盾构隧道地震响应分析及抗减震措施研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着震害资料的积累和对地下结构抗震性能研究的深入,人们逐渐认识到了用拟静力方法进行地下结构地震反应分析具有的较大局限性,而动力有限元方法更为可取。本文依托武汉长江隧道工程关键技术研究项目“盾构隧道地震响应分析与抗减震措施研究”,对盾构隧道地震响应的分析方法进行了研究和改进,并以盾构隧道结构参数和接头参数为基础,分析了各种参数对隧道结构地震响应的影响,以便为工程抗震设计提供合理的依据。本文的主要工作如下。
     1.对课题研究的意义、盾构隧道地震响应特征及抗震分析要点、盾构隧道地震响应分析方法以及作为本文研究背景的武汉长江隧道工程的概况进行了综述
     2.提出了一种基于微分方程的Biot方程分割算法,该方法适用于静、动力问题,不受有限元划分单元类型以及问题维数(二维、三维)的限制,基本不需要额外编程即可在目前常用的商用有限元软件上实现,特别适用于现有软件的二次开发。随后利用该方法对武汉长江隧道典型剖面进行了二维有效应力计算,评估了场地的液化危险性。
     3.提出了一种能够考虑各种接头影响的盾构隧道横断面二维动力有限元分析模型,系统研究了各种接头参数对隧道横向抗震性能的影响及各种减震措施的效果。
     4.系统地归纳了反应位移法中各计算参数的不同确定方法,提出了一种用于盾构隧道纵向地震响应分析的简化有限元动力计算方法,并与响应位移法进行了对比研究。
     5.利用三维动力有限元方法系统研究了不同的接头形式及参数对联络通道抗震性能的影响及各种减震措施的效果。
     最后,对全文的研究工作进行了总结,并讨论了今后进一步的工作。
With the accumulation of seismic disaster data and the development of scientific research, people have gradually realized the deficiency of pseudo-static mechanics method when analyzing the seismic response of underground structure. On the other hand, the dynamic finite element method is considered to be preferable. Supported by the research project of key technologies of Changjiang Tunnel Engineering in Wuhan, the main research work of this paper, focusing on the research and improvement of seismic response analysis methods of shield tunnel, and the effect of different parameters of structure and joints on the structure's seismic behavior, could be summarized as the following five aspects.
    1. The significance of the research work, the key points and existing methods of aseismic analysis of shield tunnel are briefly summarized, as well as the general situation of Changjiang Tunnel Engineering in Wuhan.
    2. Basing on comparing the transient heat conduction equation and the pore pressure dissipation equation, this paper presents a new multi-iteration serial partitioned solution procedure, which is adapt to redevelopment of existing finite element softwares and could give satisfying computational precise and stability. Subsequently, this approach is applied in transverse dynamic response analysis of Wuhan Changjiang Tunnel, with the estimation given in the end of the soil liquefaction hazard of the site.
    3. Combining the dynamic finite element method and the beam-spring model, this paper presented a new transverse seismic response analysis method of shield tunnel, which is, then, applied to calculate the transverse seismic response of Wuhan Changjiang Tunnel, with emphasis on the influence of different structural parameters on the structure's seismic behavior, and the shock absorption effect of strengthening the soil foundations.
