含硼复合添加剂强化巴西赤铁矿球团制备及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国钢铁企业的快速发展,国内各大钢铁企业对进口矿的依赖程度大幅度上升,2008年进口铁矿石的消费量达到4.4亿吨左右。尤其是近年来链篦机-回转窑球团工艺的迅速发展与大型化,以至铁品位高、粒度细和焙烧性能好的磁铁精矿日益短缺,开发和应用进口高品位赤铁矿资源已成为我国球团工业持续发展的新途径。巴西赤铁矿虽然可烧性能差,但是其铁品位高,有害杂质含量低,储量丰富,越来越受到国内各大球团厂的青睐。因此,致力于进口赤铁矿球团新技术的开发和应用,尤其是使用添加剂强化球团焙烧,可提高其利用率,对我国钢铁企业的发展将具有十分重要的现实意义。
     本文通过对巴西赤铁矿PFCJ中添加含硼复合添加剂制备氧化球团及其机理的研究。系统研究了添加剂种类和用量对生球制备、球团预热焙烧固结及冶金性能的影响,进一步优化了工艺参数。最佳工艺参数如下:膨润土用量1.8%,造球时间15min,生球水分11%,预热温度1000℃,预热时间8min,焙烧温度1280℃,焙烧时间15min。在此条件下,添加5.0%含硼复合添加剂时,生球落下强度为6.5次/0.5m,抗压强度为12.3N/个,爆裂温度为509℃,预热球团抗压强度为773N/个,焙烧球团抗压强度为2843N/个,球团冶金性能优良:还原性指数为81.67%,还原膨胀率为14.42%,低温还原粉化指数RDI_(+3.15mm)为99.98%;而无添加剂时,虽然生球性能和球团冶金性能均较好,但是球团焙烧性能差,焙烧球团抗压强度仅为1792N/个,即使提高焙烧温度和延长焙烧时间,所生产球团的机械强度均不能达到球团生产的要求。结果表明,该赤铁矿添加含硼复合添加剂后,其焙烧性能得到明显改善,在较低的焙烧温度和较短的焙烧时间就可制备出机械强度高、冶金性能优良的优质氧化球团。
     对硼砂、含硼复合添加剂强化赤铁矿氧化球团固结机理的研究表明,添加硼砂或含硼复合添加剂均可显著降低液相生成温度,促进液相生成和赤铁矿晶粒长大和互连,从而大大提高球团的致密程度和固结强度。对赤铁矿晶粒长大的动力学研究结果表明,在焙烧温度1150~1300℃,焙烧时间20~50min范围内,硼砂、含硼复合添加剂球团的赤铁矿晶粒生长速率常数为分别为7.59×10~5(μm)~n·min~(-1)和7.22×10~5(μm)~n·min~(-1),远大于无添加剂赤铁矿球团的赤铁矿晶粒生长速率常数5.04×10~5(μm)~n·min~(-1)。
     研究了硼砂、含硼复合添加剂对赤铁矿球团还原行为的影响。等温还原动力学结果表明,在还原温度范围850℃~950℃,还原时间为180min,以CO/N_2=30/70为还原气体的条件下进行还原,球团受界面化学反应控制,含硼复合添加剂球团的表观活化能为32.192kJ/mol,小于硼砂添加剂球团的表观活化能43.233kJ/mol,表观活化能越低,还原反应越容易进行,即含硼复合添加剂球团的还原性优于硼砂添加剂球团的还原性。添加硼砂使球团还原膨胀恶化,硼砂导致赤铁矿晶格畸变,促使球团体积膨胀;硼砂使液相的熔点降低,还原过程中的机械强度降低,抗膨胀能力减弱;添加硼砂的氧化球团结构致密,阻碍热量由表及里的传递,使球团内部热应力增大,球团膨胀加剧。添加含硼复合添加剂时,球团中的Fe_2O_3与MgO发生固溶,在还原时转变为Fe_3O_4的过程中,不会引起晶格变化;MgO使液相熔点升高,还原过程中机械强度提高,抗膨胀能力增强;另外,含硼复合添加剂的加入使球团孔隙增多,可抵消一部分球团内部膨胀所产生的内应力,进一步抑制膨胀。
In recent years,with the rapid development of steelmaking,the demand for imported iron ores has been greatly growing all over the country.In 2008,the consumption of imported iron ores was about 440 Million Tons.Particularly,with the development and large-scale of grate-kiln process,the growing shortage of the magnetite concentrate with high grade iron,fine size and good firing behavious become more serious.The utilization of imported hematite concentrate is an effective way for sustainable development of pellets industry in our country. Though Brazilian specularite is characterized by poor firing behaviours,it has gained world-wide recognition as an indispensable charge to replace magnetite for pelletizing plant due to its high grade iron and abundant. Therefore,the utilization of imported hematite concentrate as pellet feed by new technology,particularly,using additives to improve the firing behavious of pellets,will be of practical significance for Chinese iron and steel enterprises.
