光纤陀螺用Y分支光波导的质子交换及退火研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Y分支是集成光学中的重要器件单元,广泛应用于调制器,光开关,光分路器的器件中,尤其是作为中高精度光纤陀螺系统的核心器件。
     首先,文章简要阐述了干涉式光纤陀螺仪(I-FOG)的基本工作原理;然后,利用有效折射率法,讨论得到高斯型渐变折射率波导在单模传输条件。在Y分支光波导的设计方面,针对两种不同弯曲Y分支的弯曲损耗,分别用光波导的弯曲损耗理论和时域有限差分光束传输法(FD-BPM)仿真,得出了一组最优化的Y分支光波导设计参数。
     然后结合扩散反应动力学理论中的空位与间隙扩散机制,分析了质子交换、退火质子交换、缓冲源质子交换波导的折射率变化。并对交换后铌酸锂波导的晶相特性进行分析,从晶体结构和H~+浓度的角度来解释其特性变化。对交换过程添加缓冲质子源(苯甲酸锂)从而导致表面扩散系数发生改变进行了理论分析。讨论了质子交换和退火工艺的原理及制作技术,利用常用工程解法对质子交换深度和交换时间等诸多因素影响下得到的结果进行了比较,提出先进行质子交换,期间加入少量苯甲酸锂,然后在一定条件的退火,这样可以缩短节省制作周期,得出生成α相波导的最佳工作条件。
     最后通过大量的试验和实际工艺制作,验证了前面的理论分析,得到了可工作的光波导片。然后进行精密光学测试,得到实验数据。最后通过讨论这些实验数据,得出Y分支波导的主要性能指标。
Y branches is important in the integrated optical devices unit, it is widely used in modulator, optical switching, optical splitter devices, especially in high-precision FOG.
     First, this paper has introduced the development situation of the integrated optics, and discussed the basic theory of FOG.Then, using the method of effective refractive index, discussed single-mode transmission conditions in Gaussian graded index waveguide. To the design of the Y-branch optic waveguide bending loss, the pure bending loss theory and the finite difference beam propagation method(FD-BPM) are used to analyze two kinds of Y-branch with different S-shaped channel waveguide bends by Matlab and get the optimization of the Y-branch waveguide profile. At last, the designing parameters of phase modulator are given.
     In the aspects of the fabrication of Y-branch, the proliferation theory is introduced to explain the proton exchange and anneal technique. From the perspective of the concentration of H~+ analysed The Crystal structure and refractive index distribution of proton exchange LiNbO_3 waveguide are analysed from the perspective of the concentration of H~+.The Kinetics principle is introduced to study the change of diffusion coefficient when buffer proton source is used. By comparing the characteristics of annealing and buffer proton source waveguide, then the formation conditions ofα-waveguide is given.
     At last, the whole procedure of fabrication device is described. The main optic parameters of Y branch such as insertion loss, split ratio and polarization crosstalk are tested.
引文
[1]蔡伯荣.集成光学.四川:电子科技大学出版社,1990
    
    [2] Han-Bin Lin, Rei-Shin Cheng, Way-Seen Wang. Wide-angle Low-loss Single-modeSymmetric Y-junctions [J]. IEEE Photon. Technol. Lett, 1994, Vol. 6. No. 7: 825-827.
    
    [3] Jui-Ming Hsu, Ching-Ting Lee. Systematic Design of Novel Wide-Angle Low-LossSymmetric Y-Junction Waveguides [J]. IEEE J. Quant. Electron. 1998, Vol. 34, No. 4:673-679.
    
    [4] Sasaki H, Anderson I. IEEE J Quantum Electronics, 1978,14(11):883-892
    
    [5] Hanafusa H, Takato N, Hanawa F, et al. Wavelength-insensitive2×16 optical splitters developedusing planar light-wave circuit technology [J]. Electron. Lett. 1992(28):644-645.
    
    [6] Hibino Y, Hanawa F, Nakagome H, et al. High reliability optical splitters composed ofsilica-based planar light-wave circuit [J]. Light-wave Technol. 1995(13):1728-1735.
    