    4. The response displacement method, with the different computational methods of the parameters systematically concluded, and a simplified dynamic finite element
引文
[1] Hamada M, Isoyama R, Wakamatsu K. Liquefaction induced ground displacement and its related damage to lifeline facilities. Soils and Foundations, 1996, Vol. 36(1): 81-97
    [2] Iwatatte T., Domon T., Nakamura S., Earthquake damage and seismic response analysis of subway station and tunnels during the great Hanshin-Awaji earthquake, Tunnel for People, Golser, Hinkel & Schubert (eds), 1997
    [3] 马险峰.地下结构的震害研究:[博士学位论文].上海:同济大学土木工程学院,2000
    [4] 郑永来,杨林德,李文艺,周健.地下结构抗震.上海:同济大学出版社,2005
    [5] Okamoto S C, Tamura Kato, Hamada M. Behaviors of Submerged Tunnels during Earthquakes. Proc of 5th WCEE. Rome, 1973
    [6] 于翔.地铁建设中应充分考虑抗震作用.工程抗震,2002, Vol.4:17-20
    [7] Toki K., Fukumori Y., Sako M., Tsabakimo T. Recommended Practice for Earthquake Resistant Design of High Pressure Gas Pipelines. 1984
    [8] Youssef M. A. Hashash, Jeffrey J. Hook, Birger Schmidt, John I-Chiang Yao, Seismic design and analysis of underground structures, Tunnelling and Underground Space Technology, 2001, Vol. 16: 247~293
    [9] 韩大建,唐增洪.珠江水下沉管隧道的抗震分析与设计(Ⅱ)——行波法.华南理工大学学报(自然科学版).1999,Vol.27(11):122-130
    [10] 黄先锋.地下结构的抗震计算——位移响应法.铁道建筑,1999,6:3-6
    [11] 刘学山,盾构隧道的纵向抗震分析研究,地下空间,Vol.23,No.2,2003年6月,166-172页
    [12] 川岛一彦,等,地下构筑物的耐震设计,日本,鹿岛出版社,1994
    [13] 温竹茵,周质炎,盾构法隧道的纵向受力分析,特种结构,Vol.19,No.2,June 2002,14-16页
    [14] 胡志平,罗丽娟.盾构隧道横向受力分析的框架——弹性铰——全周地基系统模型.岩土工程技术.2003,No.3:147-150
    [15] 刘学山,盾构隧道管片横向接头刚度对内力影响的研究,现代隧道技术,Vol.40,No.4,Aug.2003,14-19页
    [16] Thomas R K. Earthquake Design Criteria for Subways. Journal of the Structural Division, Proceedings of ASCE, 1969(6): 1213-1231
    [17] 沈世杰.城市轻轨地下隧道结构抗震分析探讨.特种结构,2003,Vol.20(3):1-3
    [18] Kiyomiya O., Earthquake-resistant Design Features of Immersed Tunnels in Japan, Tunnelling and Underground Space Technology, 1995, Vol. 10(4): 453~475
    [19] Tamaka T, Oshitari M, Earthquake resistant design of an immerged tunnel considered the effects of traveling waves. Proceedings of the 8th WCEE, 1980
    [20] 骆文海.日本铁路隧道的抗震设计和加固(访日考察报告).铁道工程学报.1998年增刊,584-592
    [21] 谢康和,周健编著.岩土工程有限元分析理论与应用.北京:科学出版社,2002
    [22] 刘晶波,吕彦东,结构—地基动力相互作用问题分析的一种直接方法,土木工程学报,第31卷第3期,55-64,1998
    [23] Michele Louie, Seismic Soil-Structure Interaction, ECI 281A, ADV. Soil Mechanics Term Project, Fall 2001
    [24] Chen H Q., Du X L., Hou S Z. Application of transmitting boundaries to nonlinear dynamic analysis of an arch dam-foundation-reservoir system. Dynamic soil-structure interaction current research in China and Switzerland. International Academic Publishers, 1997
    [25] 廖振鹏著.工程波动理论导论.北京:科学出版社,2002
    [26] Jun Seong Choi, Jong She Lee, Member ASCE, Jae Min Kim, Nonlinear Earthquake Response Analysis of 2-D Underground Structures with Soil-Structure and Sliding at Interface, 15th ASCE Engineering Mechanics Conference, June 2-5, 2002, Columbia University, New York, NY
    [27] 周健.尾矿坝在地震作用下的三维两相有效应力动力分析.工程抗震.1995,(1):39-43
