氮掺杂p型ZnO薄膜的生长及理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ZnO是一种宽带隙半导体材料(Eg=3.37eV),因其非常优越的光电性能及其在光电子器件中的巨大应用价值而被誉为“二十一世纪半导体”。通常在制备ZnO材料的过程中会产生氧空位和锌填隙原子,这些缺陷使ZnO呈n型导电特性,所以n型掺杂容易实现。同时,氧化锌中存在的本征施主缺陷,对受主掺杂产生高度自补偿作用,并且受主杂质固溶度很低,这导致生长p型ZnO及制备p-n结非常困难。p型ZnO的制备已成为ZnO作为半导体光电子材料的发展瓶颈,也是当今半导体光电子领域研究的世界性难点和热点之一。
     V族元素被认为最有望获得ZnO的p型掺杂。N在V族元素中离子半径和p轨道能量都是最小的,而且N的离子半径跟氧接近,因此N被认为是实现p-ZnO最合适的受主元素之一。目前制备ZnO:N薄膜主要有MBE、MOCVD、溅射、PLD和Zn_3N_2热氧化法,但存在着工艺复杂,设备昂贵和源有毒等问题。因此通过SSCVD工艺,使用自行设计合成的新型固态源Zn_4(OH)_2(O_2CCH_3)_6·2H_2O生长出p型ZnO薄膜具有非常重要的现实意义。
     本文在系统阐述了ZnO的性能与应用及其制备技术、缺陷与掺杂方式等基础上,对ZnO的p型掺杂进行了研究,通过多种测试手段和理论分析,取得了一些阶段性成果:
     1、用本试验室自行设计的SSCVD装置,利用两步法工艺,通过氮的掺杂,实现了ZnO的p型转变,薄膜具有较好的a-b轴取向和可见光区约为70-80%的透过率。
     2、具体研究了衬底温度对ZnO薄膜p型掺杂的影响。基片温度为500-600℃时获得了p型ZnO薄膜,而且在600℃时,空穴浓度为3.12×10~(16)cm~(-3)、电阻率为1.34Ωcm、迁移率为149.01 cm~2/Vs。
     3、SSCVD一步法无法实现氮的掺入,薄膜呈现富锌状态,并且PL谱中存在激子-激子相互碰撞引起的受激辐射峰。
     4、采用SSCVD两步法工艺,在Si(100)衬底上形成p-ZnO/n-Si异质结二极管,其Ⅰ-Ⅴ曲线显示了整流特性。
     5、利用第一性原理计算了ZnO:N_O+V_(Zn)模型的电子结构,通过比较理想配比ZnO、ZnO:N和ZnO:N_O+V_(Zn)模型电子结构的不同,可知:V_(Zn)展宽N产生的深能级缺陷态,减弱了受主能级局域化程度,从而激活了N原子,提高了N原子的固溶度,使N原子能更容易的掺入ZnO中,从而可以制备高质量的稳定p型ZnO薄膜。
Zinc Oxide (ZnO) is an important wide band gap semiconductor materials (Eg=3.37eV), which is known as twenty-first century semiconductor due to its excellent optoelectronic performance. Nominally undoped ZnO typically exhibits n-type conductivity ascribed to native point defects such as oxygen vacancies (V_O) and zinc interstitials (Zn_i). The fabrication of p-type ZnO is difficult due to the self-compensation effect from native defects and low solubility of p-type dopants. The fabrication of p-type ZnO has become the bottleneck of the application of ZnO-based optoelectronic devices. In recent years, ZnO films have attracted a considerable amount of interest in the world.
     Group-V dopants have been considered as possible dopants for p-type ZnO. Among these acceptors, N has proven to be suitable acceptor for making p-type ZnO, since the ionic radius of N is about of O. N-doped ZnO (ZnO:N) films have been fabricated by various deposition methods such as molecular-beam epitaxy, metalorganic chemical vapor deposition, sputtering, pulse laser deposition, and thermal oxidation of Zn_3N_2, but the methods exist these problems such as complex process, expensive equipment and poisonous solid precursor. Therefore, it is very important to realize p-type ZnO by single source chemical vapor deposition (SSCVD) using a novel solid precursor of Zn_4(OH)_2(O_2CCH_3)_6·2H_2O.
     In this thesis, based on a comprehensive review of the theories and fabricating techniques of ZnO materials and p-type doping, we conducted a detailed study of ZnO p-type doping. The main content of this thesis is as follows:
     1. Nitrogen-doped p-type ZnO thin films have been realized by two-step SSCVD. Thin films exhibit a-b preferential orientation and transparency of about 70-80% in the visible-light region.
     2. The effect of substrate temperatures on the conductivity of ZnO:N by two-step SSCVD. It is shown that ZnO:N films become p-type material at substrate temperatures between 500-600℃. An optimized result with a resistivity of 1.34Ωcm, Hall mobility of 149.01 cm~2/Vs, and hole concentration of 3.12×10~(16)cm~(-3) was achieved at 600℃.
     3. The one-step SSCVD method can't realize ZnO:N, and ZnO by one-step SSCVD contain excessive Zn atomic. Photoluminescence spectra show the stimulated emission peak due to exciton-exciton scattering.
     4. p-ZnO/n-Si heterojunction was fabricated by deposition of a N-doped p-type ZnO layer on a n-type Si(100) layer. The I-V characteristics of the p-n heterojunction show a rectifying behavior.
     5. Electronic structures of ZnO:N_O+V_(Zn) was calculated by the first-principle. Comparing with the electronic structures of ZnO, ZnO:N, ZnO:N_O+V_(Zn), it was revealed that V_(Zn) broadened the acceptor level produced by doping N, weakened localized of donor level, activated N atom and increased the solubility of N. The results indicate that high quality p-type ZnO thin films can be fabricated by doping N into ZnO:V_(Zn).
引文
[1] R. F. Service. Will UV laser beat the blues? Science, 1997,276:895
    
