水下盾构法隧道双层衬砌结构力学特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大型水下铁路盾构隧道正朝着超长、大断面以及高水压的方向发展,为满足衬砌结构耐久性、列车运行振动及防撞击、阻燃等相关安全保障的要求,目前国内盾构隧道已经开始尝试使用管片+模筑混凝土的衬砌型式。然而长期以来对于盾构隧道二次衬砌的受力性态不甚明确,其作用在认识上也存在偏差和争议,至今尚未形成统一的盾构隧道双层衬砌结构计算理论。
     论文以广深港客运专线狮子洋隧道为工程背景,结合国家重点基础研究发展计划(973计划)课题“复杂环境作用下地下结构的长期安全性及其预测方法”和中央高校基本科研业务费专项资金优秀学生资助项目“盾构隧道双层衬砌结构设计理论研究”开展研究。主要采用理论分析、相似模型试验、数值模拟和现场监测等研究手段,建立双层衬砌横、纵向结构力学模型,旨在揭示大型水下盾构隧道双层衬砌结构在横、纵方向的力学特性,探明管片与二次衬砌之间的相互作用机理,取得主要成果如下:
     1、分析了盾构隧道双层衬砌结构间的相互作用关系,提出了双层衬砌结构的横向力学模型,推导了结合面压缩刚度及剪切面滑移变形的理论解析解;建立了非线性三维有限元力学模型,对双层衬砌结合面刚度、不同内衬厚度及二衬合理施作时机进行全面比较研究。针对管片衬砌结构型式的特点,从接缝防水及结构受压承载能力两方面分析了管片衬砌的高水压分界值,并得到了不同水位涨幅和管片渗漏水情况下的双层衬砌横向结构特性。
     2、采用对水、土压力可实现分离加载的盾构隧道-地层-水压复合体模拟试验系统,实施了不同水、土压力场条件下双层衬砌结构力学特征的模型试验,分析了设计荷载及超载条件下二衬施作前后管片衬砌受力特性及变化规律;探讨了不同结合面情况下双层衬砌的相互作用机理;揭示了注浆缺陷或围岩弱化等因素对双层衬砌力学特性的影响规律:探明了超载条件下双层衬砌的破坏形态。
     3、针对管片衬砌横向性能和双层衬砌纵向连接性能的特性,建立了三维壳-弹簧纵向力学模型,丰富和发展了既有盾构隧道纵向力学模型。通过计算分析,探明了不同二衬厚度条件下双层衬砌纵向等效刚度的影响规律。采用纵向反应位移法对盾构隧道管片衬砌结构及双层衬砌纵向抗震力学特性进行了比较分析。
     4、开展了水下盾构隧道双层衬砌结构纵向力学特性及相互作用机理的相似模型试验,探明了不同地层条件、局部加、卸载等因素对盾构隧道管片衬砌结构及双层衬砌结构纵向力学特性的影响规律。
     5、以狮子洋盾构隧道双层衬砌段为对象开展了现场试验研究,通过对测试数据的系统分析,探明了盾构机掘进过程中同步注浆与千斤顶推力对管片衬砌结构的影响,揭示了管片衬砌结构所受水、土压力、双层衬砌层间水压力的长期变化规律,对比分析了二衬施作前后管片衬砌结构的力学特性,并基于二次衬砌的长期监测数据,实现了对二次衬砌结构安全性的综合评价。
     盾构隧道二次衬砌可能作为抵御外荷载和防水的最后一道防线而被工程界所采用。论文研究成果将为大型水下盾构法隧道双层衬砌结构设计提供理论依据和实用方法,同时可为既有盾构隧道的维护加固提供参考。
Large-scale underwater-railway shield tunnel is developing towards the direction of over-length, large cross-section and high hydraulic pressure. Lining consist of segments and formworking concrete is increasingly applied in the shield tunnel in our country at present so as to meet the security requirements of the lining structure durability, high-speed train, anti-impact and inflaming retarding etc. However, there have been deviation and dispute on the understanding of mechanical behavior and the role of the secondary lining in shield tunnel and its calculation methods for a long time.