    [28] 周健,董鹏,戚佩江.灰渣坝抗震稳定性的三维有效应力动力分析.工业建筑.2000,Vol.30(6):45-48
    [29] 王栋,栾茂田,郭莹.波浪作用下海床动力反应有限元数值模拟与液化分析.大连理工大学学报.2001,Vol.41(2):216-222
    [30] 栾茂田,王栋.波浪作用下海床动力反应的数值分析.海洋工程.2001,Vol.19(4):40-45
    [31] 李宁,陈飞雄.饱和土体固—液两相介质动力耦合问题有限元解析.西安公路交通大学学报.1999.Vol.19(4):6-10
    [32] 周健,胡晓燕,考虑行进波的地下建筑物动力反应分析,岩石力学与工程学报,2001,Vol.20(1):70-73
    [33] 胡晓燕,周健,地震引起的竖向应力对地铁隧道的影响,工程抗震,2000,(6):32-35
    [34] 周健,董鹏等.软土地下结构的地震土压力分析研究.岩土力学,2004,Vol.25(4):554-559
    [35] 周健,江建洪,贾敏才.磁悬浮基础地震反应的三维有限元分析.工程抗震与加固改造.2005 Vol.27(2):8-12
    [36] 曹宇春,周健.粉土层液化可能性判断的地震反应分析方法,水利学报,2003,Vol.3(3):69-73
    [37] Choshiro Tamura, Shunzo Okamoto. On earthquake resistant design of a submerged tunnel. In: Proc. Of International Symposium on Earthquake Structure Engineering. St. Louis, Missouri, USA, 1976, 809-822
    [38] Shunzo Okamoto, Choshiro Tamura. Behavior of subaqueous tunnels during earthquake. Earthquake Engineering Structure Dynamics. 1973, Vol. 1(3): 253-266
    [39] 严松宏,高峰,李德武,潘昌实.南京长江沉管隧道的地震安全性评价.岩石力学与工程学报.2003,22(增2):2800-2803
    [40] 严松宏,李国军.南京长江隧道总体地震反应分析.兰州铁道学院学报.1999,Vol.18(5):19-23
    [41] 韩大建,周阿兴.沉管隧道地震响应分析的等效质点系模型探讨.华南理工大学学报 (自然科学版).1999,Vol.27(1):108-114
    [42] 韩大建,周阿兴,黄炎生.珠江水下沉管隧道的抗震分析与设计(Ⅰ)——时程响应法.华南理工大学学报(自然科学版).1999,Vol.27(11):115-121
    [43] 杨辉,陆建飞,王建华,张庆华.黄浦江过江隧道的动力抗震分析.上海交通大学学报.2001,Vol.35(10):1512-1516
    [44] 吕春英,刘维宁.铁路隧道抗震设计方法探讨.世界隧道,2000年增刊,359-364-a27
    [45] 林皋.地下结构抗震分析综述(上).世界地震工程,1990,No.2:1-10
    [46] St John C M, Zahrah T F. Aseismic design of underground structures. Tunneling and Underground Space Technology, 1987
    [47] 许增会,刘刚.地震区隧道稳定性分析方法.公路.2004,No.10:189-193
    [48] 于翔,陈启亮,赵跃堂等.地下结构抗震研究方法及其现状.解放军理工大学学报,2000,Vol.1(5):63-69
    [49] 刘洋,砂土液化破坏的细观力学机制与数值模拟:[博士学位论文].上海:同济大学土木工程学院,2006
    [50] 周健,苏燕,董鹏.软土地层地铁及地下构筑物抗震动力分析研究现状.地下空间,2003,Vol.23(2):173-178
    [51] 董鹏,周健.土与结构相互作用下的地下建筑物动力可靠性分析.建筑结构学报,2004,Vol.25(2):124-129
    [52] 苏燕,周健,隧道抗震风险评估初探,福州大学学报(自然科学版),2004.2,Vol.32 (1):65-68
    [53] 廖振鹏,李小军.地表土层地震反应的等效线性化解法.见:地震小区划-理论与实践.北京:地震出版社,1989:141-152
    [54] 刘晶波,李彬,谷音,杜义欣.地铁盾构隧道地震反应特性研究.现代隧道技术,2004年增刊:251-257
    [55] Zienkiewicz OC, Chart hH, Pastor M, et al, Computational Geomechanics with Special Reference to Earthquake Engineering, Chichester: John Wiley and Sons. 1999, ISBN: 0471982857. (Publication No. 001637)
    [56] Biot MA. General theory of three-dimensional consolidation, Journal of Applied Physics, 1941, Vol. 12 (2): 155-164
    [57] Blot M. Theory of propagation of elastic waves in a fluid-saturated porous solid. Journal of the Acoustical Society of America, 1956, Vol. 28(4): 168-191.
    [58] Zienkiewicz OC, Ghang CT, Bettess P. Drained, undrained, consolidating and dynamic behaviour assumptions in soils. Geotechnique, 1980, Vol. 30(4): 385-395
    [59] Rendulic L, Porenziffer und Porenwasserdrunk in Tonen, Der Bauingenieur, 1936, Vol. 17: 559-564.
    [60] 黄文熙.土的工程性质.北京:水利水电出版社,1983
    [61] 钱家欢,殷宗泽主编.土工原理与计算.北京:水利水电出版社,1996年第二版
    [62] Seed HB, Martin PP, Lysmer J. Pore water pressure changes during soil liquefaction. Journal of Geotechnical Engineering Division, ASCE, 1976, Vol. 102(4): 323-346.
