吹气搅拌法制备泡沫铝工艺的气泡—金属熔体两相流的实验研究和数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
闭孔泡沫金属是一种内部结构含有大量孔隙的新型功能材料。它具有独特的结构和性能,工业中有着重要的应用和广阔的发展前景。制备泡沫金属的方法很多,其中吹气发泡法因为设备简单、成本低、可以连续生产等特点,更适用于规模化生产。在制备泡沫金属过程中,如何控制气泡的尺寸及其均匀度是该项工艺的核心问题。由于影响泡沫尺寸及其分布的因素众多,为了寻求能够对生产过程和产品性能进行科学控制的有效手段,需要对泡沫形成过程中的各个影响因素进行全面、系统的研究。本文采用实验研究和数值模拟相结合的方法对泡沫铝发泡特性及发泡过程中气泡一熔体两相流动过程进行了系统的研究。主要研究内容包括以下几个方面:
     在自制井式炉内进行吹气发泡法制备泡沫铝的实况工艺实验。研究不同工艺参数对泡沫铝成品结构和性能的影响。并以泡沫铝的空气发泡过程为研究对象,依据相似原理进行水模拟(聚乙烯醇水溶液)实验,实验采用静态和动态两种形式。静态实验模拟在无涡流场状态下进行,通过改变入射压缩空气的压力与流量、聚乙烯醇水溶液的黏度以及通气孔的直径,对入射空气在聚乙烯醇水溶液中形成气泡的过程以及气泡在水溶液中的运动和变化规律进行研究。动态实验模拟是在强旋涡流场条件下,主要考虑搅拌速度、发泡室尺寸以及搅拌轴位置等因素对铝泡沫尺寸和分布的影响,探讨气泡在涡流场中的行为和变化规律。
     气泡直径是影响泡沫铝性能的非常重要的因素。本文应用动力学平衡半经验关系式,分析气体通过锐孔在静止黏性液体中形成气泡的过程,预测气泡直径,确定影响气泡尺寸的主要因素。计算结果表明,在一定物性及一定锐孔直径的情况下,流量是影响气泡大小的重要因素。随着流量的增加,气泡直径增大。相同气体流量下,表面张力系数越大,锐孔直径越大,得到的气泡直径越大。液体密度的影响表现得较为复杂,当流量较小时,气泡体积随液体密度的增大而减小;当流量增加时,液体密度的影响便减小。
     应用双流体模型及两相κ-ε湍流模型分别描述气体在静止液态金属中单孔射流及多孔射流两相流动,在总结和分析文献中气泡—液体双流体模型的基础上,提出虚拟入口的方法以简化孔口气泡形成过程,对气液相问作用力模型及湍流模型进行改进,通过与实验数据的比较,表明气液相间作用力修正对气液体系流体动力学行为有重要影响,改进的模型具有较好的预测能力。考察了液相密度、液相黏度、气泡直径、熔池尺寸、通气孔的数目及位置对气含率分布、气泡上升速度和液速的影响。单孔条件下两相流中液相物性会影响
Closed-cell metallic foam is a new type of function material, which has important applications and broad development prospects in industry due to its unique structure and performance. There are many approaches to manufacture cellular metallic materials. From which the gas injection method has special advantages in the respect that metallic foams can be produced continuously and their size is little limited. In this technique, a major issue is how to control the size and uniformity of the cells during the foaming process of molten aluminum. In order to explore approaches through which one can effectively control the manufacture process and the performance of aluminum foams, it is necessary to investigate and understand deeply factors affecting the foaming process. This dissertation is focused on this topic. Hydrodynamic behaviors of the bubble-liquid metal two phase flow and bubble moving and distribution characteristics in the melt were systematically studied both experimentally and numerically, and on this basis some insights into their effects on the foam structure have been gained.Laboratorial foaming experiments were conducted with a graphite crucible in a self-making resistance furnace to examine effects of operating parameters on the foam structure. Furthermore, water simulation experiments based on the analogy principle were performed in the static and dynamic states, respectively. The static state means that the melt in the tank was not stirred, herewith the bubble formation process by gas injecting into the water solution as well as the bubble behaviors in the water solution were recorded by high speed photography. The influences of the air pressure and flow rate, liquid viscosity and hole diameter on the bubble size, gas holdup, bubble rising velocity were systematically studied. Dynamic state experiments were carried out with a rotational impeller. Influences of the impeller speed, crucible size, position of the rotational shaft on the bubble size and its distribution were investigated.Bubble size plays a significant role to the aluminum foam performance. The single bubble formation during the foaming process of molten aluminum was analyzed and the bubble size was estimated under constant flow conditions using a semi-empirical model. The calculated results indicate that the bubble size increases with increasing orifice diameter, the airflow rate, the surface tension, as well as the liquid density at low flow rates. When the gas injection velocity exceeds a critical velocity, the gas injected from the nozzle takes the form of a coherent gas jet.