     In this paper,the process and mechanism of improving the pelletization of Brazilian PFCJ hematite by adding boron bearing compound additives have been studied.The effects of additives on balling, pellet preheating and firing,metallurgical properties have been studied systemically.It is shown that the optimum conditions are as follows: 1.8%bentonite in pellet feed,balling for 15min,11%moisture, preheating at 1000℃for 14min,and firing at 1280℃for 15min. Greenballs were manufactured with drop strength of 6.5 times from 0.5m hight,compression strength of 12.3 N/P and thermal shock temperature of 509℃,the compression strength of preheated and fired pellets are 773 and 2843 N/P,respectively.Good metallurgic properties of fired pellets are the following:RI 81.67%,RSI 14.42%,and ROI_(+3.15mm) 99.98%. Though the properties of green balls and metallyrgic properties of fired pellets are excellent without additives,the firing performance is poor,the compression strength of fired pellets is only 1792 N/P.Even if increasing the fire temperature and extending the fire time,the compression strength of the fired pellets without additives can not meet the product requirement. The results show that good quality fired pellets can be made from Brazilian hematite by adding boron bearing compound additives,which possess high mechanical strength and good metallyrgic properties at lower firing temperature for a short time.
     The consolidation mechanism of fired pellets with borax or boron bearing compound additives were studied.It is revealed that adding borax into the hematite pellet helpes to form more liquid phases at lower temperature,which enhance grain growth,leading to higher strength of fired pellets due to forming more coarse and dense hematite pellets. Results from the kinetics of grain growth are shown that borax or boron compound additive can fastens the grain growth rates when firing at 1150 to 1300℃for 20 to 50min.
     The effects of borax or boron bearing compound additives on the reduction of hematite pellets were studied.Resultes from isothermal reduction kinetics show that the reduction rate of pellets containing borax or boron bearing compound additives is controlled by chemical reactions when the reduction temperature ranges from 850 to 950℃,and reduction lasts for 180min in CO/N_2=30/70 atmospher.The apparent activation energy of boron bearing compound additives pellets is 32.192kJ/mol,less than that of borax pellets with 43.233kJ/mol.The lower the apparent activation energy,the easier the reduction reaction take place.So the reduction properties of pellets containing boron bearing compound additives are better than that containing borax.Adding borax into pellets worsens reduction swelling.It is probably that the reason is the sodium ion of borax leads to lattice distortion,resulting in anormal reductive swelling.The low melting point of liquid phases from borax bring about lower mechanical strength during reducting,leading to poorer resistance against swelling stress.The borax containing pellets are too coarse and dense,which impedes heat transfer and increases the thermal stress inside the pellets,leading to higher swelling.When adding boron bearing compound additives,magnesium from the additives not only can stabilize hematite to restrain the lattice distortion and increase the melting point to improve the mechanical strength during reducting,but also increase the porosity,which can offset part of thermal stress.Therefore,the RSI of boron bearing compound additives is lower than that containing borax.