    [63] Ishihara K, Tatsuoka F and Yasuda S, Undrained deformation and liquefaction of sand under cyclic stresses. Soil and Foundation, 1975, Vol. 15(1): 13-28
    [64] 汪闻韶,饱和砂土振动孔隙水压力试验研究,水利学报,1962,Vol.2:37-49
    [65] 曹亚林,何广讷,林皋.土中振动孔隙水压力升长程度的能量分析法.大连工学院学报,1987,Vol.26(3):83-90
    [66] Finn WDL, Byrne PM, Martin GR, Seismic response and liquefaction of sands. Journal of Geotechnical Engineering Division, 1976, 102(8): 841-856
    [67] Ghaboussi J, Wilson EL, Variational Formulation of Dynamics of Fluid-Saturated Porous Elastic Solids, Journal of the Engineering Mechanics Division, 1972, Vol. 98(4): 947-963
    [68] Zienkiewicz OC, Basic formulation of static and dynamic behaviour of soil and other porous material. In: Numerical Methods in Geomechanics. London: D. Riedel, 1982
    [69] Zienkiewicz OC, Leung KH, Hinton E, et al. Liquefaction and permanent deformation under dynamic conditions - Numerical solution and constitutive relations. In: Soil mechanics - Transient and cyclic loads. Chechester: Wiley, 1982, 71-103
    [70] Zienkiewicz OC, Shiomi T. Dynamic behaviour of saturated porous media: the generalized Blot formulation and its numerical solution. International Journal for Numerical and Analytical in Geomeehanics. 1984, 8: 71-96.
    [71] 朱百里,沈珠江等.计算土力学.上海:上海科学技术出版社,1990
    [72] ZienkiewiczOC, Taylor TL. Coupled problems - a simple time-stepping procedure. Communications in Applied Numerical Methods, 1985, Vol. 1(5): 233-239.
    [73] Zienkiewicz OC, Chan AHC, Pastor M, et al. Static and dynamic behaviour of soils: a rational approach to quantitative solutions, Part. Ⅰ: Fully saturated problems. Proc R Soc London, 1990, A429: 285-309
    [74] 王进廷,杜修力,赵成刚.液固两相饱和介质动力分析的一种显式有限元方法.岩石力学与工程学报,2002,21(8):1199-1204
    [75] Zienkiewicz OC, Huang M, Wu J, Wu S. A new algorithm fort coupled soil-pore fluid problem. Shock and Vibration, 1993, Vol. 1: 3-13.
    [76] Zienkiewicz OC, et all. Staggered time marching schemes in dynami c soil analysis and selective explicit extrapolation algorithms. In: Proc2ndSymp on Innovative Numerical Analysis for the Engineering Scicence, University of Virginia Press, 1980b
    [77] Maosong Huang and Zienkiewicz OC, New Unconditionally Stable Staggered Solution Procedures for Coupled Soil-Pore Fluid Dynamic Problems, International Journal for Numerical Methods in Engineering, 1998, 43: 1029-1052
    [78] Zienkiewicz 0C, Paul DK, Chan AHC. Unconditionally stable staggered solution procedures for soil - pore fluid dynamic problems. International Journal for Numerical Methods in Engineering, 1998, 43: 1029-1052
    [79] Park K. C., and Felippa, C. A., Partitioned analysis of coupled systems. Chapter 3 in: Computational Methods for Transient Analysis. T. Belytschko and T. J. R. Hughes, eds.. North-Holland: Amsterdam - New York, 1983, 157-219
    [80] Felippa C. A., Park K. C., Synthesis tools for structural dynamics and partitioned analysis of coupled systems, in: Multi-Physics and Multi-Scale Computer Models in Nonlinear Analysis and Optimal Design of Engineering Structures under Extreme Conditions, A. Ibrahimbegovic and B. Brank, eds.. Proceedings NATO-ARW PST ARW980268, Ljubliana: Slovenia, 2004, 50-110
    [81] Jean H. Prevost. Partitioned Solution Procedure for Simultaneous Integration of Coupled-Field Problems. Communications in Numerical Methods in Engineering, 1997, Vol. 13: 239-247
    [82] Blom FJ. A monolithical fluid-structure interaction algorithm applied to the piston problem. Computer Methods in Applied Mechanics and Engineering. 1998. Vol. 167:369-391.