    [2] Jianguo Lu, Zhizhen Ye, Jingyun Huang, et al. Synthesis and properties of ZnO films with (100)orientation by SS-CVD. Appl. Surf. Sci., 2003,207:295-299
    
    [3] Y. J. Zeng, Z. Z. Ye, W. Z. Xu, et al. Dopant source choice for formation of p-type ZnO: Liacceptor. Appl. Phys. Lett, 2006, 88(6):062107-062109
    
    [4] Yoshitaka Nakano, Takeshi Morikawa, Takeshi Ohwaki, et al. Electrical characterization ofp-type N-doped ZnO films prepared by thermal oxidation of sputtered Zn3N2 films. Appl.Phys. Lett, 2006, 88(17):172103-172105
    
    [5] P. Wang, NuoFu Chen, Z. G Yin. P-doped p-type ZnO films deposited on Si substrate byradio-frequency magnetron sputtering. Appl. Phys. Lett, 2006, 88(15):152102-152104
    
    [6] Manoj Kumar, Tae-Hwan Kim, Sang-Sub Kim, et al. Growth of epitaxial p-type ZnO thin filmsby codoping of Ga and N. Appl. Phys. Lett, 2006,89(11):112103-112105
    
    [7] Y. J. Zeng, Z. Z. Ye, W. Z. Xu, et al. Study on the Hall-effect and photoluminescence of N-dopedp-type ZnO thin films. Materials Letters, 2007,61:41-44.
    
    [8] Y. J. Zeng, Z. Z. Ye, W. Z. Xu, et al. P-type behavior in nominally undoped ZnO thin films byoxygen plasma growth. Appl. Phys. Lett, 2006,88(26):262103-262105
    
    [9] Hong Seong Kang, Byung Du Ahn, Jong Hoon Kim, et al. Structural, electrical, and opticalproperties of p-type ZnO thin films with Ag dopant. Appl. Phys. Lett,2006,88(20):202108-202110
    
    [10] J. G Lu, Y. Z. Zhang, Z. Z. Ye, et al. Low-resistivity, stable p-type ZnO thin films realizedusing a Li-N dual-acceptor doping method. Appl. Phys. Lett, 2006, 88(22):222114-222116
    
    [11] Min-Suk Oh, Sang-Ho Kim, Tae-Yeon Seong. Growth of nominally undoped p-type ZnO on Si by pulsed-laser deposition. Appl. Phys. Lett, 2005,87(12):122103-122105
    
    [12] F. X. Xiu, Z. Yang, L. J. Mandalapu, et al. p-type ZnO films with solid-source phosphorus doping by molecular-beam epitaxy. Appl. Phys. Lett, 2006, 88(5):052106-052108
    
    [13] L. J. Mandalapu, F. X. Xiu, Z. Yang, et al. p-type behavior from Sb-doped ZnO heterojunction photodiodes. Appl. Phys. Lett, 2006, 88(11):112108-112110
    