    Numerical simulations were performed for the hydrodynamics of a gas-liquid system in the static state in the framework of Eulerian-Eulerian two-fluid formulation coupled with a two-phase k-e turbulence model. Based on an analysis of previous work on the two-fluid model reported in the literature, a virtual gas inlet was suggested and used as the boundary condition to substitute the real orifice. Improvements were made to the sub models of interphase forces and turbulence. The influences of the air pressure and flow rate, liquid viscosity, the number and position as well as the diameter of the injection orifices on gas holdup, bubble rising velocity and liquid flow were discussed.Dynamic state simulations were carried out with mechanical stirring by a rotational impeller, which was placed in three different positions: perpendicular, parallel and inclined to the liquid surface. Two-dimensional, quasi-three dimensional and three-dimensional models were employed separately to simulate the fowl field, the impeller region was explicitly included using a Multiple Reference Frames (MRF) method.In order to clarify the bubble size distribution characteristics in stirred melt flow, a population balance model (PBM) was incorporated into the three-dimensional simulations. Variation in the bubble size due to breakup and coalescence was taken into account. Computational results show that the bubble size increases with increasing gas flow rate and orifice diameter and decreasing liquid viscosity. It also increases with enlarging foaming chamber but decreases with rising rotation speed of the impeller. The bubble size and gas hold-up are dependent also on the location in the flow field. Around the tips of the impeller blades bubbles have the mimimum size. Bubbles with larger size gather in the regions behind the blades due to lower pressure there, resulting in a higher gas hold-up. In other parts of the tank, such as at the bottom, near the walls, and the region above the impeller and near the shaft, bubbles have smaller sizes because in these regions gas holdup is small and many circulations of small scales exist. Finally, at the melt surface there are bigger bubbles in the central area, and bubble size is reduced with decreasing distance of the bubble to the walls.
引文
[1] Hut P, Alvarez W, Elder W et al. Comet Showers as Possible Causes of Stepwise Mass Extinctions. Eos, 1985, 66:813.
    [2] Evans A G, Hutchinson J W, Ashby M F. Cellular Metals. Current Opinion in Solid State and Materials Science, 1998, 3(3):288-303.
    [3] Kobashi M. Current Situation and Future Prospects of Porous Metals. Keikinzoku/Journal of Japan Institute of Light Metals, 2005, 55(7):327-332.
    [4] Berchem K, Mohr U, Bleck W. Controlling the Degree of Pore Opening of Metal Sponges, Prepared by the Infiltration Preparation Method. Materials Science and Engineering A, 2002, 323(1-2):52-57.
    [5] Verdooren A, Chan H M, Grenestedt J L et al. Production of Metallic Foams from Ceramic Foam Precursors. Advanced Engineering Materials, 2004, 6(6):397-399.
    [6] Banhart J. Manufacture, Characterisation and Application of Cellular Metals and Metal Foams. Progress in Materials Science, 2001, 46(6):559-632.