引文
[1]国家发展改革委产业政治司.2007年钢铁行业发展趋势及应重视的问题.中国经贸导刊,2007,4:9
    [2]周劲.我国钢铁工业供需形式分析与未来发展趋势.中国经贸导刊,2006,13:19-20
    [3]朱及天,洪天求.我国钢铁需求预测及铁矿资源安全供给对策.金属矿山,2006,10:10-12
    [4]中国钢铁的发展趋势.冶金信息导刊,2006,3:1-3
    [5]翁余庆.中国钢铁工业—需要且能够持续发展.新材料产业,2008,7:4-6
    [6]刘树臣,马建明,崔荣国.国内外铁矿资源供需形势.国土资源情报,2008,3:33-36
    [7]朱剑红.钢铁行业,紧锣密鼓淘汰落后.经济周刊,2007,6:1-2
    [8]杨李香.世界各地高炉含铁炉料结构.见:2007中国钢铁年会论文集.成都:中国金属协会,2007:1-5
    [9]傅菊英,朱德庆编著.铁矿氧化球团基本原理、工艺及设备.长沙:中南大学工业出版社,2005:2-3,227-233
    [10]刘文权.对我国球团矿生产发展的认识和思考.钢铁,2006,25(3):10-13
    [11]布林佐.北美的铁矿石和热压块市场.国外金属矿山,2000,5:58-63
    [12]赵云.全球球团矿产量不断增长.世界金属导报,2007,9:5
    [13]叶匡吾.欧盟高炉炉料结构述评和我国球团生产的进展.烧结球团,2004,29(4):4-7
    [14]唐先觉.日本高炉炉料结构的新进展.中国冶金,2005,15(3):330-333
    [15]杨金善.世界钢铁工业发展简介.冶金信息,1999,1:20-22
    [16]李蒙,任伟,陈三风.国内外球团矿生产现状和展望(续).中国冶金,2004,12:6-11
    [17]许满兴.论新世纪球团矿的质量进步.烧结球团,2000,25(6):1-3
    [18]BHP Research New Castle Laboratories "Propertice of World Iron Ore,Pellets and HBI".1996,7:69-75
    [19]许满兴,张宗旺,冯根生.国外几种酸性炉料的质量及分析.烧结球团,1998,23(2):6-8
    [20]李朝晖.论提高球团矿品位与经济效益.烧结球团,1998,23(6):10-12
    [21]丁宁.国内冶金矿山企业球团矿开发的研究和探讨.中国冶金报,2007,7:1-2
    [22]孙立晏.全国球团技术协调组工作汇报.球团技术,2007,(4):3-4
    [23]王维兴.我国大高炉炼铁技术发展.中国钢铁企业网,http://www.chinasie.org.cn,2009
    [24]叶匡吾.高炉炉料结构与精料.烧结球团,2001,26(3):6-7
    [25]孔令坛.中国球团矿的发展.见:2004年全国球团技术研讨会论文集.大连,2004,8:11-14
    [26]乔庭明,郑志强,江巨贞,谷传海.竖炉球团配加巴西精矿的生产实践.烧结球团,2001,26(1):15-17
    [27]国内铁矿石市场竞争能力分析.矿业快报,2002,38(13):19
    [28]王亨炎.浅谈铁矿石资源对我国钢铁工业的影响及对策.国外金属矿山,2002,5:6-9
    [29]余永富.我国铁矿资源有效利用及选矿发展方向.金属矿山,2001,296(2):9-11
    [30]发展我国铁矿球团的原料及对策.烧结球团,2003,28(1):1-4
    [31]刘桂阳,朱德庆,潘建,张克诚,田发超,胡友明,刘素丽.改性膨润土改善铁矿球团性能的工业试验研究.烧结球团,2005,30(4):13-16
    [32]傅菊英,姜涛,朱德庆.烧结球团.长沙:中南工业大学出版社,1995:282-283,296-297,317-328
    [33]李蒙,任伟.国内外球团矿生产现状和展望.中国冶金,2004,11:1-3
    [34]阎为群.国内球团生产技术的发展.江苏冶金,2007,3(35):21-24
    [35]朱德庆,唐艳云,Vinicius Mendes,潘建,翟勇.巴西镜铁矿球团前的高压辊磨预处理.金属矿山,2008,4:67-70
    [36]Goell G and Hanish J.Comparison of Crushing Results Obtained by Compressive Stresses Acting upon Particle Layers,Aufbereitungs-Technik,1987,10:582-590
