光子晶体光纤中可见光超连续谱的产生:模拟和实验
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可见光超连续谱具有良好的空间相干性和高亮度,在生物光子学等方面有重要的应用。而光子晶体光纤由于具备灵活的色散可控性以及可实现较高的非线性系数,是目前实现超连续谱的理想介质。本论文以掺镱光纤激光器为泵浦源从扩展短波长边界、提高转换效率到特殊模式输出三个主要方面研究了高非线性光子晶体光纤中的可见光超连续谱的产生。
     本论文首先介绍了光纤中的超连续谱所涉及的一些非线性效应,然后详细描述光纤中非线性过程的广义非线性薛定谔方程,并比较了频域形式相对于时域的优势。结合计算光纤特性的频域有限差分法,可以准确地模拟各种光纤中的非线性过程。
     在扩展短波长边界方面,提出一种增强长波长倏失波的微结构纤芯光子晶体光纤。在固定零色散波长在1gm附近时,2500nm的孤子群速度匹配的波长达到403nm,这比普通光子晶体光纤扩展了60nm。同时其非线性系数也提高3倍左右,非常有利于可见光超连续谱的产生。此外,也讨论光纤特性对纤芯纳米孔的依赖性。通过模拟计算,验证了所设计光纤在可见光超连续谱产生方面的优势。
     在提高可见光超连续谱的转换效率方面,系统地研究了纯石英光子晶体光纤到掺锗光子晶体光纤中的切伦科夫辐射。结果表明,在双零色散点光子晶体光纤的深反常色散区泵浦可以有效地产生短波长的色散波。以掺镱光纤激光器发出的100fs脉冲为泵浦源,在平均功率达到1.27W时,实验得到了大约40%的泵浦光到信号光的转换效率,带宽达到32nm,中心波长为410nm。
     多芯光纤由于模式的特殊性,在非线性光学中占有一席之地。本论文研究了两种特殊的多芯光子晶体光纤:类似同轴双芯光子晶体光纤和紧密的三芯掺锗光子晶体光纤。前者通过在内层纤芯泵浦可以得到外层纤芯输出的可见光超连续谱。由于群速度匹配的确实和相隔很近的双零色散波长,输出光谱形状可以很好地控制。而在三芯掺锗光子晶体光纤通过异相位模式的远场叠加得到中空光束超连续谱。简单地通过调节入射脉冲的偏振态,可以在同相位超模和中空光束超连续谱直接随意转换。在平均功率为1.04W的100fs激光脉冲泵浦下,得到540~1540nm的中空光束超连续谱,这在原子冷却和光摄等方面很好的应用潜能。
The visible supercontinuum (SC), which is characteristic of good spatial coherence and high brightness, have (has) important applications in biophotonics, etc.. By exhibiting an enhanced effective nonlinearity and promoting parametric processes, photonic crystal fibers (PCFs) thus appear to be the ideal media for SC generation. In this thesis, we study the visible SC generation in the highly nonlinear PCF for expanding the blue edge, improving the conversion efficiency and the special mode output.
     (1) The nonlinear process that is involved in the SC generation is introduced. And the frequency domain generalized nonlinear Schrodinger equation is described in detail. Combining the frequency-domain finite difference method, a SC generation in PCF is given.
     (2) A PCF with nanosize air-holes (NAHs) in the solid core for the blue extension of SC generation is investigated. The basic concept of the design is to enhance the evanescent wave in the IR part of the SC. On the premise of fixing the zero dispersion wavelength around1μm, the group-velocity of the proposed fiber can match the infrared wavelength of2.5μm with short-wavelength of403nm, which is about60nm shorter than that of conventional high-△PCF. Simultaneously, the nonlinearity is enhanced about three times. The dependence of the PCF characteristics on the NAHs is also discussed. The simulated results confirm the possibility of increasing the blue-shift of the generated SC in the designed PCFs.
     (3) We demonstrate the generation of highly efficient Cherenkov radiation (CR) in the fundamental mode of a GeO2-doped two zero dispersion wavelengths (ZDWs) PCF. Using a high power femtosecond Yb-doped PCF laser emitting100fs pulses as the pump source, CR with an efficiency of>40%and a bandwidth of38nm at410nm is obtained in the visible-wavelength range when the average power of the pump light is1.27W. It is that injecting the pump light in deep anomalous dispersion regime contributes to such an efficient spectral-isolated CR. The mechanism during the formation of CR is discussed and the experimental results are in good agreement with the calculation.
     (4) Two special multi-core photonic crystal fiber are studied:the dual-concentric-core PCF and GeO2-doped triangular-core PCF. For the former, when pumping in the inner core and the visible SC is obtain in the outer core. Since the group velocity matching is absent, the spectra in short-wavelength side can be controlled by phase-matching and in long-wavelength side the spectra is determined by the second ZDW. As a result, the output spectrum shape can be well controlled. For the latter, a GeO2doped triangular-core PCF is designed and fabricated to allow the generation of a hollow beam through a nonlinear-optical transformation by femtosecond pulses at1040nm from a high power Yb-doped PCF laser oscillator. The hollow beam SC is obtained at far field by adjusting incident light polarization to excite the high order supermode, behaving as a mode convertor. The SC ranging from540to1540nm is achieved with an average pump power of1.04W.
