铁电存储器用PZT薄膜的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,将铁电材料与半导体器件相结合的新器件逐渐得到了广泛的应用。其中,新型非挥发铁电存储器(Ferroelectric Random Access Memories,FeRAM)与传统的EEPROM和FLASH非挥发存储器相比,具有操作电压低、功耗低、信息保持时间长、写操作速度快、抗辐射等优异的特性,因而非常适合嵌入式应用的要求。由于铁电薄膜材料是FeRAM器件的关键组成部分,所以本论文对FeRAM用铁电薄膜材料进行了一些实验研究。
     考虑到材料的自身特性、工艺制备和商业化应用前途,确定了PZT(52/48)是较为理想的嵌入式FeRAM用材料。使用固相反应法制备了PbO过量20mol%的纯钙钛矿结构的PZT靶材。XRD测试表明陶瓷为纯钙钛矿相。用磁控溅射法制备出了一系列PZT铁电薄膜,讨论了溅射气压、基片温度、以及退火工艺对PZT薄膜性能的影响,并着重考查了基片温度对PZT铁电薄膜性能的影响。分析得出制备PZT薄膜的最优工艺条件是:工作气压3Pa,基片温度300oC,溅射气氛为纯Ar气,退火温度为650oC,退火时间为20分钟;由于单层的PZT薄膜很难满足FeRAM所提出的材料要求,我们在PZT铁电薄膜与电极之间加上了一层PLT晶种层来进一步提高薄膜的性能。经研究得出,PLT晶种层会增大薄膜的剩余极化,提高薄膜的疲劳特性,因而用PLT晶种层可以生长出符合要求的PZT铁电薄膜。Pt/PLT/PZT/PLT/Pt/TiO_2/SiO_2/Si是一种优化的,适用于FeRAM的铁电薄膜结构。由不同PLT晶种层厚度的PZT铁电薄膜的性能分析指出PLT厚度增加时,薄膜的铁电性能和疲劳特性变好。为了得出制备PLT晶种层的最佳工艺条件,我们考查了PLT制备条件对PLT/PZT/PLT薄膜结构铁电性能的影响,总结出了制备PLT薄膜的最佳工艺条件:工作气压3Pa,基片温度600oC,溅射气氛为:Ar/O_2=6:1。根据这个工艺条件,在Pt衬底上成功地制备了性能优异的PLT/PZT/PLT铁电薄膜。测试结果表明,薄膜具有良好的铁电性能;对于约500kV/cm的外加电场,薄膜具有较大的剩余极化值(2Pr=52.7μC/cm2),较小的矫顽场(2Ec=130kV/cm)。经1010开关极化后,剩余极化无明显的减少。
In recent years, the new devices combining ferroelectric materials with semiconductor devices have been widely used. Compared with the traditional EEPROM and FLASH memory, the new non-volatile Ferroelectric Random Access Memories (FeRAM) have many advantages, such as low operating voltage, low power consumption, long-time retention, quick writing-operation and outstanding anti-radiation characteristics, which make it very suitable for embedded applications. Therefore, this paper mainly focused on the fundamentally experimental research of the ferroelectric film materials, which are the key components of the embedded FeRAM.