     This thesis conducts research on the basis of Shiziyang Tunnel of Guangzhou-Shenzhen-Hongkong Passenger Dedicated Railway, combined with the'Long-term safety and prediction method of underground structures under complex environments'and 'Double-layer lining of shield tunnel structure design theory'projects separately supported by National Basic Research Program of China (973Program) and Fundamental Research Funds for the Central Universities. Theoretical analysis, model test, field monitoring and other research means are mainly adopted to analyze unravel the transverse and longitudinal mechanical characteristics of the double-layer lining in the large-scale underwater shield tunnel, and to explore the interaction mechanism between segments and secondary lining. The main results are as follows:
     1. Based on analyzing the interaction between double-deck lining of shield tunnel, a new transverse mechanical model of the double-layer lining structure is put forward, and a theoretical-analytical solution about compress stiffness of joint plane and sliding deformation of shear plane are proposed; and then made a comprehensively comparative research on the joint-plane stiffness of double-layer lining, different lining thickness, reasonable construction time of the secondary lining by building nonlinear three-dimensional finite element models. According to segment structural form feature, the high-hydraulic-pressure cutoff value of segmental lining from the respects of joint waterproofing and compressing carrying capacity of the structure are analyzed, and obtained the transverse structura.
     2. Model test of double-deck lining structure mechanical characteristics under different water and soil pressure fields on the platform of shield tunnel-stratum-hydraulic pressure simulation experimental system which can implement the water and soil pressure separately is conducted so as to realize the mechanical characteristics and change law of segmental lining before and after the operation of secondary lining under design load and overload conditions; discusses the interaction mechanism of double-layer lining; reveals the influence rules of various factors such as grouting default or surrounding rock weakening; ascertains the failure modes of double-deck lining under overload conditions.
     3. Aiming at transverse characteristics of segmental lining and longitudinal connection characteristics of double-layer lining, three-dimensional shell-spring model is built on the ground of analysis and comparison on longitudinal mechanical model of existing shield tunnels, proved the influence law about effective longitudinal stiffness of double-deck lining caused by different secondary lining thickness and construction length. The longitudinal aseismic mechanical characteristics of shield-tunnel segmental lining and double-deck lining are analyzed by adopting longitudinal response displacement method.
     4. On the basis of effective axial-stiffness philosophy, model test on longitudinal mechanical characteristics and interaction mechanism for double-deck lining of underwater shield tunnel was conducted, and ascertaining influence law about shield-tunnel segmental lining and double-layer lining caused by such factors such as different formation conditions, local loading and unloading.
     5. Field-test research relied on double-layer lining of Shiziyang shield tunnel was conducted, ascertaining the impact of synchronized grouting and jack thrust on the segmental lining structure during shield tunneling. The long-term variations of water and soil pressure, hydraulic pressure between double-layer lining are revealed, and mechanical characteristics of segmental lining on the pre and post operation of the secondary lining was contrastive analyzed to realize a comprehensive evaluation of the secondary-lining safety along with long-term monitoring data of the secondary lining.
     The secondary lining may be adopted as the last line of defense for bearing external loads and waterproofing in engineering circles. This thesis provides theoretical basis and practical methods for designing lining structure of large-scale underwater shield tunnel, and also gives a reference for the reinforcement of existing shield tunnel.
引文
[1]何川,张建刚,苏宗贤.大断面水下盾构隧道结构力学特性[M].北京:科学出版社,2010.
    [2]王梦恕.中国是世界上隧道和地下工程最多、最复杂、今后发展最快的国家[J].铁道标准设计,2003.1:1-4.
    [3]王梦恕.21世纪我国隧道及地下空间发展的探讨[J].铁道科学与工程学报.2004,1(1):7-9.
    [4]王建宇.长大隧道修建技术的发展[J].地下空间,1991,11(2):150-154.
    [5]邓勇.我国长大隧道施工发展趋势探讨[J].铁道建筑技术,2009,11:72-75.
    [6]中国铁道部.《中长期铁路网规划(2008年调整)》[J].铁道知识,2008,6:1-7.
    [7]何华武.中国高速铁路创新与发展[J].中国铁路,2010,12:5-8.