    [14] Ohyama M., Kozuka H., Yoko T.. Sol-gel preparation of ZnO films with extremely preferred orientation along the (002) plane from zinc acetate solution. Thin Solid Films, 1997, 306(1):78-85
    
    [15] Fujimura Norifumi, Nishihara Tokihiro, Goto Seiki, et al. Control of preferred orientation for ZnOx films: Control of self-texture. J. Cryst. Growth, 1993,130(1-2):269-279
    
    [16]肖斌.PLD法生长锂掺杂p型ZnO薄膜及其性质研究:[博士学位论文].浙江:浙江大学, 2006
    
    [17] Akiko Kobayashi, Otto F. Sanke, John D. Dow. Deep energy levels of defects in the wurtzitesemiconductors AIN, CdS, CdSe, ZnS, and ZnO. Phys. Rev. B, 1983,28(2):946-956
    
    [18] D. Basak, G Amin, B. Mallik, et al. Photoconductive UV detectors on sol-gel-synthesized ZnOfilms. J. Cryst. Growth, 2003,256:73-77
    
    [19] Y. Liu, C. R. Gorla, S. Liang, et al. Ultraviolet detectors based on epitaxial ZnO films grown byMOCVD. J. of Elec. Materials, 2000,29(1):69-74
    
    [20] S. Liang, H. Sheng, Y. Liu, et al. ZnO Schottky ultraviolet photodetectors. J. Cryst. Growth,2001, 225(2):110-113
    
    [21] S. A. Studenikin, N. Golego, M Cocivera. Carrier mobility and density contributions tophotoconductivity transients in polycrystalline ZnO films. J. Appl. Phys., 2000, 87(5):2413
    
    [22] G. Santana, A. Morales-Acevedo, O. Vigil, et al. Structural and optical properties of(ZnO)x(CdO)1-x thin films obtained by spry pyrolysis. Thin Solid Films, 2000,373:235-238
    
    [23] Minemoto T, Negami T, Nishiwaki S, et al. Preparation of Znl-xMgxO films by radiofrequency magnetron sputtering. Thin Solid Films, 2000,372:173-176
    
    [24] H. Ohta, K. Kawamura, M. Orita, et al. Current iniection emission from a transparent p-njunction composed of p-SrCu2O2/n-Zone. Appl. Phys. Lett., 2000,77(4):475-477
    
    [25] A. Tsukazaki, A. Ohtomo, T. Onuma, et al. Repeated temperature modulation epitaxy forp-type doping and light-emitting diode based on ZnO. Nature Mater., 2005,4:42-46
    
    [26] M. Chen, X. Wang, Y. H. Yu, et al. X-ray photoelectron spectroscopy and Auger electronspectroscopy studies of Al-doped ZnO films. Appl. Surf. Sci., 2000,158(1-2):134-140
    
    [27] R. Groenen, J. J. Linden, H. R. M. van Lierop, et al. An expanding thermal plasma fordeposition of surface textured ZnO:Al with focus on thin film solar cell applications. Appl.Surf. Sci., 2001,173(1-2):40-43
    
    [28] Hideaki Nakahata, Akihiro Hachigo, Satoshi Fujii, et al. Equivalent Circuit Parameters ofSurface-Acoustic-Wave interdigital Transducers for ZnO/Diamond/Si and SiO2/ZnO/DiamondStructures, Jpn. J. Appl. Phys., 2002,41(5B):3489-3493
    
    [29] H. Nakahata, S. Fujii, K. Higaki, et al. Diamond-based surface acoustic wave devices.Semicond. Sci. and Technol., 2003,18:96-104
    
    [30] Xu P. S., Sun Y. M., Shi C. S., et al. The electronic structure and spectral properties of ZnO andits defects. Nucl. Instrum. Methods Phys. Res. Sect. B, 2003,199:286-290
    
    [31] A. F. Cohan, G Ceder, D. Morgen, et al. First-principles study of native point defects in ZnO.Phys. Rev. B, 2000,61(22):15019-15027
    
    [32] S. B. Zhang, S. -H. Wei, Alex Zunger. Intrinsic n-type versus p-type doping asymmetry and thedefect physics of ZnO. Phys. Rev. B, 2001,63(7):075205
    
    [33] S. Tuzemen, G Xiong, J. Wilkinson, et al. Production and properties of p-n junctions inreactively sputtered ZnO. Physica B, 2001,308-310:1197
    
    [34] Gang Xiong, John Wilkinson, Brian Mischuck, et al. Control of p- and n-type conductivity insputter deposition of undoped ZnO. Appl. Phys. Lett., 2002,80(7): 1195
    