     Taking the intrinsic material properties and preparation conditions, as well as the commercial future into consideration, we chose PZT(52/48) to be the ideal ferroelectric film material for application to FeRAM. Ferroelectric ceramic PZT targets with 20mol% excess PbO were prepared by the conventional solid-state route. XRD patterns on the polished ceramic targets indicated pure perovskite phase. A series of ferroelectric thin films were prepared by rf magnetron sputtering. Fabrication parameters, such as work pressure, substrate temperature, and post annealing were examined in terms of their influences on the ferroelectric characteristics of the ferroelectric films. Experimental analysis showed that the optimal deposition conditions for PZT film are as follows, work pressure: 3Pa, substrate temperature: 300°C, sputtering atmosphere: pure argon, annealing temperature: 650°C, annealing time: 20 minutes. Considering it is hard for a single PZT film to satisfy the needs put forward by FeRAM, we inserted a thin PLT seed layer between PZT film and the electrode so as to improve the ferroelectric properties of PZT films. Experiment results indicated that PLT seed layer would increase the remnant polarization and enhance the fatigure resistance of the PZT films. Therefore, PZT films with satisfying electrical properties could be acquired through the prior deposition of a thin PLT seed layer. Pt/PLT/PZT/PLT/Pt/TiO_2/SiO_2/Si is an optimized structure, and suitable for FeRAM use. By analyzing the effects of various PLT seed layer thickness on the ferroelectric properties of PZT film, we found that when the thickness increased, the ferroelectric properties got better. In order to get the optimal fabrication conditions of the PLT seed layer, we examined the effects of PLT fabrication conditions on ferroelctric characteristics of PLT/PZT/PLT structure, and summarized the following optimal fabrication parameters of depositing PLT film, work pressure: 3Pa, substrate temperature: 600°C, sputtering atmosphere: Ar/O_2 = 6:1. In the end, optimized PLT/PZT/PLT ferroelectric structure with excellent characteristics was successfully prepared on Pt substrate. Measured results indicated that the films possessed excellent ferroelectric characteristics. When an electric field of approximate 500kV/cm was applied, the film had a larger remanant polarization (2Pr=52.7μC/cm2), lower coercive field (2Ec=130kV/cm). Moreover, PLT/PZT/PLT structure showed almost no polarization fatigue even after 1010 switching cycles.
引文
[1] M. E. Lines, A. M. Glass. Principles and Application of Ferroelectrics and Related Materials. Oxford: Carendon Press, 1977
    [2] R. E. Jones, Jr. P. D. Maniar, R. Moazzami et al. Ferroelectric non-volatile memories for low-voltage, low power application. Thin Solid Films, 1995, 270: 584-588
    [3] J. F. Scott and C. A. Araujo. Ferroelectric Memories. Science, 1989, 246: 1400-1405
    [4] J. F. Scott, C. A. Paz de Araujo, L. D. McMillan et al. Ferroelectric Thin Films in Integrated Microelectronic Devices. Ferroelectrics, 1992, 133: 47-50
    [5] J. R. Anderson, Electr. Engineering, 1952, 71, 916