    [8]罗仁坚.“十二五”我国综合运输体系结构优化的思考[J].综合运输,2011,1:12-15.
    [9]吴笑伟.国内外盾构技术现状与展望[J].建筑机械,2008,8:69-73.
    [10]刘建航,侯学渊.盾构法隧道[M].北京:中国铁道出版社,1991.
    [11]张凤祥,朱合华,付德明.盾构隧道[M].人民交通出版社,2004.
    [12]周文波.盾构法隧道施工技术及应用[M].北京:中国建筑工业出版社,2004.
    [13]何川,张志强,肖明清.水下隧道[M].成都:西南交通大学出版社,2011.
    [14]王梦恕.水下交通隧道发展现状与技术难题—兼论“台湾海峡海底铁路隧道建设方案”[J].岩石力学与工程学报,2008,27(11):2161-2172.
    [15]王梦恕.中国铁路、隧道与地下空间发展概况[J].隧道建设,2010,30(4):351-364.
    [16]杨文武.盾构法水下隧道工程技术的发展[J].隧道建设,2009,29(2):145-151.
    [17]孙钧.崇明长江隧道盾构管片衬砌结构的耐久性设计[J].建筑科学与工程学报,2008,25(1):1-9.
    [18]刘涛.既有盾构隧道结构性能评价研究[D].同济大学博士学位论文,2008.
    [19]赵样平,赵文成.浅谈水下盾构隧道结构病害处理[J].四川建筑,2008,30(2):201-202.
    [20]孙钧.盾构法隧道管片衬砌结构耐久性设计的若干问题[C].地下工程施工与风险防范技术—第三届上海国际隧道工程研讨会文集,2007:607-615.
    [21]黄慷.水底盾构隧道结构的耐久性及可靠度设计的理论与方法[D].同济大学硕士学位论文,2004.
    [22]张明海,张乃涓.盾构隧道常见病害及其影响分析[J].城市道桥与防洪, 2009,9:182-187.
    [23]秦建设,朱伟,陈剑.盾构姿态控制引起管片错台及开裂问题研究[J].施工技术,2004,33(10):25-27.
    [24]李云丽.盾构隧道施工过程管片结构受力特征研究[D].北京交通大学硕士学位论文,2008.
    [25]周明军.盾构隧道中管片结构纵向错台的研究[J].铁道建筑,2008,12:40-42.
    [26]刘印,张冬梅,黄宏伟.基于纵向不均匀沉降的盾构隧道渗漏水机理分析[J].铁道工程学报,2011,5:66-70.
    [27]杜欣,曾亚武,岳全贵.铁路隧道建设与水环境关系分析[J].铁道工程学报,2009,1:82-85.
    [28]徐林生.大断面高速公路隧道复合式衬砌结构受力监测分析[J].重庆交通大学学报(自然科学版),2009,28(3):528-530.
    [29]刘鹏,张玉成,姚捷,等.盾构隧道管片开裂原因及数值仿真[J].土木工程与管理学报,2011,28(2):44-49.
    [30]吴江滨,张顶力,王梦恕.铁路运营隧道病害现状及检测评估[J].中国安全科学学报,2003,13(6):49-52.
    [31]崔秀龙,吴小萍,阳军生.隧道衬砌裂损病害整治技术研究[C].自主创新与持续增长第十一届中国科协年会论文集,2009,2:610-615.
    [32]张玉娥,白宝鸿,张耀辉,等.地铁区间隧道震害特点、震害分析方法及减震措施的探讨[J].振动与冲击,2003,22(1):70—74.
    [33]刘晶波,李彬,谷音.地铁盾构隧道地震反应分析[J].清华大学学报(自然科学版),2005,45(6):757-760.
    [34]于翔.地下建筑结构应充分考虑抗震问题—1995年阪神地震破坏的启示[J].工程抗震,2002,(4):17-20.
    [35]钱七虎,何川,晏启祥.隧道工程动力响应特性与汶川地震隧道震害分析及启示[C].中国岩石力学与工程学会—汶川大地震工程震害调查分析与研究会议论文集,2008,608-618.