引文
[1]J. C. Knight. Photonic crystal fibres. Nature,2003,424 (6950):847-851
    [2]C. M. Bowden, J. P. Dowling, H.O. Everitt. Development and Applications of Materials Exhibiting Photonic Band Gaps. J. Opt. Soc. Am. B,1993,10 (2):280-280
    [3]P. S. J. Russell. Photonic-crystal fibers. J. Lightwave Technol.,2006,24 (12):4729-4749
    [4]J. C. Knight, T. A. Birks, P. S. J. Russell, et al. All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett.,1996,21 (19):1547-1549
    [5]P. J. Bennett, T. M. Monro, D. J. Richardson. Toward practical holey fiber technology:fabrication, splicing, modeling, and characterization. Opt. Lett.,1999,24 (17):1203-1205
    [6]K. Tajima. Low water peak photonic crystal fibers.29th European Conf. on Optical Commun.,2003.42-43
    [7]I. Gris-Sanchez, B. J. Mangan, J. C. Knight. Reducing spectral attenuation in small-core photonic crystal fibers. Opt. Mater. Express,2011,1 (2):179-184
    [8]J. M. Senior, M. Y. Jamro. Optical fiber communications:principles and practice. Prentice Hall,2008.922
    [9]A. W. Snyder, J. Love. Optical waveguide theory. Springer,1983.227-229
    [10]J. C. Knight, T. A. Birks, P. S. J. Russell, et al. Properties of photonic crystal fiber and the effective index model. J. Opt. Soc. Am. A,1998,15 (3):748-752
    [11]T. A. Birks, J. C. Knight, P. S. Russell. Endlessly single-mode photonic crystal fiber. Opt. Lett.,1997,22 (13):961-963
    [12]J. Laegsgaard, A. Bjarklev. Microstructured optical fibers-Fundamentals and applications. J. Am. Ceram. Soc.,2006,89 (1):2-12
    [13]J. Limpert, O. Schmidt, J. Rothhardt, et al. Extended single-mode photonic crystal fiber lasers. Opt. Express,2006,14 (7):2715-2720
    [14]N. A. Mortensen, M. D. Nielsen, J. R. Folkenberg, et al. Improved large-mode-area endlessly single-mode photonic crystal fibers. Opt. Lett.,2003,28 (6):393-395
    [15]K. Furusawa, A. Malinowski, J. H. V. Price, et al. Cladding pumped Ytterbium- doped fiber laser with holey inner and outer cladding. Opt. Express,2001,9 (13): 714-720
    [16]J. Limpert, A. Li em, M. Reich, et al. Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier. Opt. Express,2004,12 (7): 1313-1319
    [17]J. Laegsgaard, A. Bjarklev. Photonic crystal fibres with large nonlinear coefficients. J. Opt. A, Pure Appl. Opt.,2004,6 (1):1-5
    [18]S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, et al. Supercontinuum generation in submicron fibre waveguides. Opt. Express,2004,12 (13):2864-2869
    [19]R. F. Cregan, B. J. Mangan, J. C. Knight, et al. Single-mode photonic band gap guidance of light in air. Science,1999,285 (5433):1537-1539
    [20]F. Luan, A. K. George, T. D. Hedley, et al. All-solid photonic bandgap fiber. Opt. Lett.,2004,29 (20):2369-2371
    [21]N. M. Litchinitser, S. C. Dunn, B. Usner, et al. Resonances in microstructured optical waveguides. Opt. Express,2003,11 (10):1243-1251
    [22]A. Argyros, T. A. Birks, S. G. Leon-Saval, et al. Photonic bandgap with an index step of one percent. Opt. Express,2005,13 (1):309-314
    [23]G. Bouwmans, L. Bigot, Y. Quiquempois, et al. Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (<20 dB/km) around 1550 nm. Opt. Express,2005,13 (21):8452-8459
    [24]F. Couny, F. Benabid, P. J. Roberts, et al. Generation and photonic guidance of multi-octave optical-frequency combs. Science,2007,318 (5853):1118-1121
    [25]S. Fevrier, F. Gerome, A. Labruyere, et al. Ultraviolet guiding hollow-core photonic crystal fiber. Opt. Lett.,2009,34 (19):2888-2890
    [26]G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, et al. Models for guidance in kagome-structured hollow-core photonic crystal fibres. Opt. Express,2007,15 (20): 12680-12685
    [27]A. Argyros, J. Pla. Hollow-core polymer fibres with a kagome lattice:potential for transmission in the infrared. Opt. Express,2007,15 (12):7713-7719
    [28]S. Fevrier, B. Beaudou, P. Viale. Understanding origin of loss in large pitch hollow-core photonic crystal fibers and their design simplification. Opt. Express, 2010,18 (5):5142-5150
    [29]F. Gerome, R. Jamier, J. L. Auguste, et al. Simplified hollow-core photonic crystal fiber. Opt. Lett.,2010,35 (8):1157-1159
    [30]J. M. Dudley, G. Genty, S. Coen. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys.,2006,78 (4):1135-1184
    [31]R. R. Alfano, S. L. Shapiro. Emission in the Region 4000 to 7000 A Via Four-Photon Coupling in Glass. Phys. Rev. Lett.,1970,24 (11):584-587
