脉冲激光沉积BiFeO_3铁电薄膜及其特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
BiFeO3作为少数在室温下具有铁电和反铁磁性质的钙钛矿型材料之一,在信息存储、自旋电子器件和传感器等方面有着广泛的应用前景。本学位论文通过脉冲激光沉积(PLD)技术在单晶SrTiO3基片上生长了BiFeO3薄膜,对其晶体结构、表面形貌、电子结构及其铁电性质进行了研究,论文的主要内容如下:
     (1)概述了BiFeO3薄膜的基本性质、制备方法以及国内外的研究进展。
     (2)采用分析纯的Bi2O3(99.9%)和Fe2O3(99.9%)为原料,利用固相反应法制备了纯相BiFeO3靶材,详细研究了靶材制备的工艺参数以及靶材的结构性质。
     (3)利用准分子脉冲激光器(KrF,248nm,25ns),以单晶SrTiO3(100)为衬底,通过优化激光能量、沉积温度、氧压以及退火温度等工艺参数,在650℃,1PaO2下成功制备了纯相的BiFeO3外延薄膜。
     (4)采用X射线衍射仪(X-Ray Diffraction,XRD)、场扫描电子显微镜(Field Scanning Electron Microscopy,FSEM)、能谱仪(Energy-Dispersive X-Ray Spectroscopy,EDS)、X射线光电子能谱(X-Ray Photoelectron Spectroscopy,XPS)等研究了薄膜的结构、表面形貌以及组分。
     (5)采用RT-66标准铁电测试系统测量了200nm厚度薄膜的铁电性质,室温下观察到了薄膜的饱和电滞回线,得到其剩余极化强度为4.028μC/cm2,同时讨论了电极对铁电性质的影响。
As one of the minority perovskite structure materials that couple ferroelectricity and antiferromagnetism at room temperature, BiFeO3 has a promising application prospect in the fields of information storage, spintronic devices and sensors. In this thesis, the BiFeO3 thin films were grown on SrTiO3 substrates using pulsed laser deposition (PLD). The crystal structure, surface images, composition and ferroelectric properties were discussed. The main contents are listed as follows:
     (1) A review of basic structure and physical characteristic of BiFeO3 film was present, and the film-growth method was introduced.
     (2) Bi2O3(99.9%) and Fe2O3(99.9%) powders were mixed up in mol ratio of 1.1:1 to synthesize the single phase BiFeO3 ceramic target using conventional solid phase reaction method. The effects of sintering parameters on the structural properties of the targets were studied.
     (3) The BiFeO3 films have been fabricated on SrTiO3 substrates using PLD technique (KrF, 248nm, 25ns). The effects of some parameters such as substrate temperature on the crystallinity and structural properties of BiFeO3 films were discussed.
     (4) X-ray diffraction (XRD), Field-emission scanning electron microscopy (FSEM), Energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) were used to characterize the structure, composition, and morphology properties of the BiFeO3 film.
     (5) The ferroelectric properties were measured using the RT-66 standardized test system and the saturated polarization hysteresis loop was observed at the room temperature. Also the effect of electrode was discussed.