    [7] Kanetake N, Kobashi M. Innovative Processing of Porous and Cellular Materials by Chemical Reaction, Scripta Materialia, 2006, 54(4 SPEC. ISS.):521-525.
    [8] 郑兆明.粉末冶金法制备泡沫铝材料的工艺研究:(硕士学位论文).武汉:华中科技大学,2005.
    [9] 张伟开,李乃哲,何德坪.渗流法制备高孔隙率多孔铝.中国有色金属学报,2005,8:100—104.
    [10] 邹毅.新型球形孔低孔隙率泡沫铝合金制备及相关性能研究:(硕士学位论文).南京:东南大学,2004.
    [11] Wang D Q, Shi Z Y. Effect of Ceramic Particles on Cell Size and Wall Thickness of Aluminum Foam. Mater. Sci. Eng., 2003, 361:45-49.
    [12] Wiemann D, Mewes D. Calculation of Flow Fields in Two and Three-Phase Bubble Columns Considering Mass Transfer. Chemical Engineering Science, 2005, 60(22):6085-6093.
    [13] Pfleger D, Becker S. Modelling and Simulation of the Dynamic Flow Behaviour in a Bubble Column. Chemical Engineering Science, 2001, 56(4):1737-1747.
    [14] Xie Y, Orsten S, Oeters F. Behaviour of Bubbles at Gas Blowing into Liquid Wood's Metal. ISIJ International, 1992, 32(1):66-75.
    [15] Okita K, Matsumoto Y, Takagi S. Propagation of Pressure Waves, Caused by a Thermal Shock, in Liquid Metals Containing Gas Bubbles. Proceedings of the American Society of Mechanical Engineers Fluids Engineering Division Summer Conference, 2005, 2:575-580.
    [16] B.Sosnick. US.1948
    [17] Elliott J E. US patent 75289.1956
    [18] John B. Manufacture, Characterisation and Application of Cellular Metals and Metal Foams. Progress in Materials Science, 2001, 46:559-632.
    [19] 马立群,何德坪.新型泡沫铝的制备及其孔结构的控制.材料研究学报,1994,8(1):11—17.
    [20] 梁晓军,朱勇刚,陈锋,等.泡沫铝芯三明治板的粉末冶金制备及其板/芯界面研究.材料科学与工程学报,2005,23(1):077-080.
    [21] 储少军,吴铿,牛强,等.冶金熔体泡沫分类的研究.北京科技大学学报,1998,20(1):20-26.
    [22] 刘士魁.泡沫铝粉末冶金复合加热法制备技术的试验研究:(硕士学位论文).大连:大连理工大学,2005.
    [23] 罗洪杰.熔体发泡法制备泡沫铝材工.轻金属,2003,C9:51—53.
    [24] 王录才,陈新,柴跃生,等.熔模铸造法通孔泡沫铝制备工艺研究.铸造,1999,1:9-11.
    [25] 薛涛.多孔金属材料泡沫铝的发展.机械工程材料,1992 2:4—5.
    [26] Wang D Q, H. F. Lopez. Effect of Thermal Gradients on the Nucleation of Primary Phase in Al-4% Si Composite. Mater. Sci. Tech., 1998, 16(1):29.
    [27] 许庆彦,陈玉勇,李庆春.多孔泡沫金属的研究现状.铸造设备研究,1997,1:18-24.
    [28] Fusheng H, Jianning W, Hefa C et al. Effects of Process Parameters and Alloy Compositions on the Pore Sructure of Foamed Aluminum. Journal. of Materials Processing Technology, 2003, 138:505-507.
    [29] 王茗.泡沫金属发泡基础理论研究:(硕士学位论文).昆明:昆明理工大学,2004.
    [30] 李晶.泡沫铝的制备研究:(硕士学位论文)广西大学,2005.
    [31] Simone A E, Gibson L J. Aluminum Foams Produced by Liquid-State Processes. Acta Materialia, 1998, 46(9):3109-3123.