    [36]袁大军,黄清飞,王梦恕,等.水底液化地层大型盾构隧道地震响应分析[J].岩石力学与工程学报,2007,26(S2):3609-3615.
    [37]黄娟,彭立敏,李兴龙.可液化地层狮子洋盾构隧道横向地震响应规律及减震措施研究[J].岩土工程学报,2009,31(10):1539-1546.
    [38]王建强.地铁隧道衬砌结构钢筋锈蚀及耐久性研究[D].长安大学硕士学位论文,2009.
    [39]Emmanuel Rozie're, Ahmed Loukili, Francois Cussigh. A performance based approach for durability of concrete exposed to carbonation [J]. Construction and Building Materials,2009,23:190-199.
    [40]O.Poupard, V.L'Hostis, S.Catinaud, elt. Corrosion damage diagnosis of a reinforced concrete beam after 40 years natural exposure in marine environment[J]. Cement and Concrete Research,2006,36:504-520.
    [41]S.K.Roy, K.B.Poh, D.O.Northwood. Durability of concrete-accelerated carbonation and weathering studies[J]. Building and Environment,1999,34: 597-606.
    [42]Jin-Keun Kim, Chin-Yong Kim, Seong-Tae Yi, elt. Effect of carbonation on the rebound number and compressive strength of concrete[J]. Cement & Concrete Composites,2009,31:139-144.
    [43]彭立敏,刘宝琛.隧道火灾后衬砌结构力学特性与损伤机理研究[J].中国铁道科学,2002,23(1):136-138.
    [44]卢志芳.爆炸荷载作用下长江隧道的动力响应和损伤分析[D].武汉理工大学硕士学位论文,2006.
    [45]刘涛.软土地区既有盾构公路隧道结构损伤成因和表征[J].中国市政工程,2010,(S1):19-21.
    [46]张连成,叶飞,张铁柱.盾构隧道纵向变形机理分析[J].公路,2009,(8):255-259.
    [47]丁祖德,彭立敏,陈松洁.盾构隧道基底软硬过渡地段列车振动响应分析[J].郑州大学学报(工学版),2010,31(3):87-91.
    [48]林永国,廖少明,刘国彬.地铁隧道纵向变形影响因素的探讨[J].地下空间,2000,20(4):264-267.
    [50]张永冠.铁路盾构隧道双层衬砌力学行为研究[D].西南交通大学硕士学位论文,2010.
    [51]张增.铁路隧道管片衬砌横向结构力学特征研究[D].西南交通大学硕士学位论文,2009.
    [52]晏启祥,程曦,何川,赵世科.水压条件下盾构隧道双层衬砌力学特性分析[J].铁道工程学报,2010,(09):55-59.
    [53]张传健,吕国梁,廖仁强.南水北调中线穿黄隧洞结构设计研究[J].人民长江,2009,(40):85-87.
    [54]洪开荣,杜闯东,王坤.广深港高速铁路狮子洋水下盾构隧道修建技术[J].中国工程科学,2009,11(7):53-58.
    [55]吴林.盾构隧道双层衬砌计算模型与力学特性研究[D].西南交通大学硕士学位论文,2011.
    [56]何川,封坤.大型水下盾构隧道结构研究现状与展望[J].西南交通大学学报,2011,46(1):1-11.
    [57]袁大军,小泉·淳.盾构工法的新动向[J].市政技术.2004,22(S1):122-124.
    [58]He C, Atsushi K. Seismic behavior in longitudinal direction of shield tunnel located at irregular ground[J]. The 1st International Conference on Advances in Structural Engineering and Mechanics, Korea,1999:1493-1498.
    [59]He C, Atsushi K. A study on seismic behavior of shield tunnels in longitudinal direction[J]. Proceedings of the 4th World Congress on Railway Research, Gapan,1999:1256-1266.
    [60]Atsushi K, He C. Dynamic behavior in longitudinal direction of shield tunnel located at irregular ground with considering effect of secondary lining[J]. Proceedings of the 12th World Congress on Earthquake engineering, New zealand,1999:1256-1266.
    [61]地铁设计规范GB50157-2003.中华人民共和国国家标准.中国计划出版社.2003,8.