    
    [83] Heil M, An efficient solver for the fully coupled solution of large- displacement, fluid-structure interaction problems, Comput. Methods Appl. Mech. Engrg. 2004, Vol.193: 1-23
    [84] Rugonyi S, Bathe KJ. On the analysis of fully-coupled fluid flows with structural interactions-a Coupling and Condensation Procedure. Int J of Comp Civil and Struct Engineering 2000, Vol. 1:29-41
    [85] Park KC, Partitioned Transient Analysis Procedures for Coupled-Field Problems: Stability Analysis, Journal of Applied Mechanics. 1980, Vol.47: 370-376
    [86] Park KC, Felippa CA, Partitioned Transient Analysis Procedures for Coupled -Field Problems: Accuracy Analysis. Journal of Applied Mechanics. 1980, VOl. 47: 916-926
    [87] Felippa CA, Park KC. Staggered Transient Analysis Procedures for Coupled-Field Mechanical Systems: Formulation. Computer Methods in Applied Mechanics and Engineering. 1980, Vol. 24:61-111
    [88] Park KC, Felippa CA. Partitioned analysis of coupled systems, in: Computational Mehtod for Transient Analysis. T. Belytschko and T. J. R. Hughes, Eds., North-Holland Pub. Co., 1983, 157-219
    [89] 雷晓燕.岩土工程数值计算 .北京:中国铁道出版社. 1999
    [90] Faisal Ahmed. Analysis of Data Transfer Methods Between Non-Matching Meshes In Multiphysics Simulations : [dissertation] . Lehrstuhl fur Informatik 10 Systemsinulation, Friedrich-Alexander-Universit at, Erlangen-Nurnberg, 2006
    [91] Felippa C. A., Park K. C., Farhat C.. Partitioned Analysis of Coupled Mechanical Systems, Department of Aerospace Engineering Sciences and Center for Aerospace Structures University of Colorado at boulder, Report No. CU-CAS-99-06, March 1999
    [92] Matthies H., Steindorf J.. Partitioned strong coupling algorithms for fluid - structure interaction. Computer & Structures. 2003, Vol. 81:805 - 812
    [93] Mike Ross. Modeling of a Dam under Seismic Excitation with a Staggered Solution Method for the Fluid-Structure Interaction, ASEN 5519-006: Fluid-Structure Interaction. Aerospace Engineering Sciences- University of Colorado at Boulder, 26 February 2004
    [94] Mike Ross. Modeling Methods for Silent Boundaries in Infinite Media, ASEN 5519-006: Fluid-Structure Interaction. Aerospace Engineering Sciences- University of Colorado at Boulder, 26 February 2004.
    [95] Gluck M., Breuer M., Durst F., et al. Computation of Fluid - Structure Interaction on Lightweight Structures. Fourth Int. Colloq. on Bluff Body Aerodynamics & Applications. Bochum, Germany, 2000, Sept. 11-14
    [96] Halfmann A., Rank E., Guck M., et al. A Partitioned Solution Approach for the Fluid-Structure Interaction of Wind and Thin-Walled Structures. Conference Proceedings of IKM 2000, Weimar, Germany, June 2000
    [97] Valli AMP, Catabriga L, Coutinho ALGA, et al. Partitioned analysis of coupled systems using subcycling devices in fluid-thermal interaction problems. CILAMCE 2004, pp. 1-12, Recife, Brasil, 10 a 12 de novembro de 2004
    [98] Fiedler R, Jiao X. Namazifard A, et al. Coupled fluid-structure 3-D solid rocket motor simulations. In 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Salt Lake City, UT. July 2001
    [99] Wall W. A.. Fluid-Struktur-Interaktion mit stabilisierten Finiten Elementen., Ph. D.-Dissertation, Report No. 31 (1999), Institute of Structural Mechanics, University of Stuttgart