    [37]Klymowgky T B and Liu J.Modeling of the Comminution in a Roller Press,Proceeding of the XX IMPC-Aacben,1997:141-154
    [38]秦英伟,刘鹏君,何金贤.润磨提高球团矿质量实践.炼铁技术通讯,2007,11:8-9
    [39]吴绍军,盖国胜,孙恒虎.我国超细粉碎技术的发展状况.2003年全国粉体设备-技术-产品信息交流会,2003:247-253
    [40]许满兴.论新世纪球团矿的质量进步.烧结球团,2000,11(6):1-4
    [41]刘华.润磨技术在济钢球团生产中的应用.烧结球团,2000,7(4):55- 57
    [42]刘国防.济(南)钢提高球团矿品位的实践.烧结球团,2001,26(6):37-38
    [43]秦宏,罗秀传,刘武扬.柳钢球团工艺参数优化试验研究.见:2004年度全国烧结球团技术交流年会论文集.南宁:《烧结球团》编辑部,2004,6:8-11
    [44]阎为群.国内球团生产技术的发展.江苏冶金,2007,35(3):21-24
    [45]段玉震.高压辊磨机的研究及应用.矿山机械,2007,35(4):56-57
    [46]Wuestner H.Compressive Size Reduction:New Methods of Energy Saying in Cement Clinker and Slag Grinding,Zement-Kalt-Gips,1985(12):725-727
    [47]张汉泉,戚岳刚.辊压机在改善铁矿球团质量中的应用.矿业工程,2005,1(3):37-39
    [48]刘曙,王永清.RP3.6-120/50B辊压机在程潮球团生产中的使用.球团技术,2006,1:32-40
    [49]唐艳云.高压辊磨强化巴西PFC镜铁矿球团工艺及机理研究:[硕士论文].长沙:中南大学,2008:8-11
    [50]黄柱成,张元波,朱尚朴,庄剑鸣,罗秀全.以赤铁矿为主配加磁铁矿制备氧化球团的研究.钢铁,2004,4(39):9-14
    [51]孙济中 译,文霞飞 校.熔剂性球团矿在LKAB公司的发展.见:第三届国际造块会议.长沙:《烧结球团》编辑部,1983,4:118-142
    [52]邓英 译,邓庆球 校.用于球团生产的含碳添加剂.见:第三届国际造块会议.长沙:《烧结球团》编辑部,1986,5:223-224
    [53]喻辅成,徐冬华.南(昌)钢公司含铁粉尘综合利用的设想.冶金经济与管理,2009,19(3):19-21
    [54]黄典冰,孔令坛.内配碳赤铁矿球团反应动力学及其模型.钢铁,1995,30(11):1-6
    [55]宋瑜译,查望信校.LTV钢铁公司竖炉优质熔剂性球团的生产.烧结球团,1994,1:17-23
    [56]谢良贤 译,李之甫 校.铁丹钢铁公司使用熔剂性球团矿经验.烧结球团,1994.1:27-31
    [57]Abouzied A Z,Negm A A,Kotb I M.Iron Ore Fluxed Pellets and Their Physical Properties.Powder Technology,1985,7:225-230
    [58]Efimenko G G.,Kovalev D A,Sulimenko E I,Knyazhanskii M M.Ispolatov V B P.Roduction of Higher-strength Fluxed Pellets.Steel in the USSR,1978,3:123-125
    [59]Mustafa Kelami Sesen.The Influence of CaO on the Precipitation Behavion of Iron in the Reduction of Iron Oxide.Scandinavian Journal of Metallurgy,2001,30:1-7
    [60]Panigrahy S C,Jena B C,and Rigaud M.Characterization of Bonding and Crystalline Phases in Fluxed Pellets Using Peat Moss and Bentonite as Binders.Metallurgical Transactions B,1990,21:463-474