    [62][日]土木学会编.隧道标准规范(盾构篇)及解说[M].朱伟译.中国建筑工业出版社.2001.
    [63]Ghaboussi,J.etal. Finite element simulation of tunneling over subway[J]. Journal of Geotechnical Engineering,1983(3):318-319.
    [64]Ghaboussi.J & Rankens.R.E. Finite element simulation of underground construction[C]. Proceedings of Implementation of Computer Procedures and Stress-Strain Laws in Geotechnical Engineering, Aug,1981.
    [65]MOTOYAMA M. Study on Structure Design of Large Section Shield Tunnel Traversing Under Channel[D]. Tokyo. Waseda University,1997.
    [66]ATSUSHI KOIZUMI. On the Design Method of the Shield Tunnel Lining. From MEMOIRS of the School of Science and Engineering.1992 (56):125-177.
    [68]Muir Wood,A.M. The circular tunnel in elastic ground[J]. Geotechnique. 1975,25(1):115-127.
    [69]LEE K M, HOU X Y, GE X W, TANG Y. An analytical solution for a jointed shield-driven tunnel lining[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2001,25(4):365-390.
    [70]LEE K M, GE X W. The equivalence of a jointed shield-driven tunnel lining to a continuous ring structure[J]. Journal of Canadian Geotechnical Engineering,2001,38(1):461-483.
    [71]Kashima Y, Kondo N, Inoue M. Development and application of the DPLEX shield method:results of experiments using shield and segment models and application of the method in tunnel construction[J]. Tunnelling and Underground Space Technology,1996,11 (1):45-50.
    [72]Koyama Y, Kondo N, Inous M. Present status and technology of shield tunneling method in Japan[J]. Tunnelling and Underground Space Technology,2003,18(2-3):145-149.
    [73]黄宏伟,徐凌,严佳梁等.盾构隧道横向刚度有效率研究[J].岩土工程学报.2006,28(1)11-17.
    [74]钟小春.盾构隧道管片土压力的研究[D].河海大学博士学位论文,2005.
    [75]黄正荣.基于壳-弹簧模型的盾构衬砌管片受力特性研究[D].河海大学博士学位论文,2007.
    [76]黄钟辉,廖少明,刘国彬.上海软土盾构法隧道管片厚度的优化[J].岩土 力学.2000,21(4):326-330.
    [77]丁文其,杨林德,朱合华.盾构隧道施工中材料形态的模拟[J].同济大学学报.1999,27(4):468-473.
    [78]肖中平,李围.大断面盾构隧道管片设计内力与变形极值分析[J].现代隧道技术.2006,43(5):45-49.
    [79](日)moleman盾构隧道专用程序使用说明[M].地盤工学舍(日),1997.
    [80]Koyama Y, Sato Y. Study on very close twin shield tunnel segment design methods[J]. RTRI Report,1997,11(7):31-36.
    [81]朱合华,陶履彬.盾构隧道衬砌结构受力分析的梁-弹簧系统模型[J].岩土力学.1998,19(2):26-32.
    [82]李围,何川.超大断面越江盾构隧道结构设计与力学分析[J].中国公路学报.2007,20(3):76-80.
    [83]李围,何川.盾构隧道通用管片力学行为与控制拼装方式研究[J].铁道学报.2007,29(2):77-82.
    [84]赵国旭,何川.隧道管片设计优化分析[J].中国铁道科学.2003,24(6):61-66.
    [85]张建刚,何川,杨征.武汉长江隧道管片衬砌结构受幅宽影响的力学分布特征研究[J].岩石力学与工程学报.2007,26(增2):3763-3769.
    [86]G.Unnithan,R.Krishna,Kumar.A.Prasad. Application of a shell-spring model for the optimization of radial tirecontour using a genetic algorithm[J]. Tire Science and Technology.2003,vol.31:39-63.
    [87]朱伟,黄正荣,梁精华.盾构衬砌管片的壳-弹簧设计模型研究[J].岩土工程学报.2006,28(8):940-947.
    [88]Zheng-rong Huang, Wei Zhu, Jing-hua Liang. Three-dimensional numerical modeling of shield tunnel lining. Tunnelling and Underground Space Technology,21 (3-4),2006.