引文
[1] R. E. Cohen. Origin of ferroelectricity in perovskite oxides. Nature, 1992, 358(6382): 136~138
    [2] M. E. Lines, A. M. Glass. Principles and Applications of Ferroelectrics and Related Materials. Oxford University Press, 1977. 50~56
    [3] G. A. Smolenskii and I. E. Chupis. Ferroelectromagnets. Sov. Phys. Usp., 1982, 25(11): 475~478
    [4] V. R. Palkar, J. John, and R. Pinto. Observation of saturated polarization and dielectric anomaly in magnetoelectric BiFeO3 thin films. Appl. Phys. Lett., 2002, 80(9): 1628~ 1630
    [5] M. Polomska, W. Kaczmarek and Z. Pajak. Electric and magnetic properties of (B1-xLax) FeO3 solid solutions. Phys. Stat. Sol., 1974, 23(2): 567~569
    [6] J. R. Teague, R. Gerson and W. J. James. Dielectric hysteresis in single crystal BiFeO3. Solid State Communications, 1970, 8(13): 1073~1075
    [7] Y. P. Wang, L. Zhou, M. F. Zhang et al. Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering. Appl. Phys. Lett., 2004, 84(10): 1731~1733
    [8]钟维烈.铁电体物理学.北京:科学出版社, 1996. 295~396
    [9] B. Jaffe, W. R. Cook Jr and H. Jaffe. Piezoelectric Ceramics.林声和译.北京:科学出版社, 1979. 78~84
    [10] C. Michel, J. M. Moreau, G. D. Achenbach et al. The atomic structure of BiFeO3. Solid State Communications, 1969, 7(9): 701~704
    [11] S. T. Zhang, M. H. Lu, D. Wu et al. Larger polarization and weak ferromagnetism in quenched BiFeO3 ceramics with a distorted rhombohedral crystal structure. Appl. Phys. Lett., 2005, 87(26): 262907
    [12] M. M. Kumar, V. R. Palkar, K. Srinivas et al. Ferroelectricity in a pure BiFeO3 ceramic. Appl. Phys. Lett., 2000, 76(19): 2764~2766
    [13] J. Wang, J. B. Neaton, H. Zheng, et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science, 2003, 299(5613): 1719~1722
    [14] K. Y. Yun, M. Noda, M. Okuyama et al. Prominent ferroelectricity of BiFeO3 thin films prepared by pulsed-laser deposition. Appl. Phys. Lett., 2003, 83(19): 3981~3983
    [15] K. Y. Yun, M. Noda, M. Okuyama et al. Structural and multiferroic properties of BiFeO3 thin films at room temperature. J. Appl. Phys., 2004, 96(6): 3399~3403
    [16] Y. Wang, Q. H. Jiang, H. C. He et al. Multiferroic BiFeO3 thin films prepared via a simple sol-gel method. Appl. Phys. Lett., 2006, 88(14): 142503
    [17] H. R. Liu, Z. L. Liu, Q. Liu et al. Ferroelectric properties of BiFeO3 films grown by sol-gel process. Thin Solid Films, 2006, 500(1-2): 105~109
    [18] S. K. Singh, Y. K. Kim, H. Funakubo et al. Epitaxial BiFeO3 thin films fabricated by chemical solution deposition. Appl. Phys. Lett., 2006, 88(16): 162904
    [19] K. Ueda, H. Tabata, T. Kawai. Coexistence of ferroelectricity and ferromagnetism in BiFeO3-BaTiO3 thin films at room temperature. Appl. Phys. Lett., 1999, 75(4): 555~557
    [20] V. R. Palkar, K. G. Kumara, S. K. Malik. Observation of room-temperature magnetoelectric coupling in pulsed-laser-deposited Bi0.6Tb0.3La0.1FeO3 thin films. Appl. Phys. Lett., 2004, 84(15): 2856~2858
    [21] W. Eerenstein, F. D. Morrison, J. F. Scott et al. Growth of highly resistive BiMnO3 films. Appl. Phys. Lett., 2006, 87(10): 101906
    [22] M. Murakami, S. Fujino, S. H. Lim et al. Fabrication of multiferroic epitaxial BiCrO3 thin films. Appl. Phys. Lett., 2006, 88(15): 152902
    [23] L. Erktova著.薄膜物理学. (第一版).北京:科学出版社, 1986. 42~166
    [24] S. M. Metev and V. P. Veiko. Laser Assisted Microtechnology. Berlin: Heidelberg, Springer, 1994. 120~180
    [25] D. B. Chrisey and G. K. Hubler. Pulsed Laser Deposition of Thin Film. NewYork: John Wiley & Sons, 1994. 220~240
    [26]郑启光.激光与物质相互作用. (第一版).武汉:华中理工大学出版社, 1995. 228~ 234