    [61](日)神原健二郎等著,刘晓侦译.高炉解体研究.北京:冶金工业出版社,1980:20-25
    [62]Malysheva T Ya,Chesnokova G.V,Akberdin A A and Dolitskaya O A.Boron Influence on Iron Ore Pellet Quality.Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh,1996,1:3-7
    [63]Akberdin A A,Dolitskaya O A,Malysheva T Ya,Chesnokova G V and Kim A S S.Specific Features of Iron-ore Pellets Sintering with Addition of Boratic Ore,1999,3:23-26
    [64]刘然,薛向欣,姜涛、张淑会,黄大威.硼铁矿综合利用概况与展望.矿产综合利用,2006,2:33-36
    [65]张丽清,刘素兰,朱建新,姚淑华,谢颖.硼铁矿资源综合利用研究现状与进展.矿产综合利用,2000,3:34-36
    [66]范广权.硼泥降低球团矿焙烧温度的效果及其对球团生产的意义.辽宁冶金,1995,(1):22-39
    [67]张凯,杨兆祥.造块用含硼添加剂的使用研究现状和发展.烧结球团,1998,3:20-28
    [68]范广权.硼泥降低球团矿焙烧温度的效果及其对球团生产的意义.辽宁冶金,1995,1:22-25
    [69]李永清.三种含硼添加剂在烧结球团生产中的应用比较.昆明冶金高等专科学校校报,2004,20(1):31-33
    [70]朱家骥,杨兆祥.使用含硼添加剂降低球团矿焙烧温度的研究.烧结球团,1993,1:1-6
    [71]赵庆杰,何长清.烧结和球团添加含硼铁精矿的研究.烧结球团,1996,21(4):20-23
    [72]张凯,杨兆祥.添加硼铁精矿对球团矿抗压强度和还原性的影响.烧结球团,1998,23(3):25-28
    [73]傅菊英,白国华,李光辉,杨永斌,陈耀铭.磁铁精矿配加硼铁矿的球团研究.球团技术,2004,(1):2-6
    [74]陈伟花,王福.通钢球团配加硼镁铁精粉的工业试验.球团技术,2005,1: 27-29
    [75]夏雷格,高洪波.球团配加硼镁矿粉试验研究.球团技术,2004,1:16-19
    [76]王宾,李慧敏,余为,潘建.以巴西赤铁矿为主配加磁铁矿、硼铁矿的球团试验.烧结球团,2008,4:19-22
    [77]Hillert M.On the Theory of Normal and Abnormal Groin Growth,Acta Metallurgica,1965,13:227-238
    [78]何希.纳米SnO_2、TiO_2、BaTiO_3的合成及晶粒生长动力学研究:[硕士学位论文].中南大学,2007:5-6
    [79]周红.铁精矿冷固结球团直接还原的机理研究:[博士学位论文].中南工业大学,1998:30-35
    [80]梁连科,车荫昌,杨怀.冶金热力学及动力学.沈阳:东北工学院出版社,1990:256-266
    [81][美]J.塞克利,J.W.埃文斯,H.Y.索恩,著胡道和译.气固反应(中).北京:中国建筑工业出版社,1986:75-92,112,177,191
    [82]Szekely J,Evans J W,and Sohn H Y.GAS-SOLID REACTIONS.London:Academic Press,1976:66-89
    [83]杨于兴.X射线衍射分析.上海:上海交通大学出版社,1994:32-33
    [84]张联盟,黄学辉,宋晓岚等.材料科学基础.武汉:武汉理工大学出版社,2004:147-151,192-201
    [85]邢宏伟.含硼复合添加剂对铁矿粉成矿过程影响机理的研究:[硕士学位论文].河北理工学院,2001:48-50
    [86]肖琪.团矿理论与实践.长沙:中南工业大学出版社,1989:130-135
    [87]陈平主编.结晶矿物学.北京:化学工业出版社,2006:138-149
    [88]刘人达.冶金炉热工基础.北京:冶金工业出版社,1980:226-227
    [89]G H盖格,D R波伊里尔.冶金中的传热传质现象.北京:冶金工业出版社,1981:209-219

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700