue of the hereditary spastic paraplegia protein, spastin,severs and disassembles microtubules. Curr Biol,15:650-655
    207.Rook F, Corker F, Card R, et al.2001. Impaired sucrose induc tion mutants reveal the modulation of sugar induced starchbiosynthetic gene expression by abscisic acid signaling. Plant J,26:421-433
    208. Rutten T, Chan J, Lloyd C W.1997. A 60-kDa plant microtu-bule-associated protein promotes the growth and stabiliza-tion of neurotubules in vitro. Proc Natl Acad Sci USA,94 (9):4469-4474
    209. Sauter M, Seagull R M, Kende H.1990. Iniernodal elongation and orientation of cellulos Microfibrils and mierotubules in deepwater riee. Planta,232:354-362
    210. Schussler J R, BrennerM L, BrunW A.1991. Relationship of en□dogenous abscisic acid to sucrose level and seed growth rateof soybeans. Plant Physiol,91:1308-1313
    211. Sedbrook J C, Kaloriti D.2008. Microtubules MAPs and plant directional cell expansion. Trends Plant Sci,13 (6):303-310
    212. Sekalska B, Ciechanowicz A, Dolegowska B, et al.2006. Optimized RT-PCR method for assaying expression of monocyte chemotactic protein type 1(MCP-1) in rabbit aorta. Biochem Gene, 44:133-143
    213. Shen H S, Chen J C, Ni D B.2001. Effects of rice straw silicification and characters of extraction biogenic silicon on the degrdation of fibrous components in straw. Scientia Agricultura Sinica, 34(6):672-678
    214. Shen H S, Chen J C, Zhong Z W, et al.2003. Study on the application of near infared reflectance spectroscopy (N1RS) technique for the prediction of fiber composition and silicification of rice straw. Scientia Agricultura Sinica,36(9):1086-1090
    215.Shimada Y, Goda H, Nakamura A, et al.2003. Organ-specific expression of brassinosteroid biosynthetic genes and distribution of endogenous brassinosteroids in Arabidopsis. Plant Physiol, 131:287-297
    216. Smertenko A, Saleh N, Igarashi H, et al.2000. A new class of microtubule-associated proteins in plants. Nat Cell Biol,2:750-753
    217. Smertenko A P, Chang HY, Wagner V, et al.2004. The Arabidopsis microtubule-associated protein AtMAP65-1:molecular analysis of its microtubule bundling activity. Plant Cell,16:2035-2047
    218. Spencer J A, Eliazer S, Ilaria R L, et al.2000. Regulation of microtubule dynamics and myogenic differentiation by MURF,a striated muscle RING-finger protein. Cell Biol,150:771-784
    219. Steven R L, Ravid G O, Carolyn D S, et al.1987. Characterization of the -tubulin gene family of Arabidopsi thaliana:Sci USA,84:3833-5837
    220.Stoppin-Mellet V, Gaillard J, Vantard M.2002. Functional evidence for in vitro microtubule severing by the plant katanin homologue. Biochem J,365:337-342
    221. Stoppin-Mellet V, Gaillard J, Vantard M.2003. Plant katanin, a microtubule severing protein. Cell Biol, 27:279
    222. Sugimoto K, Williamson R E, Wasteneys G O.2000. New techniques enable comparative analysis of microtubule orientation, wall texture, and growth rate in intact roots of Arabidopsis. Plant Physiol, 124:1493-1506
    223. Suh H S, Sato Y I, Morishima H.1997. Genetic characterization of weedy rice (Oryza sativa L.) based on morpho-physiology, isozymes and RAPD makers. Theoretical and Applied Genetics,94:316-321
    224. Suzuki T, Higgins P J, Crawford D.2000. Control selection forRNA quantitation. Biotechniques,29: 332-337
    225. Taeg S N, Byun W L.2000. Effect of seed-soaked GA3 and inorganic salts on mesocotyl and coleoptile elongation in rice. Korean Crop Sci,45(1):50-54
    226. Tang L H, Morishima H.1988. Characteristics of weed rice strains. Rice Genetics Newslette,5:70-72
    227. Tang L H, Morishima H.1997. Genetic characterization of weedy rice and the inference on their origins. Breeding Science,47(2):153-160
    228. Tarditi N, Vercesi B.1993.Ⅱ riso crodo:un problema semore piu attuale in risicoltura. L'Informatore Agrario,11:91-95
    229. Tepfer M, Tayor I E P.1980. The interaction of divalent cation with poetic substances and their influence on acid-indeced cell wall loosening. Con JBd,59
    230. Thellin O, ZorziW, Lakaye B, et al.1999.Housekeeping genes as internal standards:use and limits. Biotechno,175:25-29