    [32] 宋振纶,何德坪.铝熔体泡沫形成过程中黏度对孔结构影响.材料研究学报,1997,11(3):275-279.
    [33] 牛强,储少军,吴铿,等.冶金熔体泡沫演化中的转型.北京科技大学学报,2000,22(2):109-112.
    [34] Bastawros A F, Bart-Smith H, Evans A G. Experimental Analysis of Deformation Mechanisms in a Closed-Cell Aluminum Alloy Foam. Journal of the Mechanics and Physics of Solids, 2000, 48(2):301-322.
    [35] 陈策,王永进,何德坪.高比强多孔铝合金的压缩变形性能.材料研究学报,2003,17(3):230-234.
    [36] Shim V P W, Tay B Y, Stronge W J. Dynamic Crushing of Stmin-Softening Cellular Structures. A One-Dimensional Analysis. Journal of Engineering Materials and Technology, Transactions of the ASME, 1990, 112(4):398-405.
    [37] Hall R L. Late Bajocian and Bathonian (Middle Jurassic) Ammonites from the Fernie Formation, Canadian Rocky Mountains. Journal of Paleontology, 1999, 62(4):575.
    [38] McRae J, Kelkar A, Grace C et al. Impact Damage Resistance of Aluminum Alloy Foams. American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP, 1998, 381:71-77.
    [39] Mukai T, Kanahashi H, Yamada Y et al. Dynamic Compressive Behavior of an Ultra-Lightweight Magnesium Foam. Scripta Materialia, 1999, 41(4):365-371.
    [40] Nieh T G, Kinney J H, Wadsworth J et al. Morphology and Elastic Properties of Aluminum Foams Produced by a Casting Technique. Scripta Materialia, 1998, 38(10): 1487-1494.
    [41] Andrews E, Sanders W, Gibson L J. Compressive and Tensile Behaviour of Aluminum Foams. Materials Science and Engineering A, 1999, 270(2):113-124.
    [42] Lorenzi L, Fuganti A, Todaro E et al. Aluminum Foam Applications for Impact Energy Absorbing Structures. SAE Special Publications, 1997, 1226:1-10.
    [43] Gui M C, Wang D B, Wu J J et al. Deformation and Damping Behaviors of Foamed Al-Si-Sicp Composite. Materials Science and Engineering A, 2000, 286(2):282-288.
    [44] Paul A, Ramamurty U. Strain Rate Sensitivity of a Closed-Cell Aluminum Foam. Materials Science and Engineering A, 2000, 281 (1-2): 1-7.
    [45] Tada Y, Takatani H. Applicability of Bistetrazole Organic Blowing Agents for Zinc Foams. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2005, 52(3):141-145.
    [46] Nakamura T, Gnyloskurenko S V, Sakamoto K et al. Development of New Foaming Agent for Metal Foam. Materials Transactions, 2002, 43(5): 1191-1196.
    [47] Grugel R N, Anilkumar A V, Cox M C. Observation of an Aligned Gas-Solid "Eutectic" During Controlled Directional Solidification Aboard the International Space Station-Comparison with Ground-Based Studies. 43rd AIAA Aerospace Sciences Meeting and Exhibit-Meeting Papers, 2005:14687-14694.
    [48] Guarino S, Tagliaferri V. Fabrication of Aluminium Foam Components by Using Powder Compact Melting Method. Proceedings of the 7th Biennial Conference on Engineering Systems Design and Analysis-2004, 2004, 3:361-366.
    [49] Fournel B, Angot S, Joyer P. Decontamination of Phebus Experimental Target Chamber Using Sprayed Foam. International Conference on Nuclear Engineering, Proceedings,ICONE, 2002, 1:835-844.
    [50] Duarte I, Mascarenhas J, Ferreira A et al. The Evolution of Morphology and Kinetics During the Foaming Process of Aluminium Foams. Key Engineering Materials, 2002, 230-232:96-101.