    [32]R. R. Alfano, S. L. Shapiro. Observation of Self-Phase Modulation and Small-Scale Filaments in Crystals and Glasses. Phys. Rev. Lett.,1970,24 (11):592-594
    [33]N. Bondarenko, I. Eremina, V. Talanov. Broadening of Spectrum in Self Focusing of Light in Crystals. JETP Lett.,1970,12 (3):85-87
    [34]B. Stoicheff. Characteristics of stimulated Raman radiation generated by coherent light. Phys. Lett.,1963,7 (3):186-188
    [35]W. Jones, B. Stoicheff. Inverse Raman spectra:induced absorption at optical frequencies. Phys. Rev. Lett.,1964,13 (22):657-659
    [36]J. Manassah, P. Ho, A. Katz, et al. Ultrafast supercontinuum laser source. Photonics Spectra,1984,18 (11):53-59
    [37]W. Werncke, A. Lau, M. Pfeiffer, et al. An anomalous frequency broadening in water. Opt. Commun.,1972,4 (6):413-415
    [38]N. Bloembergen. The influence of electron plasma formation on superbroadening in light filaments. Opt. Commun.,1973,8 (4):285-288
    [39]A. L. Gaeta. Catastrophic collapse of ultrashort pulses. Phys. Rev. Lett.,2000,84 (16):3582-3585
    [40]C. Lin, R. Stolen. New nanosecond continuum for excited-state spectroscopy. Appl. Phys. Lett.,1976,28 (4):216-218
    [41]A. Hasegawa, F. Tappert. Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion. Appl. Phys. Lett.,1973,23 (3): 142-144
    [42]L. F. Mollenauer, R. H. Stolen, J. P. Gordon. Experimental observation of picosecond pulse narrowing and solitons in optical fibers. Phys. Rev. Lett.,1980,45 (13):1095-1098
    [43]G. P. Agrawal. Nonlinear fiber optics. Academic Pr,2007.13-97
    [44]P. Wai, C. R. Menyuk, Y. Lee, et al. Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers. Opt. Lett.,1986,11 (7):464-466
    [45]Y. Kodama, A. Hasegawa. Nonlinear pulse propagation in a monomode dielectric guide. IEEE J. Quantum Electron.,1987,23 (5):510-524
    [46]E. Golovchenko, E. Dianov, A. Prokhorov, et al. Decay of optical solitons. JETP Lett, 1985,42 (2):87-91
    [47]P. Beaud, W. Hodel, B. Zysset, et al. Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber. IEEE J. Quantum Electron.,1987,23 (11):1938-1946
    [48]J. Schutz, W. Hodel, H. Weber. Nonlinear pulse distortion at the zero dispersion wavelength of an optical fibre. Opt. Commun.,1993,95 (4):357-365
    [49]A. Gouveia-Neto, M. E. Faldon, J. Taylor. Solitons in the region of the minimum group-velocity dispersion of single-mode optical fibers. Opt. Lett.,1988,13 (9): 770-772
    [50]M. N. Islam, G. Sucha, I. Bar-Joseph, et al. Broad bandwidths from frequency-shifting solitons in fibers. Opt. Lett.,1989,14 (7):370-372
    [51]M. N. Islam, G. Sucha, I. Bar-Joseph, et al. Femtosecond distributed soliton spectrum in fibers. J. Opt. Soc. Am. B,1989,6 (6):1149-1158
    [52]M. Nakazawa, K. Suzuki, H. Kubota, et al. High-order solitons and the modulational instability. Phys. Rev. A,1989,39 (11):5768
    [53]M. Nakazawa, K. Tamura, H. Kubota, et al. Coherence degradation in the process of supercontinuum generation in an optical fiber. Opt. Fiber Technol,1998,4 (2):215-223
    [54]G. A. Nowak, J. Kim, M. N. Islam. Stable supercontinuum generation in short lengths of conventional dispersion-shifted fiber. Appl. Opt.,1999,38 (36):7364-7369
    [55]K. R. Tamura, H. Kuhota, M. Nakazawa. Fundamentals of stable continuum generation at high repetition rates. IEEE J. Quantum Electron.,2000,36 (7):773-779
    [56]O. Boyraz, J. Kim, M. Islam, et al.10 Gb/s multiple wavelength, coherent short pulse source based on spectral carving of supercontinuum generated in fibers. J. Lightwave Technol.,2000,18 (12):2167-2175
    [57]E. Golovchenko, P. V. Mamyshev, A. N. Pilipetskii, et al. Mutual influence of the parametric effects and stimulated Raman scattering in optical fibers. IEEE J. Quantum Electron.,1990,26 (10):1815-1820
    [58]E. Golovchenko, P. V. Mamyshev, A. Pilipetskii, et al. Numerical analysis of the Raman spectrum evolution and soliton pulse generation in single-mode fibers. J. Opt. Soc. Am. B,1991,8 (8):1626-1632
    [59]D. Mogilevtsev, T. Birks, P. S. J. Russell. Group-velocity dispersion in photonic crystal fibers. Opt. Lett.,1998,23 (21):1662-1664
    [60]N. Broderick, T. Monro, P. Bennett, et al. Nonlinearity in holey optical fibers: measurement and future opportunities. Opt. Lett.,1999,24 (20):1395-1397
    [61]J. K. Ranka, R. S. Windeler, A. J. Stentz. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Opt. Lett.,2000, 25 (1):25-27