    [35] Gang Xiong, John Wilkinson, S. Tuzemen, et al. Toward a new ultraviolet diodelaser:Luminescence and p-n junctions in ZnO films. Proceedings of SPIE - The InternationalSociety for Optical Engineering, 2002,4644:256-262
    
    [36] Joseph M., Tabata H., Saeki H., et al. Fabrication of the low-resistive p-type ZnO by codopingmethod. Physica B : Condensed Matter, 2001,302-303:140-148
    
    [37] Minegishi Kazunori, Koiwai Yasushi, Kikuchi Yukinobu, et al. Growth of p-type zinc oxidefilms by chemical vapor deposition. Jpn. J. Appl. Phys. Part 2 Letters, 1997,36(11A):L1453-L1455
    
    [38]吕建国,叶志镇,陈汉鸿,等.直流反应磁控溅射生长p型ZnO薄膜及其特性的研究. 真空科学与技术,2003,1:5-8
    
    [39] Eun-Cheol Lee and K. J. Chang. Possible p-type doping with group-1 elements in ZnO. Phys.Rev. B, 2004, 70(11):52101-52104
    
    [40] M. G Wardle, J. P. Goss, and P. R. Briddon. Theory of Li in ZnO: A limitation for Li-basedp-type doping. Phys. Rev. B, 2005,71 (15):5205.1-5205.10
    
    [41] E. C. Lee, Y. S. Kim, Y. G Jin, et al. Compensation mechanism for N acceptors in ZnO. Phys.Rev. B, 2001,64(8):51201-512015
    [42] Y. F. Yan, S. B. Zhang, S. T. Pantelides. Control of Doping by Impurity Chemical Potentials: Predictions for p-type ZnO. Phys. Rev. Lett, 2001, 86(25): 5723-5726
    [43] Sukit Limpijumnong, Xiaonan Li, Su-Huai Wei, et al. Probing deactivations in Nitrogen doped ZnO by vibrational signatures. Physica B, 2005,376-377:686-689
    [44] T. Yamamoto, H. Katayama-Yoshida. Unipolarity of ZnO with a wide-band gap and its solution using codoping method. J. Crystal Growth, 2000,214/215:552-555
    [45] Koch, Michael Hermann. Growth of zinc oxide films by SSCVD and device applications. DAI-B 59/08, p. 4104
    [46] E. Y. M. Lee, N. Tran, J. Russell, R. N. Lamb. Nanocrystalline order of zinc oxide thin films grown on optical fibers. J. Appl. Phys., 2002,92(6):2996-2999
    [47] A. J. Petrella, H. Deng, N. K. Roberts, R. N. Lamb. Single-Source Chemical Vapor Deposition Growth of ZnO Thin Films Using Zn4O(CO2NEt2)6. Chem. Mater. 2002,14:4339-4342
    [48] DENG Hong, B. GONG, A. J. Petrella, et al. Characterization of the ZnO thin film prepared by single source chemical vapor deposition under low vacuum condition. SCIENCE IN CHINA (Series E),46(4):355-360
    [49] H. Deng, J. J. Russell, R. N. Lamb, et al. Microstructure control of ZnO thin films prepared by single source chemical vapor deposition. Thin Solid Films, 2004,458:43-46
    [50] Jianguo Lu, Zhizhen Ye, Lei Wang, et al. Structural, electrical and optical properties of N-doped ZnO films synthesized by SS-CVD. Materials Science in Semiconductor Processing, 2003, 5:491-496
    [51] Matthew R. Hill, Ashley W. Jones, Jennifer J. Russell, et al. Towards new precursors for ZnO thin films by single source CVD: the X-ray structures and precursor properties of zinc ketoacidoximates. Inorganica Chimica Acta, 2005,358:201-206
    [52] L. P. Dai, H. Deng, G. Chen, et al. Synthesis and characterization of a novel precursor for thin films of zinc oxide. Materials Letters, 2007,61:3539-3541
    [53] L. P. Dai, H. Deng, J. J. Chen, et al. Realization of the intrinsic p-type ZnO thin film by SSCVD. Solid State Communications, 2007,143:378-381
    [54] L. P. Dai, H. Deng, G. Chen, C. F. Tang, M. Wei, Y. Li. Growth of a-b-axis orientation ZnO films with zinc vacancies by SSCVD. Vacuum, 2007,81:969-973
    [55] U. Ozgur, Y. I. Alivov, C. Liu, et al. A comprehensive review of ZnO materials and devices. J. Appl. Phys., 2005,98:041301
    