    [51] Elbir S, Yilmaz S, Toksoy A K et al. Sic-Particulate Aluminum Composite Foams Produced by Powder Compacts: Foaming and Compression Behavior. Journal of Materials Science, 2003, 38(23):4745-4755.
    [52] Yang C C, Nakae H. The Effects of Viscosity and Cooling Conditions on the Foamability of Aluminum Alloy. Journal of Materials Processing Technology, 2003, 141(2):202-206.
    [53] Yang C C, Nakae H. Foaming Characteristics Control During Production of Aluminum Alloy Foam. Journal of Alloys and Compounds, 2000, 313(1-2): 188-191.
    [54] Oak S M, Kim B J, Kim W T et al. Physical Modeling of Bubble Generation in Foamed-Aluminum. Journal of Materials Processing Technology, 2002, 130-131:304-309.
    [55] 吴新光,刘荣佩.熔体吹气发泡法制备泡沫铝合金研究,云南冶金,2003,32(1):50.53.
    [56] Koerner C, Ties M, Singe R F. Modeling of Metal Foaming with Lattice Boltznann Automata. Adv. Eng. Mater, 2002, 4(10):765-769.
    [57] Pilon D, Panneton R, Sgard F et al. Influence of Micro-Structural Properties on the Acoustic Performances of Novel Metallic Foams. Canadian Acoustics-Acoustique Canadienne, 2004, 32(3):24-25.
    [58] Cox S J, Bradley G, Weaire D. Metallic Foam Processing from the Liquid State: The Competition between Solidification and Drainage. EPJ Applied Physics, 2001, 14(2):87-96.
    [59] Yang J, Glasgow L A. Chaos Analysis of Bubble Formation Transition Phenomena on a Multi-Hole Sieve Plate. Chemical Engineering Communications, 2000, 177:49-64.
    [60] Xie S, Tan R B H. Bubble Formation at Multiple Orifices-Bubbling Synchronicity and Frequency. Chemical Engineering Science, 2003, 58(20):4639-4647.
    [61] Solanki M K S, Mukherjee A K, Das T R. Bubble Formation at Closely Spaced Orifices in Aqueous Solutions. Chemical Engineering Journal, 1992, 49(1):65-71.
    [62] Nishijima D, Ye M Y, Ohno N et at. Formation Mechanism of Bubbles and Holes on Tungsten Surface with Low-Energy and High-Flux Helium Plasma Irradiation in Nagdis-Ii. Journal of Nuclear Materials, 2004, 329-333(1-3 PART B): 1029-1033.
    [63] kumar R, kuloor N R. The Formation of Bubble and Drops. Chem. Eng. Sci., 1969, 24:731-749.
    [64] 车得福,林宗虎,陈学俊.气泡在液体中形成的试验研究.钢铁研究学报,1994,6(1):9-14.
    [65] Fukao S, McClure J P, Ito A et al. 1st Vhf Radar Observation of Midlatitude F-Region Field-Aligned Irregularities. Geophysical Research Letters, 1999, 15(8):768.
    [66] Snabre P, Magnifotcham F. Formation and Rise of a Bubble Stream in a Viscous Liquid. Eur. Phys. J. B, 1998, 4:369-377.
    [67] Luo x, Yang g, Lee D J et al. Single Bubble Formation in High Pressure Liquid-Solid Suspensions. Powder Technology, 1998, 100:103-112.
    [68] 戴干策,陈敏恒.化工流体力学.北京:化学工业出版社,1988
    [69] 郭烈锦.两相与多相流动力学.西安:西安交通大学出版社,2002
    [70] 韩薇.金属熔体中气泡几何及运动特性的数值模拟:(硕士学位论文).大连:大连理工大学,2005.
    [71] Ohnuki A, Akimoto H. Model Development for Bubble Turbulent Diffusion and Bubble Diameter in Large Vertical Pipes. Journal of Nuclear Science and Technology, 2001, 38(12): 1074-1080.