    [62]W. Wadsworth, J. Knight, A. Ortigosa-Blanch, et al. Soliton effects in photonic crystal fibres at 850 nm. Electron. Lett.,2000,36 (1):53-55
    [63]T. Udem, J. Reichert, R. Holzwarth, et al. Accurate measurement of large optical frequency differences with a mode-locked laser. Opt. Lett.,1999,24 (13):881-883
    [64]J. Knight, J. Arriaga, T. Birks, et al. Anomalous dispersion in photonic crystal fiber. IEEE Photonics Technol. Lett.,2000,12 (7):807-809
    [65]J. K. Ranka, R. S. Windeler, A. J. Stentz. Optical properties of high-delta air silica microstructure optical fibers. Opt. Lett.,2000,25 (11):796-798
    [66]T. Birks, W. Wadsworth, P. S. J. Russell. Supercontinuum generation in tapered fibers. Opt. Lett.,2000,25 (19):1415-1417
    [67]L. Provino, J. Dudley, H. Maillotte, et al. Compact broadband continuum source based on microchip laser pumped microstructured fibre. Electron. Lett.,2001,37 (9): 558-560
    [68]S. Coen, A. H. L. Chan, R. Leonhardt, et al. White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber. Opt. Lett.,2001,26 (17): 1356-1358
    [69]X. Liu, C. Xu, W. Knox, et al. Soliton self-frequency shift in a short tapered air-silica microstructure fiber. Opt. Lett.,2001,26 (6):358-360
    [70]B. Washburn, S. Ralph, P. Lacourt, et al. Tunable near-infrared femtosecond soliton generation in photonic crystal fibres. Electron. Lett.,2001,37 (25):1510-1512
    [71]G. Genty, M. Lehtonen, H. Ludvigsen, et al. Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers. Opt. Express,2002,10 (20):1083-1098
    [72]M. Gonzalez-Herraez, S. Martin-Lopez, P. Corredera, et al. Supercontinuum generation using a continuous-wave Raman fiber laser. Opt. Commun.,2003,226 (1-6):323-328
    [73]B. Cumberland, J. Travers, S. Popov, et al.29 W High power CW supercontinuum source. Opt. Express,2008,16(8):5954-5962
    [74]J. C. Travers, A. B. Rulkov, B. A. Cumberland, et al. Visible supercontinuum generation in photonic crystal fibers with a 400W continuous wave fiber laser. Opt. Express,2008,16 (19):14435-14447
    [75]A. Kudlinski, G. Bouwmans, M. Douay, et al. Dispersion-Engineered Photonic Crystal Fibers for CW-Pumped Supercontinuum Sources. J. Lightwave Technol., 2009,27 (11):1556-1564
    [76]A. Kudlinski, B. Barviau, A. Mussot. White-light continuous-wave supercontinuum source. IEEE Photonics Society Summer Topical Meeting Series,2010.182-183
    [77]C. Larsen, D. Noordegraaf, P. M. W. Skovgaard, et al. Gain-switched CW fiber laser for improved supercontinuum generation in a PCF. Opt. Express,2011,19 (16): 14883-14891
    [78]D. R. Solli, C. Ropers, P. Koonath, et al. Optical rogue waves. Nature,2007,450 (7172):1054-1057
    [79]M. Erkintalo, G. Genty, J. Dudley. Giant dispersive wave generation through soliton collision. Opt. Lett.,2010,35 (5):658-660
    [80]A. Kudlinski, M. Lelek, B. Barviau, et al. Efficient blue conversion from a 1064 nm microchip laser in long photonic crystal fiber tapers for fluorescence microscopy. Opt. Express,2010,18 (16):16640-16645
    [81]P. Franken, A. Hill, C. e. Peters, et al. Generation of optical harmonics. Phys. Rev. Lett.,1961,7(4):118-119
    [82]T. H. Maiman. Stimulated optical radiation in ruby. Natrue,1960,197 (4736): 493-494
    [83]R. W. Boyd. Nonlinear optics. Academic press,2003.1-2
    [84]A. M. Heidt, A. Hartung, G. W. Bosman, et al. Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers. Opt. Express,2011,19 (4):3775-3787
    [85]L. E. Hooper, P. J. Mosley, A. C. Muir, et al. Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion. Opt. Express,2011, 19 (6):4902-4907
    [86]T. Schreiber, T. Andersen, D. Schimpf, et al. Supercontinuum generation by femtosecond single and dual wavelength pumping in photonic crystal fibers with two zero dispersion wavelengths. Opt. Express,2005,13 (23):9556-9569
    [87]P.-A. Champert, V. Couderc, P. Leproux, et al. White-light supercontinuum generation in normally dispersive optical fiber using original multi-wavelength pumping system. Opt. Express,2004,12 (19):4366-4371
    [88]C. L. Xiong, Z. L. Chen, W. J. Wadsworth. Dual-Wavelength-Pumped Supercontinuum Generation in an All-Fiber Device. J. Lightwave Technol.,2009,27 (11):1638-1643
    [89]A. Labruye re, P. Leproux, V. Couderc, et al. Structured-Core GeO/sub 2/-Doped Photonic-Crystal Fibers For Parametric And Supercontinuum Generation. IEEE Photonics Technol. Lett.,2010,22 (16):1259-1261