    231. Turner F T, Chen C C, Bollich C N.1982. Coleoptile and mesocotyl lengths in semidwarf rice seedlings. Crop Sci,22:43-46
    232. Vale R D.2000. AAA proteins:Lords of the ring. Cell Biol,150:F13-9
    233. Van S P J, Robertson J B.1985. Analysis of forages and fibrous food. A laboratory Manual for Animal Science 613.Cornell University, Ithaca, New York,74-75,80-82
    234. Van S P J, Robertson J B, Lewis B A.1991. Method for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Sciences,74:3583-3597
    235. Vandesompele J, de Preter K, Pattyn, et al.2002. Accurate nor-malization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol,3:1-12
    236. Vidotto F, Ferrero A.2005. Modeling population dynamics to overcome feral rice in rice. In Gressel Cop ferality and volunteerism, Boca Raton, USA, CRC Press,355-370
    237. Vincenheller, W G.1906.Rice growing in Arkansas.Arkansas gric.Exp.Stn.Bull.89:119-129
    238. Wan P, Ling L J, Zhou W J, et al.2004. Cloning,sequence and exp ression analysis of a zine finger protein gene in wheat. A eta Genetica Sinica,31(9):895-900
    239. Wang L Y, Hong Q H, Zhang Y Z H.2004. Real-time quantiative PCR and its applications. Chinese Journal of Cell Biology,26(1):62-67
    240. Wang S, Kurepa J, Hashimoto T, Smalle J A.2011. Salt stress-induced disassembly of Arabidopsis cortical microtubule arrays involves 26S proteasome-dependent degradation of SPIRAL1. Plant cell, 23:3412-3427
    241. Wang W P, Cao K M, Wang X P.2004. Cloning and expression analysis of a RCO Ⅱ gene ho-mologue from rice. Journal of Fudan University(Natural Science),43 (2):206-209
    242. Watanabe H, Takahashi K.1997a. Effects of plant growth regulators on the appearance of MC type rice seedlings. Japan J. Crop. Sci,66:318-324
    243. Watanabe H, Takahashi K.1997b. Effect of abscisic acid, fusicoccin and potassium on growth and morphogenesis of leaves and internode in dark-grown rice seedlings. Plant Growth Regul,21:109-114
    244. Watanabe H, Takahashi K.1999. Effects of abscisic acid and its related compounds on rice seedling growth. Plant Growth Regul,28:5-8
    245. Watanabe H, Vaughan D A, Tomooka N.2000. Weedy rice complexes:Case studies from Malaysia, Vietnam, and Surinam.In:Chin D.V, Baker B, Mortimer M eds. Wild and Weedy Rice in Rice Ecosystems in Asia:A Review, International Rice Research Institute Philippines.pp 25-34
    246. Watanabe H, Kiyoshi T, Masahiko Saigusa.2001. Morphological and anatomical effects of abscisic acid (ABA) and fluridone (FLU) on the growth of rice mesocotyls. Plant Growth Regulation,34: 273-275
    247. Webster T M.2000. Weed survey-southern states:grass crops subsection.Proceedings of the Southern Weed Society,53:247-274
    248.Whittington A T, Vugrek O, Wei K J, et al.2001. MOR1 is es-sential for organizing cortical microtubules in plants. Nature,411:610-613
    249. Wicker-Planquart C, Stoppin-Mellet V, Blanchoin L, et al.2004. Interactions of tobacco microtubule-associated protein MAP65-1b with microtubules. Plant J,39:126-134
    250. Williams M E, Torabinejad J, Cohick E, et al.2005. Muta-tions in the Arabidopsis phosphoinositide phosphatase gene SAC9 lead to overaccumulation of PtdIns(4,5) P2and constitutive expression of the stress-response path-way. Plant Physiol,138:686-700
    251. Wolters H, Jurgens G.2009. Survival of the flexible:Hormonal growth control and adaptation in plant development. Nat Rev Genet,10:305-317
    252. Yamachi M, Aguilar A M, Vaughan D A, et al.1993. Rice germplasm suitable for direct sowing under flooded soil surface. Euphytica,67:177-184
    253. Yasuhara H, Muraoka M, Shogaki H, et al.2002. TMBP200,a microtubule bundling polypeptide isolated-from tetophase tobaeco BY-2 cells is a MOR1 homologue. Plant Cell Physiol,43:595-603
    254. Yoo W G, Kim T I, Li S, et al.2009. Reference genes for quantitative analy-sis on Clonorchis sinensis gene expression by real-time PCR. Parasitol Res,104:321-328
    255. Zhang D, Rogers G C, Buster D W, et al.2007. Three microtubule severing enzymes contribute to the "Pacman-Flux" machinery that moves chromosomers. Cell Biol,177(2):231-42

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700