    [72] Hancock S L. Application of a Coupled Euler-Lagrange Computer Program to the Structural Response of an Lfmbr. Nuclear Engineering and Design, 1977, 42(1):69-74.
    [73] Sokolichin A, Eigenberger G, Lapin A et al. Dynamic Numerical Simulation of Gas-Liquid Two-Phase Flows: Euler/Euler Versus Euler/Lagrange. Chemical Engineering Science, 1997, 52(4):611-626.
    [74] Chahed J, Roig V, Masbernat L. Eulerian-Eulerian Two-Fluid Model for Turbulent Gas-Liquid Bubbly Flows. International Journal of Multiphase Flow, 2003, 29(1):23-49.
    [75] Gao Y, Wong T N, Chai J C et al. Numerical Simulation of Two-Fluid Electroosmotic Flow in Microchannels. International Journal of Heat and Mass Transfer, 2005, 48(25-26):5103-5111.
    [76] Abbaspour M, Chapman K S, Glasgow L A et al. Dynamic Simulation of Gas-Liquid Homogeneous Flow in Natural Gaspipeline Using Two-Fluid Conservation Equations. Proceedings of the American Society of Mechanical Engineers Fluids Engineering Division Summer Conference, 2005, 1 PART A:787-795.
    [77] Moraga F J, Larreteguy A E, Drew D A et al. A Center-Averaged Two-Fluid Model for Wall-Bounded Bubbly Flows. Computers and Fluids, 2006, 35(4):429-461.
    [78] 周力行.多相湍流反应流体力学.北京:国际工业出版社,2002
    [79] 解茂昭.内燃机计算燃烧学.大连:大连理工大学出版社,2005
    [80] Hirt C W, Nichols B D. Volume of Fluid (Vof) Method for the Dynamics of Free Boundaries. Journal of Computational Physics, 1981, 39:201-225.
    [81] Sheppard C M, Morris S D. Drift-Flux Correlation Disengagement Models: Part Ⅰ-Theory: Analytic and Numeric Integration Details. Journal of Hazardous Materials, 1995, 44(2-3):111-125.
    [82] Sheppard C M. Drift-Flux Correlation Disengagement Models: Part Ⅱ- Shape-Based Correlations for Disengagement Prediction Via Churn-Turbulent Drift-Flux Correlation. Journal of Hazardous Materials, 1995, 44(2-3): 127-139.
    [83] Ohmori H, Ishii Y, Shono A et al. Gas Absorption in Mechanically Agitated Gas-Liquid Contactors with a Large Ring Sparger and a Downflow Pitched Blade Turbine. Kagaku Kogaku Ronbunshu, 2005, 31(1):1-6.
    [84] MacRae A. 2002. Marrella Splendens.
    [85] He Z, Zhang W, He K et al. Modeling Pressure Fluctuations Via Correlation Structure in a Gas-Solids Fluidized Bed. AIChE Journal, 1997, 43(7):1914-1920.
    [86] Sundaresan A T C S. Analysis of the Flow in Inhomogeneous Particle Beds Using the Spatially Averaged Two-Fluid Equations. International Journal of Multiphase Flow, 2006, 32(1): 106-131.
    [87] Ishii moto J, Kamijo K, Oi ke M. Numerical Simulation on Boiling Two-Phase Flow of Liquid Nitrogen. American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP, 1998, 377(2):219-225.
    [88] Krishna R, Urseanu M I, Van Batch J M et al. Rise Velocity of a Swarm of Large Gas Bubbles in Liquids. Chemical Engineering Science, 1999, 54(2): 171-183.
    [89] Saffman P G. The Lift on a Small Sphere in a Slow Shear Flow. J. FLUID MECH., 1965, 22:385-400.
    [90] Conkey S B, Lee C, Chaykovsky S et al. Optimum Design of a Lightweight Mirror Using Aluminum Foam or Honeycomb Sandwich Construction-a Case Study for the Glas Telescope. Proceedings of SPIE-The International Society for Optical Engineering, 2000, 4093:325-332.