    [100] Michael Raulli, Kurt Maute. Optimization of fully coupled electrostatic - fluid - structure interaction problems. Computers and Structures. 2005, Vol. 83:221-233
    [101] Deparis S, Discacciati M, Fourestey G, et al. Heterogeneous Domain Decomposition Methods for Fluid-Structure Interaction Problems. EPFL-IACS report 08.2005. Submitted, 2005
    [102] Ahrem R, Beckert A, Wendland H A. New Multivariate Interpolation Method For Large-Scale Spatial Coupling Problems In Aeroelasticity. Technical report, Institut fur Numerische und Angewandte Mathematik, Universitat Gottingen, Lotzestr. 37083 Gottingen, Germany, 2001, 16-18
    [103] Mandel J. An Iterative Substructuring Method for Coupled Fluid-Solid Acoustic Problems. Journal of Computational Physics. 2002, Vol. 176: 1-22
    [104] Giuseppe Gambolati, Giorgio Pini, Massimiliano Ferronato. Direct, partitioned and projected solution to finite element consolidation models. International Journal for Numerical and Analytical Methods in Geomechanics. 2002, Vol. 26: 1371-1383
    [105] Prevost JH. Partitioned solution procedure for integration of coupled diffusion problems. In: Poromechanics, Thimus et al. eds. A. A. Balkema: Rotterdam, 1998, 129-133
    [106] Maosong Huang, Shiming Wu, O. C. Zienkiewicz. Incompressible or Nearly Incompressible Soil Dynamic Behaviour— A New Staggered Algorithm to Circumvent Restrictions of Mixed Formulation. Soil Dynamics and Earthquake Engineering. 2001, Vol. 21: 169-179
    [107] 王栋,栾茂田.广义Biot固结方程隐—隐式解法的推广及应用.世界地震工程.2002,Vol.18(1):23-26
    [108] Bajkowski J., Hac M.. Influence of Coupled Thermal-Structural Loads on Stresses in Elements of Machines. Numerical Methods in Continuum Mechanics 2000, Liptovsky Jan, Slovak Republic
    [109] Peter Kohnke, Ph. D, Ansys, Inc. Theory, Ansys Inc. 1994
    [110] 赵维炳,施健勇.软土固结与流变,南京:河海大学出版社,1996
    [111] 纪多辙,石祥锋.横观各向同性圆柱土样轴对称Biot固结的解析解.2002,Vol.23(6):765-769
    [112] Cryer CW. A comparison of the three-dimensional consolidation theories of Blot and Terzaghi. The Ouarterly Journal of Mechanics and Applied Mathematics. 1963, Vol. 16(4): 401-412
    [113] 周健,孔戈,张刚等.基于耦合场分割算法的ANSYS二次开发及其应用.地震工程与工程振动.2006,Vol.26(2):73-79
    [114] Hamada M, Isoyama R, Wakamatsu K. Liquefaction induced ground displacement and its related damage to lifeline facilities. Soils and Foundations, 1996, Vol. 36(1): 81-97
    [115] Chou HS; Yang CY, Hsieh BJ, Chang SS. A study of liquefaction related damages on shield tunnels. Tunnelling and Underground Space Technology, 2001, Vol. 16: 185-193
    [116] 谢定义,张建民,饱和砂土瞬态动力学特性与机理分析,西安:陕西科学技术出版社,1995
    [117] 党发宁,鞠花,谢定义,对动力固结方程的再认识,见:第六届全国土动力学学术会议论文集。北京:中国建筑工业出版社,2002,741-745
    [118] 李培振,结构——地基动力相互作用体系的振动台试验及计算模拟分析:[博士学位论文].上海:同济大学土木工程学院,2002
    [119] 陈国兴,谢君斐,韩炜,张克绪.土体地震反应分析的简化有效应力法.地震工程与工程振动,1995,Vol.15(2):57-61
    [120] 孔戈,丁海平,金星等.多次透射边界在ANSYS软件中的应用,工程抗震与加固改造,2005(2):67-70
    [121] 李围,孙继东,李成.盾构隧道管片衬砌受力分析力学模式探讨.隧道建设,2005,Vol.25(增刊):17-20
    [122] 黄钟晖,廖少明,侯学渊.盾构法隧道错缝拼装的受力分析,地下工程与隧道,2003(6):6-9
    [123] 曾东洋,何川,地铁盾构隧道管片接头抗弯刚度的数值计算,西南交通大学学报,2004,Vol.39(6):744-748
    [124] 朱合华,崔茂玉,杨金松,盾构衬砌管片的设计模型与荷载分布的研究,岩土工程学报,2000,Vol.22(2):190-194
    [125] 潘旦光,楼梦麟,范立础,多点输入下大跨度结构地震反应分析研究现状,同济大学学报,2001,Vol.29(10):1213-1219
    [126] 李山有,廖振鹏,周正华,大型结构地震反应值模拟中的波动输入,地震工程与工程振动,2001,Vol.21(2):1-5
    [127] 李山有,王学良,周正华.地震波斜入射情形下水平成层半空间自由场的时域计算.吉林大学学报(地球科学版).2003,Vol.33(3):372-376

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700