    [90]A. V. Husakou, J. Herrmann. Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers. Phys. Rev. Lett.,2001,87 (20):203901
    [91]N. Akhmediev, M. Karlsson. Cherenkov radiation emitted by solitons in optical fibers. Phys. Rev. A,1995,51 (3):2602
    [92]F. M. Mitschke, L. F. Mollenauer. Discovery of the soliton self-frequency shift. Opt. Lett.,1986,11 (10):659-661
    [93]D. V. Skryabin, F. Luan, J. C. Knight, et al. Soliton self-frequency shift cancellation in photonic crystal fibers. Science,2003,301 (5640):1705-1708
    [94]B. Kibler, J. M. Dudley, S. Coen. Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber:influence of the frequency-dependent effective mode area. Appl. Phys. B,2005,81 (2-3):337-342
    [95]R. H. Stolen, J. P. Gordon, W. Tomlinson, et al. Raman response function of silica-core fibers. J. Opt. Soc. Am. B,1989,6 (6):1159-1166
    [96]K. J. Blow, D. Wood. Theoretical description of transient stimulated Raman scattering in optical fibers. IEEE J. Quantum Electron.,1989,25 (12):2665-2673
    [97]Q. Lin, G. P. Agrawal. Raman response function for silica fibers. Opt. Lett.,2006,31 (21):3086-3088
    [98]D. Hollenbeck, C. D. Cantrell. Multiple-vibrational-mode model for fiber-optic Raman gain spectrum and response function. J. Opt. Soc. Am. B,2002,19 (12): 2886-2892
    [99]P. Mamyshev, S. V. Chernikov. Ultrashort-pulse propagation in optical fibers. Opt. Lett.,1990,15 (19):1076-1078
    [100]J. Laegsgaard. Mode profile dispersion in the generalised nonlinear Schrodinger equation. Opt. Express,2007,15 (24):16110-16123
    [101]M. H. Frosz, P. M. Moselund, P. D. Rasmussen, et al. Increasing the blue-shift of a supercontinuum by modifying the fiber glass composition. Opt. Express,2008,16 (25):21076-21086
    [102]W. H. Reeves, D. V. Skryabin, F. Biancalana, et al. Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres. Nature,2003,424 (6948):511-515
    [103]K. M. Hilligsoe, H. N. Paulsen, J. Thogersen, et al. Initial steps of supercontinuum generation in photonic crystal fibers. J. Opt. Soc. Am. B,2003,20 (9):1887-1893
    [104]T. H. Z. Siederdissen, N. C. Nielsen, J. Kuhl, et al. Influence of near-resonant self-phase modulation on pulse propagation in semiconductors. J. Opt. Soc. Am. B, 2006,23 (7):1360-1370
    [105]J. Hult. A Fourth-Order Runge?Kutta in the Interaction Picture Method for Simulating Supercontinuum Generation in Optical Fibers. J. Lightwave Technol., 2007,25 (12):3770-3775
    [106]A. A. Rieznik, A. M. Heidt, P. G. Konig, et al. Optimum Integration Procedures for Supercontinuum Simulation. IEEE Photonics J.,2012,4 (2):552-560
    [107]R. M. Mu, V. S. Grigoryan, C. R. Menyuk, et al. Comparison of theory and experiment for dispersion-managed solitons in a recirculating fiber loop. IEEE J. Sel. Top. Quantum Electron.,2000,6 (2):248-257
    [108]O. V. Sinkin, R. Holzlohner, J. Zweck, et al. Optimization of the Split-Step Fourier Method in Modeling Optical-Fiber Communications Systems. J. Lightwave Technol., 2003,21(1):61
    [109]A. Heidt. Efficient Adaptive Step Size Method for the Simulation of Supercontinuum Generation in Optical Fibers. J. Lightwave Technol.,2009,27 (18):3984-3991
    [110]A. A. Rieznik, T. Tolisano, F. A. Callegari, et al. Uncertainty relation for the optimization of optical-fiber transmission systems simulations. Opt. Express,2005, 13 (10):3822-3834
    [111]J. Dudley, J. R. Taylor. Supercontinuum generation in optical fibers. Cambridge Univ Pr,2010:123
    [112]T. G. Philbin, C. Kuklewicz, S. Robertson, et al. Fiber-optical analog of the event horizon. Science,2008,319 (5868):1367-1370
    [113]A. V. Gorbach, D. V. Skryabin. Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres. Nat Photon,2007,1 (11):653-657
    [114]A. Choudhary, F. Konig. Efficient frequency shifting of dispersive waves at solitons. Opt. Express,2012,20 (5):5538-5546
    [115]G. Genty, M. Lehtonen, H. Ludvigsen. Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses. Opt. Express,2004,12 (19):4614-4624
    [116]G. Genty, M. Lehtonen, H. Ludvigsen. Route to broadband blue-light generation in microstructured fibers. Opt. Lett.,2005,30 (7):756-758
    [117]A. V. Gorbach, D. V. Skryabin, J. M. Stone, et al. Four-wave mixing of solitons with radiation and quasi-nondispersive wave packets at the short-wavelength edge of a supercontinuum. Opt. Express,2006,14 (21):9854-9863
    [118]J. M. Stone, J. C. Knight. Visibly "white" light generation in uniform photonic crystal fiber using a microchip laser. Opt. Express,2008,16 (4):2670-2675