    [6] T. E. Joseph, W. Richard, An Experimental 512-bit Nonvolatile Memory with Ferroelectric Storage Cell. IEEE J. S. S. C., 1988, 23(5): 1171-1175
    [7] A. Koji, I. Tatsuya, O. Tomoyuki et al. Ferroelectric properties of LaMgF4 films grown on Si(100), (111) and Pt(111)/SiO2/Si(100) substrates. Jpn. J. Appl. Phys., 1996, 35(2B): 1525-1530
    [8] K. Kinam, C. J. Hyuk, C. Jungdal, J. Hong-Sik. The future prospect of nonvolatile memory. Proceedings of the 2005 IEEE International Workshop on Memory Technology, Design, and Testing (MTDT’05), 2005. 4852-4855
    [9] Choi Mun-Kyu, Jeon Byung-Gil, Jang Nakwon, et al. A 0. 25μm 3. 0-V 1T1C 32-Mb Nonvolatile Ferroelectric RAM with Address Transition Detector and Current Forcing Latch Sense Amplifier Scheme. IEEE J. solid-state circuits, 2002, 37: 1472-1476
    [10] Jia Ze, Ren Tian-ling, Xie Dan, et al. A Novel Scheme of Cross Bitlines for FeRAM Array. ISIE 2005 Shanghai, 2005, 4, 23
    [11] Kang Hee-Bok, Lee Jae-Jin, Ahn Jin-Hong, et al. A Double-Gate Cell (DGC) FeRAM With Non-Destructive Read Out (NDRO) and Random Access Scheme For Nanoscale and Terabit Non-Volatile Memory, ISIE2005 shanghai, 2005, 4, 23
    [12] D. Y. Choi, J. H. Park, H. J. Joo, et al. Novel BC Plug Technology for Highly Reliable Mass Productive 0.18μm 1T1C COB Embedded FeRAM, ISIE 2005Shanghai, 2005, 4, 23
    [13] T. Eshita. FRAM Reliability Issues and Improvement for Advanced FRAM. ISIE 2005 Shanghai, 2005, 4, 23
    [14] Murakuki Yasuo. High Density and Low Power Non-Volatile FeRAM with Non-Driven Plate. Selected Driven Bit-Line and Complimentary Shielded Bit-Line Scheme, ISIE2005 shanghai, 2005, 4, 23
    [15] Sun Shan, Sommervold Bob, Culbreth Terri, and Davenport Tom. Retention Lifetime Prediction for FRAM. ISIE 2005 Shanghai, 2005, 4, 23
    [16] S. Sinharoy, H. Buhay, R. R. Lampe et al. Integration of Ferroelectric Thin Films into Nonvolatile Memories. J. Vac. Sci. Tech. 1992, A10: 1554-1561
    [17] D. R. Lampe, D. A. Adams, M. Austin et al. Processing Integration of the Ferroelectric Memory FFETs (FEMFETs) for NDRO FeRAM. Ferroelectrics, 1992, 133: 61-64
    [18] D. Bondurant. Ferroelectric RAM Memory Family for Critical Data Storage. Ferroelectrics, 1990, 112: 273-282
    [19] T. S. Kalkur, J. Kulkarni, Y. C. Lu et al. Metal-Ferroelectric-Semiconductor Characteristics of Bismuth Titanate Films on Silicon. Ferroelectrics, 1991, 116: 135-146
    [20] Eilliott M. Philofsky. FRAM-Ultimate Memory 1996 int’l Nonvoltatile Memory Technology Conference: 101, 1996
    [21] Shoichi Masui, Tsuzumi Ninomiya, Michiya Oura, Wataru Yokozeki, Kenji Mukaida, andShoichiro Kawashima. A Ferroelectric Memory-Based Secure Dynamically Programmable Gate Array. IEEE Journal of Solid-State Circuits, 2003, 38(5): 15
    [22]朱劲松,吕秀梅译.铁电存储器.北京:清华大学出版社, 2004
    [23] S. Horii, S. Yokoyama, T. Kuniya et al. Low voltage saturation of Pb(ZrxTi1-x)O3 films on (100)Ir/ (100)(ZrO2)1-x(Y2O3)x/ (100)Si substrates structure prepared by reactive sputtering. Jpn. J. Appl. Phys., 2000, 39(4B): 2114-2188
    [24] Yu Jun, Wang Hua, Zhao Bairu, Wang Yunbo, Guo Dongyun, Gao Junxiong, Zhou Wenli, Xie Jifan. Fabrication and Characterization of Metal/Semiconductor Field Effect Transistor with the Ag/Bi4Ti3O12/p-Si(100) Structure. Jpn. J. Appl. Phys.,2004, 43(5): 2435-2437