    [89]苏宗贤,何川.盾构隧道管片衬砌内力分析的壳-弹簧-接触计算模型及其应用[J].工程力学.2007,24(7):131-136.
    [90]苏宗贤,何川.荷载-结构模式的壳-弹簧-接触计算模型[J].西南交通大学学报.2007,42(3):288-292.
    [91]Galli G.,Grimaldi A., Leonardi A.. Three-dimensional modeling of tunnel excavation and lining[J].computers and geotechnics.2004,31(1):171-183
    [92]C.B.M.Blom,E.J.vander Horst, P.S.Jovanovic.Three-dimension structural analyses of the shield-driven "Green Heart"Tunnel of the High-Speed Line South[J].Tunnelling and Underground Space Technology.1999,14(2): 217-224.
    [93]Working Group NO.2, ITA. Guidelines for the design of shield tunnel Lining [J].Tunnelling and Underground Space technology,2000, V15(3):303-331.
    [97]Nasri A Wunfah, Michael P Della Posta. Full scale testing of tunnel liner [A]. Herrman L R. Towards New Worlds in Tunnelling[C]. Rotterdam:Balkema, 1992,315-320.
    [99]过迟,吕国梁.穿黄工程盾构隧洞衬砌结构计算模型研究[J].岩土力学,1997,V18(s1):203-207.
    [100]章青,卓家寿.盾构式输水隧洞的计算模型及其工程应用[J].水利学报,1999,(02):19-22.
    [101]张厚美,过迟,傅德明.圆形隧道装配式衬砌接头刚度模型研究[J].岩土工程学报,2000,V22(3):309-313.
    [102]张厚美.装配整体式双层衬砌接头荷载试验与结构计算理论——南北北调中线穿黄隧洞结构计算模型研究[D].同济大学博士学问论文,2000.
    [103]张厚美,过迟,吕国梁.盾构压力隧洞双层衬砌的力学模型研究[J].水利学报,2001,(4):28-33.
    [104]张厚美,连烈坤,过迟.盾构隧洞双层衬砌接头相互作用模型[J].岩石力学与工程学报,2003,V22(1):70-74.
    [105]何英杰,袁江.影响盾构隧道衬砌接头刚度的因素[J].长江科学院院报,2001,(2):20-26.
    [106]何英杰,周晓雁.盾构隧道衬砌连接螺栓变形的影响因素分析[J].长江科学院院报,2002,(9):57-60.
    [107]何英杰,张述琴,吕国梁.穿黄隧道内外衬联合受力结构模型试验研究[J].长江科学院院报,2002,19(s1):64-67.
    [108]张传健,吕国梁.承受高内水压力的穿黄工程盾构隧洞结构型式研究[J].隧道建设,2007,(s2):147-149.
    [109]谢小玲,苏海东.穿黄隧道双衬砌结构平面非线性有限元分析[J].长江科学院院报,2002,V19(S1):61-63,67.
    [110]张传健,吕国梁,廖仁强.南水北调中线穿黄隧洞结构设计研究[J].人民长江,2009,V40(23):85-87.
    [111]符志远,张传健,邓家林.穿黄隧洞工程布置与结构型式研究[J].人民长江,2011,V42(08):14-20,46.
    [112]杨钊,潘晓明,余俊.盾构输水隧洞复合衬砌计算模型[J].中南大学学报(自然科学版),2010,V41(05):1945-1952.
    [113]孙钧,杨钊,王勇.输水盾构隧洞复合衬砌结构设计计算研究[J].地下工程与隧道,2011,(01):1-8.
    [114]钮新强,符志远,张传健.穿黄盾构隧洞新型复合衬砌结构特性研究[J].人民长江,2011,V42(08):8-13.
    [115]钮新强,符志远,张传健.穿黄隧洞衬砌1:1仿真模型试验研究[J].人民 长江,2011,V42(08):77-86.
    [116]谢小玲,苏海东.穿黄隧洞预应力双层复合衬砌结构受力特性研究[J].长江科学院院报,2011,V28(10):180-185.