    [119]D. Ghosh, S. Roy, M. Pal, et al. Blue-Extended Sub-Nanosecond Supercontinuum Generation in Simply Designed Nonlinear Microstructured Optical Fibers. J. Lightwave Technol.,2011,29 (2):146-152
    [120]K. K. Chen, S.-u. Alam, J. H. V. Price, et al. Picosecond fiber MOP A pumped supercontinuum source with 39 W output power. Opt. Express,2010,18 (6):5426-5432
    [121]A. Kudlinski, A. K. George, J. C. Knight, et al. Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation. Opt. Express,2006,14 (12):5715-5722
    [122]A. Hartung, A. M. Heidt, H. Bartelt. Design of all-normal dispersion microstructured optical fibers for pulse-preserving supercontinuum generation. Opt. Express,2011, 19 (8):7742-7749
    [123]K. Saitoh, N. Florous, M. Koshiba. Ultra-flattened chromatic dispersion controllability using a defected-core photonic crystal fiber with low confinement losses. Opt. Express,2005,13 (21):8365-8371
    [124]A. M. Zheltikov. Nanomanaging dispersion, nonlinearity, and gain of photonic-crystal fibers. Appl. Phys. B,2006,84 (1-2):69-74
    [125]E. E. Serebryannikov, A. M. Zheltikov. Nanomanagement of dispersion, nonlinearity, and gain of photonic-crystal fibers:qualitative arguments of the Gaussian-mode theory and nonperturbative numerical analysis. J. Opt. Soc. Am. B,2006,23 (8): 1700-1707
    [126]A. B. Fedotov, E. E. Serebryannikov, A. A. Ivanov, et al. Spectral transformation of femtosecond Cr:forsterite laser pulses in a flint-glass photonic-crystal fiber. Appl. Opt.,2006,45 (26):6823-6830
    [127]Y.-F. Li, M.-L. Hu, C.-Y. Wang, et al. Perturbative and phase-transition-type modification of mode field profiles and dispersion of photonic-crystal fibers by arrays of nanosize air-hole defects. Opt. Express,2006,14 (22):10878-10886
    [128]Z. M. Zhu, T. G. Brown. Full-vectorial finite-difference analysis of microstructured optical fibers. Opt. Express,2002,10 (17):853-864
    [129]S. P. Guo, F. Wu, S. Albin, et al. Loss and dispersion analysis of microstructured fibers by finite-difference method. Opt. Express,2004,12 (15):3341-3352
    [130]G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, et al. Field enhancement within an optical fibre with a subwavelength air core. Nat. Photonics,2007,1 (2):115-118
    [131]A. V. Shahraam, T. M. Monro. A full vectorial model for pulse propagation in emerging waveguides with sub wavelength structures part I:Kerr nonlinearity. Opt. Express,2009,17 (4):2298-2318
    [132]M. H. Frosz, T. Sorensen, O. Bang. Nanoengineering of photonic crystal fibers for supercontinuum spectral shaping. J. Opt. Soc. Am. B,2006,23 (8):1692-1699
    [133]S. P. Stark, F. Biancalana, A. Podlipensky, et al. Nonlinear wavelength conversion in photonic crystal fibers with three zero-dispersion points. Phys. Rev. A,2011,83 (2): 023808
    [134]S. M. Kobtsev, S. V. Smirnov. Modelling of high-power supercontinuum generation in highly nonlinear, dispersion shifted fibers at CW pump. Opt. Express,2005,13 (18):6912-6918
    [135]A. Mussot, E. Lantz, H. Maillotte, et al. Spectral broadening of a partially coherent CW laser beam in single-mode optical fibers. Opt. Express,2004,12 (13):2838-2843
    [136]M. H. Frosz. Validation of input-noise model for simulations of supercontinuum generation and rogue waves. Opt. Express,2010,18 (14):14778-14787
    [137]M. H. Frosz, O. Bang, A. Bjarklev. Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation. Opt. Express,2006,14 (20): 9391-9407
    [138]J. C. Travers, S. V. Popov, J. R. Taylor. A New Model for CW Supercontinuum Generation. Conference on Lasers and Electro-Optics,2008. CMT3
    [139]P. M. Moselund. Long-pulse supercontinuum light sources:[Ph.D paper]. DTU Fotonik:Technical University of Denmark,2009
    [140]P. K. A. Wai, C. R. Menyuk, Y. C. Lee, et al. Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers. Opt. Lett,1986,11 (7):464-466
    [141]L. Tartara, I. Cristiani, V. Degiorgio. Blue light and infrared continuum generation by soliton fission in a microstructured fiber. Appl. Phys. B,2003,77 (2-3):307-311
    [142]I. Cristiani, R. Tediosi, L. Tartara, et al. Dispersive wave generation by solitons in microstructured optical fibers. Opt. Express,2004,12 (1):124-135
    [143]G. Genty, M. Lehtonen, H. Ludvigsen, et al. Enhanced bandwidth of supercontinuum generated in microstructured fibers. Opt. Express,2004,12 (15):3471-3480