    [25] X. F. Du, and I. W. Chen. Fatigue of Pb(Zr0.53Ti0.47)O3 ferroelectric thin films. J. Appl. Phys., 1998, 83(12): 7789-7798
    [26] Wang Hua, Yu Jun, Dong Xiaoming, et al. Reliability of Au/PZT/BIT/p-Si ferroelectric diode. Science in China (Series E), 2002, 45(2): 160-165
    [27] W. Wu, K. Fumoto, Y. Oishi et al. Bismuth titanatenthin films on Si with buffer layers prepared by laser ablation and their electrical properties. Jpn. J. Appl. Phys., 1996, 35(2B): 1560-1563
    [28] H. S. Gu, W. H. Sun, S. M. Wang et al. Synthesis and microstructure of c-axis oriented Bi4Ti3O12 thin films using sol-gel process on silicon. J. Mater. Sci. Lett., 1996, 15(1): 53-54
    [29] N. Tohge, Y. Fukuda and T. Minami. Formation and properties of ferroelectric Bi4Ti3O12 films by the sol-gel process. Jpn. J. Appl. Phys., 1992, 31(12A): 4016-4017
    [30] A. Kakimi, S. Okamura, S. Ando et al. Effect of O2 gas pressure in heat treatment on surface morphology and electric properties of ferroelectric Bi4Ti3O12 thin films with c-axis orientation. Jpn. J. Appl. Phys., 1995, 34(9B): 5193-5197
    [31] A. Kakimi, S. Okamura, Y. Yaci et al. Fabrication of ferroelectric Bi4Ti3O12 thin films by dipping pyrolysis of metal naphthenates and micropatterns by an electron beam. Jpn. J. Appl. Phys., 1994, 33(9B): 5301-5304
    [32] P. C. Joshi, A. Mansingh, M. N. Kamalasanan et al. Structural and optical properties of ferroelectric Bi4Ti3O12 thin films by sol-gel technique. Appl. Phys. Lett., 1991, 59(19): 2389-2390
    [33] Z. G. Zhang, J. S. Liu, Y. N. Wang, et al. Fatigue characteristics of SrBi2Ta2O9 thin films prepared by metalorganic decomposition. Appl. Phys. Lett., 1998, 73(6): 788-790
    [34] K. Nagashima, T. Hirai, H. Koike et al. Effect of reducing process temperature for prepaing SrBi2Ta2O9 in a metal/ferroelectric/semiconductor structure. Jpn. J. Appl. Phys., 1997, 36(5B): L619-L621
    [35] Wang Hua, Yu Jun, Dong Xiaoming, et al. Memory characteristics of Au/PZT/BIT/p-Si ferroelectric diode. Science in China (Series E), 2001, 44(3):274-279
    [36] O. Auciello, J. F. Scott and Ramamoorthy Ramesh. The physics of ferroelectric memories. Physics Today, 1998, 7: 22-27
    [37] B. Jaffe, W. R. Cook, H. Jaffe. Piezoelectric Ceramics. New York: Academic Press, 1971
    [38] Morioka Hitoshi, Yokoyama Shintaro, Oikawa Takahiro, et. al, Spontaneous polarization change with Zr/(Zr+Ti) ratios in perfectly polar-axis-orientated epitaxial tetragonal Pb(Zr, Ti)O3 films, Appl. Phys. Lett., 2004, 85: 3516-3518
    [39] K. Watanabe, A. Hartmann, R. Lamb, et. al., Valence band and bandgap states of ferroelectric SrBi2Ta2O9 thin films, Jpn. J. Appl. Phys., 2000, 39: L309-L311
    [40] Q. Zhang, R. W. Whatmore, Low fatigue lead zirconate titanate-based capacitors modified by manganese for nonvolatile memories, Materials Science and Engineering, 2004, B109: 136-140
    [41] Dale E. Wittmer, Relva C. Buchanan. Low-Temperature Densification of Lead Zirconnate-Titanate with Vanadium Pentoxide Additive. J. Am. Ceram. Soc., 1981, 64(8): 485
    [42] L’. Medvecky, M. Kmecova, K. Saksl. Study of solid solution formation by interaction of perovskite phases. J. Euro. Ceram. Soc. (In Press)