    [7] Uetsuka H, Hakuta T, Okano H, et al. 2×N optical splitters using silica-based planar light-wavecircuit [J].IEICE Trans. Electron., 1997(E80-C):134-137.
    
    [8]薛挺,邱军华,李世忱,铌酸埋退火质子交换光波导的有限元法分析,量子电子学报,2002, 19(3):240-244。
    
    [9]陈云琳,阮永丰,质子交换LiNbO_3波导中退火的作用,激光技术,1996,20(1):32-33
    
    [10]侯卫星,华王祥,张雁行等,掺镁妮酸埋质子交换光波导光学性能的研究,光学学报, 1991, 11(2):152-155。
    
    [11]胡力,质子交换妮酸埋光波导γ33的相干测试,电子科技大学学报,1989,18(1):95-102
    
    [12]牟晓东,岳学峰,何明等,质子交换光波导生长动力学研究,光学学报,1994, 14(10):1059-1062。
    
    [13]曹霞,夏宇兴,杨艺等,Z切LINbO3晶体中退火质子交换光波导特性的研究,光学学报, 2000,20(11):1499-1503。
    
    [14] Jackel, J. L., C.E. Rice, and J.J. Veselka, Proton exchange for high-index waveguides inLiNbO3, Applied Physic Letter. 1982. Vol.41 no.7,607-608.
    
    [15] Robertson E E, Eason R W, Yokoo Y, et ah Photorefraetive damage removal in annealed ProtonExchanged LiNbO_3 channel waveguides, APPl. Phys .Lett., 1997, 70(16):2094-2096.
    
    [16] M. De MiCheli, J. Botineau, and S.Neveu et al, Independent control of index and profiles inproton-exchanged lithium niobate guides, Opt.Lett.1983, Vol8:114-115.
    
    [17] Korkishko Yu N , Fedorov V A, De Micheli M P, Relationships between structural and opticalproperties of proton-exchanged waveguides on Z-cut lithium niobate et al. Appl. Opt, 1996 ,35 :7056-7060.
    
    [18] Loni A, Hay G, De La Rue R M, and Winfield J M. J. Ligntwave Technology, 1989 , 7(6):911-919.
    
    [19]Hervé C.Lefèvre.光纤陀螺仪(The Fiber-Optic Gyroscope)(,张贵才、王巍译).北京: 国防工业出版社,2002,5-8
    
    [20] Vali, V. and R. W. Shorthill, Fiber ring interferometer, Applied Optics, 1976, Vol.15,pp. 1099-1100
    
    [21] Tamir, T., Integrated Optics, Berlin: Springer, 1975.53-59
    
    [22]郑宏林.用于光纤陀螺的Y分支集成光学调制器的研究[硕士学位论文].电子科技大学, 2005.4:40-43
    
    [23] E. A. J. Marcatili and S. E. Miller, Improved relation describing directional control inelectromagnetic wave guidance, Bell Syst. Tech. J, 1969.vol.48, Sept. 2161-2188
    
    [24] Holt J. B. Bauer W, Diffusion in metals, Bull Amer Phys Soc.1991, Vol. 15P391-393
    
    [25] B L Ballman, S F Burachas. Physics and chemistry of crystals, Kha'kov 1965(82): 106
    
    [26] Yongfa Kong, Jingjun Xu, Siaojun Chen et al. Production and investigation of single crystal J Appl Phys, 2000(87):4410
    
    [27] M. De Micheli, J. Botineau, S. Neveu, P. Sibillot, and D. B. Ostrowsky, Independent control ofindex and profiles in proton-exchanged lithium niobate guides, Optics Letters, 1983. Vol. 8No.2, 114-115
    
    [28] Korkishko Yu N , Fedorov V A , De Micheli M P, Relationships between structural and opticalproperties of proton-exchanged waveguides on Z-cut lithium niobate et al. Appl. Opt, 1996 ,35 :7056-7060.
    
    [29] Korkishko Yu N , Fedorov V A , De Micheli M P , et al. Accelerated aging of annealedproton-exchanged waveguides Appl. Opt, 1996 , 35:7056-7060.
    