    [144]M. Hu, C. y. Wang, L. Chai, et al. Frequency-tunable anti-Stokes line emission by eigenmodes of a birefringent microstructure fiber. Opt. Express,2004,12 (9):1932-1937
    [145]F. Lu, Y. Deng, W. H. Knox. Generation of broadband femtosecond visible pulses in dispersion-micromanaged holey fibers. Opt. Lett.,2005,30 (12):1566-1568
    [146]M. L. Hu, C. Y. Wang, Y.-F. Li, et al. Polarization-demultiplexed two-color frequency conversion of femtosecond pulses in birefringent photonic-crystal fibers. Opt. Express,2005,13 (16):5947-5952
    [147]M. L. Hu, Y. F. Li, L. Chai, et al. Two-dimensional coherent superposition of blue-shifted signals from an array of highly nonlinear waveguiding wires in a photonic-crystal fiber. Opt. Express,2008,16 (15):11176-11181
    [148]H. Tu, S. A. Boppart. Optical frequency up-conversion by supercontinuum-free widely-tunable fiber-optic Cherenkov radiation. Opt. Express,2009,17 (12):9858-9872
    [149]G. Chang, L.-J. Chen, F. X. Kartner. Highly efficient Cherenkov radiation in photonic crystal fibers for broadband visible wavelength generation. Opt. Lett.,2010, 35 (14):2361-2363
    [150]J. H. Yuan, X. Z. Sang, C. X. Yu, et al. Highly Efficient and Broadband Cherenkov Radiation at the Visible Wavelength in the Fundamental Mode of Photonic Crystal Fiber. IEEE Photonics Technol. Lett.,2011,23 (12):786-788
    [151]H. Tu, S. A. Boppart. Ultraviolet-visible non-supercontinuum ultrafast source enabled by switching single silicon strand-like photonic crystal fibers. Opt. Express, 2009,17(20):17983-17988
    [152]E. E. Serebryannikov, A. B. Fedotov, A. M. Zheltikov, et al. Third-harmonic generation by Raman-shifted solitons in a photonic-crystal fiber. J. Opt. Soc. Am. B., 2006,23 (9):1975-1980
    [153]D. P. Zhang, M. L. Hu, C. Xie, et al. A high power photonic crystal fiber laser oscillator based on nonlinear polarization rotation mode-locking. Acta Phys Sin-Ch Ed,2012,61 (4):044206
    [154]B. Barviau, O. Vanvincq, A. Mussot, et al. Enhanced soliton self-frequency shift and CW supercontinuum generation in GeO2-doped core photonic crystal fibers. J. Opt. Soc. Am. B,2011,28 (5):1152-1160
    [155]J. W. Fleming. Dispersion in GeO2-SiO2 glasses. Appl. Opt.,1984,23 (24):4486-4493
    [156]S. Pierre, N. Pascale, A. Jean-Christophe, et al. Modeling the Nonlinear Index of Optical Fibers. OFC/NFOEC,2005. OFH4
    [157]B. W. Liu, M. L. Hu, S. J. Wang, et al. All-photonic-crystal-fiber coherent black-light source. Opt. Lett.,2010,35 (23):3958-3960
    [158]A. V. Yulin, D. V. Skryabin, P. S. J. Russell. Four-wave mixing of linear waves and solitons in fibers with higher-orderdispersion. Opt. Lett.,2004,29 (20):2411-2413
    [159]D. V. Skryabin, A. V. Yulin. Theory of generation of new frequencies by mixing of solitons and dispersive waves in optical fibers. Phys Rev E,2005,72 (1):016619
    [160]L. Michaille, D. M. Taylor, C. R. Bennett, et al. Characteristics of a Q-switched multicore photonic crystal fiber laser with a very large mode field area. Opt. Lett., 2008,33(1):71-73
    [161]X. H. Fang, M. L. Hu, B. W. Liu, et al. Generation of 150 MW,110 fs pulses by phase-locked amplification in multicore photonic crystal fiber. Opt. Lett.,2010,35 (14):2326-2328
    [162]Y. Huo, P. Cheo, G. King. Fundamental mode operation of a 19-core phase-locked Yb-doped fiber amplifier. Opt. Express,2004,12 (25):6230-6239
    [163]T. Hayashi, T. Taru, O. Shimakawa, et al. Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber. Opt. Express,2011,19 (17):16576-16592
    [164]X. H. Fang, M. L. Hu, L. L. Huang, et al. Multiwatt octave-spanning supercontinuum generation in multicore photonic-crystal fiber. Opt. Lett.,2012,37 (12):2292-2294
    [165]Y. Ni, L. Zhang, L. An, et al. Dual-core photonic crystal fiber for dispersion compensation. IEEE Photonics Technol. Lett.,2004,16 (6):1516-1518
    [166]F. Gerome, J. L. Auguste, J. M. Blondy. Design of dispersion-compensating fibers based on a dual-concentric-core photonic crystal fiber. Opt. Lett.,2004,29 (23): 2725-2727
    [167]A. Huttunen, P. Torma. Optimization of dual-core and microstructure fiber geometries for dispersion compensation and large mode. Opt. Express,2005,13 (2): 627-635
    [168]K. C. Neuman, S. M. Block. Optical trapping. Rev. Sci. Instrum.,2004,75 (9): 2787-2809
    [169]J. Yin, Y. Zhu, W. Jhe, et al. Atom guiding and cooling in a dark hollow laser beam. Phys. Rev. A,1998,58 (1):509-513