    [43] E. Cattan, G. Velu, B. Jaber, et al. Structure control of Pb(Zr, Ti)O3 films using PbTiO3 buffer layers produced by magnetron sputtering. Appl. Phys. Lett., 1997, 70(13): 1718
    [44] C. V. R. Vasant Kumar, R. Pascual, and M. Sayer. Crystallization of sputtered lead zirconate titanate films by rapid thermal processing. J. Appl. Phys., 1991, 71(2): 864
    [45] Kamran Aykan. A Novel Lead Titanate, PbTi3O7. J. Am. Ceram. Soc., 1968, 51(10): 577
    [46] Akira. Okada. Electrical properties of lead-zirconate-lead-titanate ferroelectric thin films and their composition analysis by Auger electron spectroscopy. J. Appl. Phys., 1978, 49(8): 4495
    [47] Andrew D. Polly, Fred F. Lange, and Carlos G. Levy. Metastability of the Fluorite, Pyrochlore, and Perovskite Structures in the PbO—ZrO2—TiO2 System. J. Am.Ceram. Soc., 2000, 83(4): 873
    [48] Shoichi Fushimi, Takuro Ikeda. Phase Equilibrium in the System PbO-TiO2–ZrO2. J. Am. Ceram. Soc., 1967, 50(3): 129
    [49] Kazuyuki Kakegawa, Osamu Matsunaga, et al. Compositional Change and Compositional Fluctuation in Pb(Zr, Ti)O3 Containing Excess PbO. J. Am. Ceram. Soc., 1995, 78(4): 1071
    [50] K. Kakegawa, J. Mohri, T. Takahashi, et al. A Compositional Fluctuation and Properties of Pb(Zr, Ti)O3. Solid State Commun., 1977, 24: 769-772
    [51] Kazuyuki Kakegawa, Tamami Kato, Yoshinori Sasaki. Homogenization of Pb(Zr, Ti)O3 by use of molten phase. J. Euro. Ceram. Soc., 2000, 20: 1599-1602
    [52] David A., Northrop. Vaporization of Lead Zirconate-Lead Titanate Materials. J. Am. Cera m. Soc., 1967, 50(9): 441
    [53] Marianne Hammer and Michael J. Hoffmann, Sintering Model for Mixed-Oxide-Derived Lead Zirconate Titanate Ceramics. J. Am. Ceram. Soc., 1998, 81(12): 3277-3284
    [54] M. Laurent, U. Schreiner, P. A. Langjahr, et al. Microstructure and Electrical Characterization of La-doped PZT Ceramics Prepared by a precursor route. J. Europ. Ceram. Soc., 2001, 21: 1495-1498
    [55] Duane Dimos, Robert W. Schwartz, and Steven J. Lockwood, Control of Leakage Resistance in Pb(Zr, Ti)O3 Thin Films by Donor Doping. J. Am. Ceram. Soc., 1994, 77: 3000-3005
    [56] R. B. Atkin, R. L. Holman, and Richard M. Fulrath, Substitution of Bi and Nb Ions in Lead Zirconate-Titanate. J. Am. Ceram. Soc., 1970, 54: 113-115
    [57] Z. Ujima, J. Handerek, Peculiarities of the Pyroelectric Effect and of the Dielectric Properties in Bi-doped Pb(Zr0. 95Ti0. 05)O3 Ceramics. J. Europ. Ceram. Soc., 2003, 23, 203-212
    [58] E. C. Subbarao, Studies on Lead Titanate Ceramics Containing Niobium or Tantalum. J. Am. Ceram. Soc., 1960, 43: 119-122
    [59] R. B. Atkin and Richard M. Fulrath, Point Defects and Sintering of Lead Zirconate-Titanate. J. Am. Ceram. Soc., 1971, 54: 265-270
    [60] O. P. Thakur and Chandra Prakash, Structural and Electrical Properties of Nb Substituted PZT Ceramics. Mod. Phys. Lett., 2005, 30: 1783-1791
    [61] Robert Gerson, Variation in Ferroelectric Characteristics of Lead Zirconate Titanate Ceramics Due to Minor Chemical Modifications. J. Appl. Phys., 1960, 31: 188-194