    [30]孔勇发 许京军 多功能光电材料-铌酸锂晶体,北京:科学出版社,2005:39-41
    
    [31]Stephen A. Campbell, The science and engineering of microelectronic fabrication (Second Edition)微电子制造科学原理与工程技术(第二版),曾莹等译,北京:电子工业出版社, 2002.38
    
    [32] Sandeep T,Vohra ,Diffusion characteristics and waveguiding properties of proton exchangedand annealed LiNbO3 channel waveguides. J appl Phys, Vol66, No11,De 1999
    
    [33] Sandeep T. Vohra, Alan R. Mickelson, Sally E. Asher, Diffusion characteristics andwaveguiding properties of proton-exchanged and annealed LiNbO_3 channel waveguides, J. Applied Physic, Vol. 66, No.11, 1989. 5161-5174
    
    [34] Kissa, K.M., Suchoski, P.G, Lewis, D.K., Accelerated aging of annealed proton-exchangedwaveguides, Lightwave Technology, J., Vol. 13,1. 7, Jul., 1995. 1521-1529
    
    [35] Cao XF,Ramaswamy RV,Srivastava R.Characterization of annealed proton exchanged LiNbO_3waveguides for nonlinear frequency conversion. Lightwave Technology, 1992 10(9):1302-1313.
    
    [36]Piling,Kinetics Introduction,陶愉生译,北京:科学出版社,1980.432-437
    
    [37] Armando Loni, Proton-exchanged LiNbO_3 waveguides come of age, Laser Focus World, .April,1991. 183
    
    [38] Gan' shin V A , Ivanov V S , Korishko Y N and Petrova V Z. Long lifetime projections forannealed proton-exchanged waveguide devices .Sov. Phys. Tech. Phys., 1986 , 31 :794-799.
    
    [39] Tadeusz Maciak, Fabrication of Y-cut lithium niobate waveguides by dilute meltproton-exchange, SPIE, Vol. 1085, 1989. 438-441
    
    [40] Ito. J C. Kawamoto A .L. et .al, Fabrication and characterization of proton-exchanged opticalwaveguids in Z-LiNbO3 using orthophosphoric acid, Optical Engineering, 1993. Vol. 32 No.lJan., 101-106
    
    [41] Jackel, J. L., Proton exchange: past, present, and future, SPIE, Vol. 1583, 1991.54-63
    
    [42]E. Y. B. Pun, K. K. Loi, etal., experimental studies of proton-exchanged lithium niobatewaveguides using cinnamic acid, Appl. Phys. Lett., 1991.59(6), Aug., 662-664
    
    [43] Jackel, J. L., C.E. Rice, and J.J. Veselka, Proton exchange for high-index waveguides inLiNbO3, Applied Physic Letter. Vol.41 no.7,1982. 607-608
    
    [44] M. De Rice, J. Botineau, S. Neveu, P. Sibillot, and D. B. Ostrowsky, Independent control ofindex and profiles in proton-exchanged lithium niobate guides, Optics Letters, 1983. Vol. 8No.2, 114-115
    
    [45] A. L. DawarR and J. C. Joshi, Fabrication of optical waveguides in Y-Lithium niobate fromdilute melts proton exchange technique, Optics Comm., Vol. 73, No. 3, 1989. 199-202
    
    [46] Tadeusz Maciak, Fabrication of Y-cut lithium niobate waveguides by dilute meltproton-exchange, SPIE, Vol. 1085, 1989. 438-441
    
    [47] E. Y. B. Pun, K. K. Loi, et. al., experimental studies of proton-exchanged lithium niobatewaveguides using cinnamic acid, Appl. Phys. Lett., 59(6), Aug., 1991. 662-664
    
    [48] E. Y. B. Pun, S.A. Zhao, et. al., Proton-exchanged LiNbO3 optical waveguides using stearicacid, IEEE Trans. Photonics Techn. Lett., Vol. 3 No. 11, Nov., 1991. 1006-1008
    
    [49] A.L. Dawar, J.C. Joshi, et. al, Fabrication and characterization of proton-exchanged opticalwaveguids in Z-LiNbO3 using orthophosphoric acid, Optical Engineering, Vol. 32 No.1 Jan.,1993.101-106
    
    [50]陈福深,集成电光调制理论与技术,北京:国防工业出版社.1995.155-157

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700