    [170]I. Manek, Y. B. Ovchinnikov, R. Grimm. Generation of a hollow laser beam for atom trapping using an axicon. Opt. Commun.,1998,147 (1-3):67-70
    [171]S. R. Mishra, S. K. Tiwari, S. P. Ram, et al. Generation of hollow conic beams using a metal axicon mirror. Opt. Eng.,2007,46 (8):084002-084002
    [172]S. K. Tiwari, S. R. Mishra, S. P. Ram. Generation of a variable-diameter collimated hollow laser beam using metal axicon mirrors. Opt. Eng.,2011,50 (1):25-29
    [173]S. Marksteiner, C. M. Savage, P. Zoller, et al. Coherent atomic waveguides from hollow optical fibers:Quantized atomic motion. Phys. Rev. A,1994,50 (3):2680-2690
    [174]J. Yin, H. R. Noh, K.I. Lee, et al. Generation of a dark hollow beam by a small hollow fiber. Opt. Commun.,1997,138 (4-6):287-292
    [175]Y. I. Shin, K. Kim, J. A. Kim, et al. Diffraction-limited dark laser spot produced by a hollow optical fiber. Opt. Lett.,2001,26 (3):119-121
    [176]H. R. Noh, W. Jhe. Atom optics with hollow optical systems. Phys. Rep.,2002,372 (3):269-317
    [177]T. G. Euser, M. A. Schmidt, N. Y. Joly, et al. Birefringence and dispersion of cylindrically polarized modes in nanobore photonic crystal fiber. J. Opt. Soc. Am. B, 2011,28(1):193-198
    [178]H. Li, J. Yin. Generation of a vectorial elliptic hollow beam by an elliptic hollow fiber. Opt. Lett.,2011,36 (4):457-459
    [179]C. Zhao, Y. Cai, F. Wang, et al. Generation of a high-quality partially coherent dark hollow beam with a multimode fiber. Opt. Lett.,2008,33 (12):1389-1391
    [180]G. Schweiger, R. Nett, B. Ozel, et al. Generation of hollow beams by spiral rays in multimode light guides. Opt. Express,2010,18 (5):4510-4517
    [181]Y. Changchun, Z. Dao Hua, L. Dongdong, et al. Metal nanorod-based metamaterials for beam splitting and a subdiffraction-limited dark hollow light cone. J. Opt.,2011, 13 (8):085102
    [182]K. Lai, S. G. Leon-Saval, A. Witkowska, et al. Wavelength-independent all-fiber mode converters. Opt. Lett.,2007,32 (4):328-330
    [183]A. Witkowska, S. G. Leon-Saval, A. Pham, et al. All-fiber LP11 mode convertors. Opt. Lett.,2008,33 (4):306-308
    [184]M. L. Hu, C. Y. Wang, E. E. Serebryannikov, et al. Wavelength-tunable hollow-beam generation by a photonic-crystal fiber. Laser Phys. Lett.,2006,3 (6):306-309
    [185]L. G. Wang, L. Q. Wang, S. Y. Zhu. Formation of optical vortices using coherent laser beam arrays. Opt. Commun.,2009,282 (6):1088-1094
    [186]L. G. Wang, W. W. Zheng. The effect of atmospheric turbulence on the propagation properties of optical vortices formed by using coherent laser beam arrays. J. Opt. A: Pure Appl. Opt.,2009,11 (6):065703
    [187]G. Zhou. Propagation of a radial phased-locked Lorentz beam array in turbulent atmosphere. Opt. Express,2011,19 (24):24699-24711
    [188]P. Zhou, X. L. Wang, Y. X. Ma, et al. Generation of a hollow beam by active phasing of a laser array using a stochastic parallel gradient descent algorithm. J. Opt., 2010,12(1):015401
    [189]Y. Zheng, X. Wang, F. Shen, et al. Generation of dark hollow beam via coherent combination based on adaptive optics. Opt. Express,2010,18 (26):26946-26958
    [190]P. Li, K. Shi, Z. Liu. Manipulation and spectroscopy of a single particle by use of white-lightoptical tweezers. Opt. Lett.,2005,30 (2):156-158
    [191]K. B. Shi, P. Li, Z. W. Liu. Broadband coherent anti-Stokes Raman scattering spectroscopy in supercontinuum optical trap. Appl. Phys. Lett.,2007,90 (14):92-95
    [192]F. Xiao-Hui, H. Ming-Lie, L. Yan-Feng, et al. Spatially Flat In-Phase Supermode in Multicore Hybrid Photonic Crystal Fiber. J. Lightwave Technol.,2011,29 (22): 3428-3432
    [193]A. Mafi, J. V. Moloney. Shaping modes in multicore photonic crystal fibers. IEEE Photonics Technol. Lett.,2005,17 (2):348-350
    [194]S. Konorov, E. Serebryannikov, A. Zheltikov, et al. Mode-controlled colors from microstructure fibers. Opt. Express,2004,12 (5):730-735
    [195]M. L. Hu, C. Y. Wang, Y. J. Song, et al. A hollow beam from a holey fiber. Opt. Express,2006,14 (9):4128-4134
    [196]M. Digonnet, H. J. Shaw. Wavelength multiplexing in single-mode fiber couplers. Appl. Opt.,1983,22 (3):484-491
    [197]F. G. Omenetto, A. J. Taylor, M. D. Moores, et al. Simultaneous generation of spectrally distinct third harmonics in a photonic crystal fiber. Opt. Lett.,2001,26 (15):1158-1160

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700