    [91] Launder B E. The Calculation of Turbulent Boundary Layers on Spinning and Curved Surfaces. Fluid Eng., 1977, 99:231-239.
    [92] Krishna R, Urseanu M I, al. J M v B e et al. Influence of Scale on the Hydrodynamics of Bubble Columns Operating in the Churn-Turbulent: Experiments Vs. Eulerian Simulations. Chem. Eng. Sci., 1999, 54:4903-4911.
    [93] V.V.Buwa, V.V.Ranade. Dynamics of Gas-Liquid Flow in a Rectangular Bubble Column: Experiments and Single/Group Cfd Simulations. Chem. Eng. Sci., 2002, 57:4715-4736.
    [94] Druzhinin O A, Elghobashi S. On the Decay Rate of Isotropic Turbulence Laden with Microparticles. Physics of Fluids, 1999, 11(2-3):602-610.
    [95] 陶文铨.数值传热学(第2版).西安:西安交通大学出版社,2001
    [96] Xiong Y Q, Zhang M Y, Yuan Z L et al. Three-Dimensional Numerical Simulation on Gas-Solid Two-Phase Flows in Gas-Solid Injector. Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2005, 25(20):77-82.
    [97] Iguchi M, Tokunaga H, Tatemichi H. Bubble and Liquid Flow Characteristics in a Wood's Metal Bath Stirred by Bottom Helium Gas Injection. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 1997, 28(6):1053-1061.
    [98] Baker V R. Geological Fluvial Geomorphology. Geological Society of America Bulletin, 1988, 100(8): 1157.
    [99] Iguchi M, Tokunaga H, Tatemichi H et al. Mechanism of Thermal Accretion (Mushroom) Formation and the Bubble and Flow Characteristics During Cold Gas Injection. International Journal of Multiphase Flow, 1993, 19(1):173-186.
    [100] Guo D C, Gu L, Irons G A. Developments in Modelling of Gas Injection and Slag Foaming. Applied Mathematical Modelling, 2002, 26(2):263-280.
    [101] Cioffarelli A, Natale M T. Guide to the Catacombs of Rome and Its Surroundings, English ed. Rome: Bonsignori, 2000
    [102] Szekely J, Asai S. ISIJ, 1975:15.
    [103] Debroy T, Majumdar A K, Spalding D B. app. math. modelling, 1978, 2.
    [104] Vigran T E, Kelders L, Lauriks W et al. Forced Response of a Sandwich Plate with a Flexible Core Deseribed by a Blot-Model. Acustica, 1997, 83(6): 1024-1031.
    [105] Jakobsen H A. Phase Distribution Phenomena in Two-Phase Bubble Column Reactors. Chemical Engineering Science, 2001, 56(3):1049-1056.
    [106] Harvey P S, Greaves D M. Turbulent Flow in an Agitated Vessel. trans. instn. Chem. Engrs, 1982, 60:195-210.
    [107] 侯拴弟,政张,王英琛,等.轴流桨搅拌槽三维流场数值模拟.化工学报,2001,52(3):241-246
    [108] 王卫京,毛在砂.用改进的内外迭代法数值模拟rushton涡轮搅拌槽流场.过程工程学报,2002,2(3):193-198.
    [109] Wechsler K, Breuer M, Durst F. Steady and Unsteady Computations of Turbulent Flows Induced by a 4/45°Pitched-Blade Impeller. J. Fluids Eng., 1999, 121:318-329.
    [110] Lane G L, Schwarz M P, Evans G M. Predicting Gas-Liquid Flow in a Mechanically Stirred Tank. Applied Mathematical Modelling, 2002, 26(2):223-235.
    [111] Basara B, Alajbegovic A, Beader D. Simulation of Single-and Two-Phase Flows on Sliding Unstructured Meshes Using Finite Volume Method. International Journal for Numerical Methods in Fluids, 2004, 45(10): 1137-1159.