    [117]张弢,王东黎,王雷.盾构管片钢筋混凝土内衬大型输水隧洞结构研究[J],水利水电技术,2009,V40(7):62-65.
    [118]邓亚虹,彭建兵,范文,等.地裂缝活动环境下盾构隧道双层衬砌性状分析[J].岩石力学与工程学报,2008,V27(s2):3860-3867.
    [119]王俊淞,马险峰,李削云.盾构隧道双层衬砌效果的离心模型试验研究[J].结构工程师,2011,V27(4):109-114.
    [120]刘晓飞,邓应康.盾构及内衬钢管技术在西江引水工程中的应用[J].中国给水排水,2011,V27(16):5-8.
    [121]《地基基础设计规范》.上海市工程建设标准化办公室,1999.
    [122]Design and Construction of Transportation Facilities, Researching Report of ATRB,2000.
    [125]徐凌.盾构隧道纵向沉降性态研究.同济大学博士学位论文,2005.
    [126]陈基炜,詹龙喜.上海市地铁一号线变形测量及规律分析,上海地质,2000,(2):51-56.
    [127]黄宏伟,臧小龙.盾构隧道纵向变形性态研究分析,地下空间,2002,(22):244-251.
    [128]R.N.Taylor, R.J.Mair. Bored tunneling in the urban environment. Proceedings of The Fourteenth International Conference on Soil Mechanics and Foundation Engineering,1997:1449-1452.
    [129]Akaqi Komiya, Finite element analyses of interaction of a Pair of shield tunnel[C]. Proceedings of The Fourteenth International Conference on Soil Mechanics and Foundation Engineering,1997:2353-2380.
    [130]佘健.高速公路隧道安全性评价及维护加固对策研究[D].西南交通大学博士学位论文,2005.
    [131]汪波.高速公路隧道施工及营运期安全性一体化监控技术研究[D].西南交通大学博士学位论文,2007.
    [132]张厚美,张良辉,马广州.盾构隧道围岩压力的现场监测试验研究[J].隧道建设,2006,26(S2):8-11.
    [133]谢红强,何川.江底盾构隧道施工期外水压分布规律的现场试验研究[J].岩土力学,2006,27(10):1851-1855.
    [134]何川,曾东洋.砂性地层中地铁盾构隧道管片结构受力特征研究[J].岩土力学,2007,28(5):909-914.
    [135]周济民,何川,方勇,等.黄土地层盾构隧道受力监测与荷载作用模式的反演分析[J].岩土力学,2011,32(1):165-171.
    [136]关宝树.日本水工隧洞健全度的判定[J].隧道译丛,1993,(6):9-13.
    [137]吴成三.德国铁路隧道的无损和无接触的检查方法[J].铁道建筑,1993,(3):13-15.
    [138]Eraud. J. SNCF Policy in the field of inspection maintenance and renewal of tunnels[J]. Travaux 1984,585:28-38.
    [139]铁路桥隧建筑物劣化评定标准TB/T2820.2-1997.中华人民共和国铁道部.1997.
    [140]铁路隧道设计规范TB10003.2-2001.中华人民共和国铁道部.中国铁道出版社,1997.
    [141]袁文忠.相似理论与静力学模型试验.西南交通大学出版社,1998.
    [142]唐志成,何川,林刚.地铁盾构隧道管片结构力学行为模型试验研究[J].岩土工程学报.2005,27(1):85-89.
    [143]杨征.武汉长江隧道大型管片衬砌结构力学特征研究[D].西南交通大学硕士论文,2007.
    [144]杨雄.南京长江隧道超大断面管片衬砌结构相似模型试验与数值分析[D].西南交通大学硕士论文,2007.
    [145]陈霞龄,韩伯鲤,梁克读.地下洞群围岩稳定的试验研究[J].武汉水利电力大学学报,1994,27(1):17-23.
    [146]李仲奎,卢达溶,中山元.三维模型试验新技术及其在大型地下洞群研究中的应用[J].岩石力学与工程学报,2003,22(9):1430-1436.
    [147]张强勇,李术才,尤春安,等.新型组合式三维地质力学模型试验台架装置的研制及应用[J].岩石力学与工程学报,2007,26(1):143-148.