    
    [56] D. C. Look, B. Clafin, Y. I. Alivov, et al. The future of ZnO light emitters. Physica Status Solidi(a), 2004,201:2203
    
    [57] D. C. Oh, J. J. Kim, H. Makino, et al. Characteristics of Schottky contacts to ZnO:N layersgrown by molecular-beam epitaxy. Appl. Phys. Lett., 2005, 86:042110
    
    [58] J. G Lu, Z. Z. Ye, F. Zhuge, et al. p-type conduction in N-Al co-doped ZnO thin films. Appl.Phys. Lett., 2004, 85:3134
    
    [59] J. -R. Duclere, M. Novotny, A. Meaney, et al. Properties of Li-, P- and N-doped ZnO thin filmsprepared by pulsed laser deposition. Superlattices and Microstructures, 2005,38:397
    
    [60]陈根,汤采凡,戴丽萍,等.基于SS CVD方法的a-b轴取向ZnO薄膜制备.发光学报, 2006,27(5):773
    
    [61] Ningyi Yuan, Jinhua Li, Lining Fan, et al. Structure, electrical and optical properties of N-In codoped ZnO thin films prepared by ion-beam enhanced deposition method. J. Cryst. Growth, 2006,290:156-160
    
    [62] Tauc J., et al. Structure of crystal. Phys. Stat. Sol., 1966,156:27
    
    [63]袁艳红,候洵,高恒.超声处理对ZnO薄膜光致发光特性的影响.物理学报,2006, 55(1):446-449
    
    [64] Z. Y. Xue, D. H. Zhang, Q. P. Wang, et al. The blue photoluminescence emitted from ZnO films deposited on glass substrate by rf magnetron sputtering. Appl. Surf. Sci., 2002, 195:126-129
    
    [65]孙成伟,刘志文,张庆瑜.退火温度对ZnO薄膜结构和发光特性的影响.物理学报。 2006,55(1):430-436
    
    [66]王卿璞,张德恒,薛忠营,等.射频磁控溅射法制备ZnO薄膜的发光特性.发光学报, 2003,24(1):69-72
    
    [67]叶良修.半导体物理学.北京:高等教育出版社,1987
    
    [68] Kartheuser E.. Polarons in ionic crystals and polar semiconductors. Amsterdam:North-Holland,1972
    
    [69] D. C. Look. Electrical and optical properties of p-type ZnO. Semiconductor Science andTechnology, 2005,20:55
    
    [70]叶羽敏.直流反应磁控溅射法制备Al-N和In-N共掺p型ZnMgO与ZnO薄膜:[硕士学位 论文].杭州:浙江大学,2006
    
    [71] Jun-Liang Zhao, Xiao-Min Li, Ji-Ming Bian, et al. Growth of nitrogen-doped p-type ZnO films by spray pyrolysis and their electrical and optical properties. J. Cryst. Growth, 2005,280:495
    
    [72] J. W. Sun, Y. M. Lu, Y. C. Liu, et al. Hole transport in p-type ZnO films grown by plasma-assisted molecular beam epitaxy. Appl. Phys. Lett., 2006, 89:232101
    
    [73]樊晓峰,吕有明,王新,等.富锌条件下生长氮掺杂氧化锌薄膜的光学和电学性质. 发光学报,2006,27(1):66-68
    
    [74]沈学础.半导体光谱和光学性质.北京:科学出版社,2002:284-286
    
    [75]张喜田,肖芝燕,刘益春,等.高质量纳米ZnO薄膜的光致发光特性研究.物理学报, 2003,52(3):740-743
    
    [76]丘志仁,俞平,黄锦圣,等.氧化锌薄膜的室温受激紫外激光发射.中山大学学报(自 然科学版),1998,37(1):51-54
    
    [77] Yang H. S., Li Y, Norton D. P., et al. Low-resistance ohmic contacts to p-ZnMgO grown by pulsed-laser deposition, Appl. Phys. Lett, 2005, 86:192103
    
    [78]何开华.典型半导体材料的第一性原理研究:[硕士学位论文].成都:四川师范大学, 2005
    
    [79]张富春,邓周虎,阎军峰,等.Ga Al In掺杂ZnO电子结构的第一性原理计算.电子元 件与材料,2005,8:4-7
    
    [80]刘念.ZnO电子结构的第一性原理研究:[硕士学位论文].成都:电子科技大学,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700