    [27]郑启光.激光先进制造技术. (第一版).武汉:华中理工大学出版社, 2002. 212~ 236
    [28] P. X. Lu, Y. H. Zhou, Q. G. Zheng et al. Single-phaseβ-FeSi2 thin films prepared on Si wafer by femtosecond laser ablation and its photoluminescence at roomtemperature. Phys. Lett. A, 2006, 350(3-4): 293~296
    [29] Y. H. Zhou, G. Yang, Z. H. Zhang et al. Optical characterization ofβ-FeSi2 thin films prepared by femtosecond laser ablation. Chin. Phys. Lett., 2007, 24(2): 563~566
    [30]周幼华,陆培祥,龙华等.脉冲激光沉积β-FeSi2/Si(111)薄膜的工艺条件研究.中国激光, 2006, 33(9): 1277~1281
    [31]周幼华,陆培祥,杨光等.飞秒脉冲激光沉积β-FeSi2/Si(111)薄膜及其光学性质研究.无机材料学报, 2007, 22(3): 731~735
    [32] E. Millon, O. Albert, J. C. Loulergue et al. Growth of heteroepitaxial ZnO thin films by femtosecond pulsed-laser deposition. J. Appl. Phys., 2000, 88(11): 6937~6939
    [33] M. Amiotti, G. Guizzetti, F. Marabelli et al. Optical properties of Pd2Si. Phys. Rev. B, 1992, 45(23): 13285~13292
    [34] M. Von.奥尔曼.激光束与材料相互作用的物理原理及应用.北京:科学出版社, 1994. 81~138
    [35] Nause, J. E. Cermet. ZnO broadens the spectrum. Reserch Review, 1979, 12(4): 28~31
    [36] K. S. Park and J. K. Park. Effect of thin film stress on the elastic strain energy of Cr thin film on substrate. Acta mater, 1999, 47(11): 2177~2181
    [37]吴自勤,王兵.薄膜生长. (第一版).北京:科学出版社, 2001. 170~240
    [38]王力衡,黄运添,郑海涛.薄膜技术. (第一版).北京:清华大学出版社, 1997. 62~ 69
    [39]李恒德,肖纪美.材料表面与界面. (第一版).北京:清华大学出版社, 1990. 51~ 58
    [40] M. Ozegowski, K. Meteva, S. Metev et al. Pulsed laser deposition of multicomponent metal and oxide films. Appl. Surf. Sci., 1999, 138(1): 68~74
    [41] B.П.魏柯, C. M.麦捷夫著.激光工艺与微电子技术. (第一版).吴国安,邓存熙译.北京:国防工业出版社, 1997. 366~380
    [42] D. P. Norton, A. Goyal, J. D. Budai et al. Epitaxial YBa2Cu3O7 on biaxially textured nickel (001): an approach to superconducting tapes with high critical current density. Science, 1996, 274(5288): 755~757
    [43] P. K. Schenck, M. D. Vaudin, D. W. Bonnell et al. Particulate reduction in the pulsed laser deposition of barium titanate thin films. Appl. Surf. Sci., 1998, 127(6): 655~661
    [44] Y. Q. Wang, X. T. Huang, C. W. An et al. Large-area thin film preparation by a hybrid scanning laser ablation. SPIE, 1999, 3862: 493~497
    [45] P. Siemroth, H. J. Scbeibe. Film deposition by laser-induced vacuum arc evaporation. IEEE Transcations on Plasma Science, 1990, 18(8): 917~922
    [46] C. K. Ong, S. Y. Xu, W. Z. Zhou et al. A novel approach for doping impurity in thin film in situ by dual-beam pulsed-laser deposition. Review of Scientific Instruments, 1998, 69(6): 3659~3661
    [47] W. Z. Zhou, D. H. Chua, S. Y. Xu et al. The distribution of Ag in Ag-doped YBa2Cu3O7-δthin film prepared by dual-beam pulsed-laser deposition. Supercond. Sci. Technol., 1999,12(6): 388~393
    [48] G. L. Yuan, S. W. Or, Y. P. Wang et al. Preparation and multi-properties of insulated single-phase BiFeO3 ceramics. Solid State Communication, 2006, 138(2): 76~81
    [49] J. F. Li, J. Wang, N. Wang et al. Dramatically enhanced polarization in (001), (101) and (111) BiFeO3 thin films due to epitiaxial-induced transitions. Appl. Phys. Lett., 2004, 84(25): 5261~5263
    [50] H. Bea, M. Bibes, A. Barthelemy et al. Combining half-metals and multiferroics into epitaxial heterostructures for spintronics. Appl. Phys. Lett., 2005, 88(6): 062502
    [51] S. C. Abrahams, S. K. Kurtz and P. B. Jamieson. Atomic displacement relationship to Curie temperature and spontaneous polarization in displacive ferroelectrics. Physical Review, 1968, 172(2): 551~553

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700