    [148]姜小兰,赖跃强,岳登明.构皮滩双曲拱坝三维地质力学模型试验研究[J].长江科学院院报,1997,14(3):27-30.
    [149]陈安敏,顾金才,沈俊.岩土工程多功能模拟实验装置的研制及应用[J].岩石力学与工程学报,2004,23(3):372-378.
    [150]邹育麟.狮子洋水下盾构隧道错缝式拼装管片衬砌结构的原型试验[D].西南交通大学硕士学位论文,2010.
    [152]刘学山.考虑接触问题的粘弹性介质中盾构隧道的抗震分析[D].同济大学博士学位论文,2000.
    [153]蒋丽忠,余志武,李佳.均布荷载作用下钢-混凝土组合梁滑移及变形的理论计算[J].工程力学,2003,20(2):133-137.
    [154]任玲.狮子洋隧道通缝式拼装管片衬砌结构的原型试验研究[D].西南交通大学硕士学位论文,2010.
    [155]谢锋,蒋树屏,李建军.蠕变围岩隧道二次衬砌支护时间的研究[J].地下空间与工程学报,2006,2(5):805-808.
    [156]周济民,何川,张增.铁路隧道管片衬砌高水压分界值研究[J].岩土工程学报,2011,33(10):1583-1589.
    [157]王树清,唐丽芳,黄良锐.盾构隧道接缝防水设计探讨[J].长江科学院院 报,1998,15(1):10—13.
    [158]温竹菌,周质炎,杜一鸣等.上海越江盾构法隧道的防水设计[J].地下工程与隧道,2007,(S1):43—47.
    [159]GB 50010—2002,混凝土结构设计规范[S].北京:中国建筑工业出版社,2002.
    [160]金丰年,范华林,郭铁英.地下工程管片密封橡胶承受高水压作用的力学分析[J].解放军理工大学学报,2001,2(4):49—52.
    [161]杨雄.南京长江隧道超大断面管片衬砌结构相似模型试验与数值分析[D].西南交通大学硕士学位论文,2007.
    [162]郑俊.高水压铁路隧道泄水式管片衬砌流固耦合研究[D].西南交通大学硕士学位论文,2010.
    [164]曾东洋.盾构隧道衬砌结构力学行为及施工对环境的影响研究[D].西南交通大学博士学位论文,2005.
    [165]齐静静.盾构隧道的环境效应及结构性能研究[D].浙江大学博士学位论文,2007.
    [166]叶飞,何川,朱合华,等.考虑横向性能的盾构隧道纵向等效刚度分析[J].岩土工程学报,2011,33(12):1870-1876.
    [167]禹海涛,袁勇,张中杰,等.反应位移法在复杂地下结构抗震中的应用[J].地下空间与工程学报,2011,7(5):857-862.
    [168]川岛一彦.地下构筑物の耐震设计[M].日本:鹿岛出版会,1994.
    [169]叶耀东,朱合华,王如路.软土地铁运营隧道病害现状及成因分析[J].地下空间与工程学报,2007,3(1):157-166.
    [170]丁祖德,彭立敏,陈松洁.盾构隧道基底软硬过渡地段列车振动响应分析[J].郑州大学学报(工学版),2010,31(3):87-91.
    [171]何应道.铁路隧道管片衬砌纵向结构力学特征研究[D].成都:西南交通大学,2009.
    [172]宋洪江.狮子洋隧道管片衬砌结构力学行为的现场试验研究[D].西南交通大学硕士学位论文,2009.
    [173]H.H. Mo and J.S. Chen, "Study on inner force and dislocation of segments caused by shield machine attitude," Tunnelling and Underground Space Technology,2008,23(3):281-291.
    [174]J.S. Chen and H.H. Mo, "Numerical study on crack problems in segments of shield tunnel using finite element method," Tunnelling and Underground Space Technology,2009,24(1):91-102.
    [175]Hitoshi Tajimal, Masahiko Kishida and Naomitsu Fukai el, "Study on construction loads during shield tunneling using a three-dimensional FEM model," Tunnelling and Underground Space Technology,2006,21(3): 250-255.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700