    [62] Pin Yang, James A. Voigt, Mark A. Rodriguez, Roger H. Moore, and George R. Burns, Effects of Niobium Addition on Microstructural and Electrical Properties of Lead Zirconate Titanate Solid Solution (PZT 95/5). Ceram. Engineering and Science Proceedings, ABI/INFORM Trade & Industry, 2005, 26(5): 187-195
    [63] M. Pereira, A. G. Peixoto, and M. J. M. Gomes, Effect of Nb Doping on the Microstructural and Electrical Properties of PZT Ceramics. J. Europ. Ceram. Soc., 2001, 21: 1353-1356
    [64] Chich-Kwo Liang, Microstructure and Properties of Cr2O3–Doped Ternary Lead Zirconate Titanate Ceramics. J. Am. Ceram. Soc., 1993, 76: 2023-2026
    [65] M. F. Yan, R. M. Cannon, and H. K. Bowen, Grain Boundary Migration in Ceramics. Westview Press, Boulder, 1977. 276-307
    [66] Leon I. Maissel and Reinhand Gland, Handbook of Thin Film Technology. Graw-Hill Book Company, 1970. 3-9
    [67] Maki K., Liu B. T., H. Vu, et al. Controlling crystallization of Pb(Zr, Ti)O3 thin films on IrO2 electrodes at low temperature through interface engineering. Appl. Phys. Lett., 2003, 82: 1263
    [68]曾晟,丁爱丽,仇萍荪等.溅射工艺参数对PZT铁电薄膜相变过程的影响.无机材料学报, 1999, 14(1): 107-113
    [69] Toyoda M., Hamaji Y., Tomono K. et al. Synthesis and characterization of Bi4Ti3O12 thin films by sol-gel processing. Jpn. J. Appl. Phys. 1993, 32(9B): 4158-4162
    [70] Migita S., Xiong S. B., Sakamaki K. et al. Epitaxial growth of Bi4Ti3O12/CeO2/Ce0. 12Zr0. 88O2 and Bi4Ti3O12/SrTiO3/Ce0. 12Zr0. 88O2 thin films on Siand its application to metal- insulator- semiconductor diodes. Jpn. J. Appl. Phys., 2000, 39(9B): 5505-5511
    [71] R. Ramesh, W. K. Chan, B. Wilkens, H. Gilchrist, T. Sands, J. M. Tarascon, V. G. Keramidas, D. K. Fork, J. Lee, and A. Safari, Appl. Phys. Lett., 1992, 61: 1537
    [72] K. Maki, B. T. Liu, H. Vu, V. Nagarajan, R. Ramesh, Y. Fujimori, T. Nakamura, and H. Takasu, Appl. Phys. Lett., 2003, 82: 1263
    [73] H. N. Al-Shareef, K. R. Bellur, A. I. Kingon, and O. Auciello, Appl. Phys. Lett., 1993, 66: 239
    [74] K. B. Lee, S. Tirumala, and S. B. Desu, Appl. Phys. Lett., 1999, 74: 1484
    [75] R. Dat, J. Lichtenwalner, O. Auciello, and A. I. Kingon, Appl. Phys. Lett., 1994, 64(20): 2673
    [76] Yih-Rong Luo and Jenn-Ming Wu, Appl. Phys. Lett., 2001, 79: 3669
    [77] Ming-Sen Chen, Tai-Bor Wu, and Jenn-Ming Wu, Appl. Phys. Lett., 1996, 68(10): 1430
    [78] C. Kwok and S. B. Desu, J. Mater. Res., 1993, 8: 339
    [79] Ebru Mensur Alkoy, Kiyoshi Uchiyama, Tadashi Shiosaki, and Sedat Alkoy, J. Appl. Phys., 2006, 99: 106106
    [80] S. Ezhilvalavan, Victor D Samper, and Jackie Y. Ying, Appl. Phys. Lett., 2005, 87: 252907
    [81] Eun Sun Lee, Hyun Woo Chung, Sung Hong Lim, and Sang Yeol Lee, Appl. Phys. Lett., 2005, 86: 032903
    [82] Feng Yan, Yening Wang, Helen L. W. Chen, and Chung Loong Choy, Appl. Phys. Lett., 2003, 82: 4325
    [83] S. R. Shannigrahi and Hyun M. Jang, Appl. Phys. Lett., 2001, 79: 1051
    [84] Dinghua Bao, Naoki Wakiya, Kazuo Shinozaki, and Nobuyasu Mizutani, J. Phys. D: Appl. Phys., 2002, 35: L1
    [85] Masatoshi Adachi, Topics Appl. Phys., 2005, 98: 91
    [86] G. Le Rhun, G. Poullain, R. Bouregba, and G. Leclerc, J. Eur. Ceram. Soc., 2005, 25: 2281
    [87] Lou X. J., Zhang M., S. A. T. Redfern, and J. F. Scott, Phys. Rev. Lett., 2006, 97: 177601

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700