    [112] Ranade V V, Deshpande V R. Gas-Liquid Flow in Stirred Reactors: Trailing Vortices and Gas Accumulation Behind Impeller Blades. Chemical Engineering Science, 1999, 54(13-14):2305-2315.
    [113] Ranade V V, Tayalia Y, Krishnan H. Cfd Predictions of Flow near Impeller Blades in Baffled Stirred Vessels: Assessment of Computational Snapshot Approach. Chemical Engineering Communications, 2002, 189(7):895-922.
    [114] Luo D, Ghiaasiaan S M. Liquid-Side Interphase Mass Transfer in Cocurrent Vertical Two-Phase Channel Flows. International Journal of Heat and Mass Transfer, 1997, 40(3):641-655.
    [115] Luo J Y, Gosman A D, Issa R I et al. Full Flow Field Mixing Computation of Mixing in Baffled Stirred Vessels. institution of Chemical Engineers,, 1993:657-659.
    [116] Brucato A, Ciofalo M, Grisafi F et al. Numerical Prediction of Flow Fields in Baffled Stirred Vessels: A Comparison of Alternative Modelling Approaches. Chemical Engineering Science, 1998, 53(21):3653-3684.
    [117] Morud K E, Hjertager B H. Lda Measurements and Cfd Modelling of Gas-Liquid Flow in a Stirred Vessel. Chemical Engineering Science, 1996, 51(2):233-249.
    [118] Lane G L, Schwarz M P, Evans G M. Numerical Modelling of Gas-Liquid Flow in Stirred Tanks. Chem Eng Sci, 2005, 60:2203-2214.
    [119] Mittoni L J, Schwarz M P. Computational Fluid Dynamics as a Tool in the Minerals Processing and Metal Production Industries. Proceedings of the 1998 Thirteenth Australasian Fluid Mechanics Conference, Melbourne, Australia, 13-18 December 1998 (Volume 2), 1998:671-674.
    [120] Hulburt H, Katz S. Some Problems in Particle Technology: A Statistical Mechanical Formulation. Chem. Eng. Sci., 1964, 19:555-574.
    [121] Mewes D, Schmitz D. Two-Phase Flow in Liquid Filled Vessels During the Depressurization by Periodic Venting. Proceedings of the ASME/JSME Joint Fluids Engineering Conference, 2003, 2 B:1627-1635.
    [122] Steinkamp H, Mewes D. Rotating Two-Phase Gas/Liquid Flow Regime for Pressure Reduction in Underwater Plasma Arc Welding. Chemical Engineering and Technology, 1994, 17(2):81-87.
    [123] Parthasarathy R, Jameson G J, Ahmed N. Bubble Breakup in Stirred Vessels. Predicting the Sauter Mean Diameter. Chemical Engineering Research and Design, 1991, 69(4):295-301.
    [124] Rigby G D, Evans G M, Jameson G J. Bubble Breakup from Ventilated Cavities in Multiphase Reactors. Chemical Engineering Science, 1997, 52(21-22):3677-3684.
    [125] Atkinson B W, Jameson G J, Nguyen A V et al. Bubble Breakup and Coalescence in a Plunging Liquid Jet Bubble Column. Canadian Journal of Chemical Engineering, 2003, 81 (3-4):519-527.
    [126] Chen P, Dudukovi M P, Sanyal J. Three-Dimensional Simulation of Bubble Column Flows with Bubble Coalescence and Breakup. AIChE Journal, 2005, 51(3):696-712.
    [127] 王铁峰.气液(浆)反应器流体力学行为的实验研究和数值模拟:(博士学位论文).北京:清华大学,2004.
    [128] Muller R L, Prince R G H. Regimes of Bubbling and Jetting from Submerged Orifices. Chemical Engineering Science, 1972, 27(8):1583-1592.
    [129] Kamp A M, Chesters A K, Colin C et al. Bubble Coalescence in Turbulent Flows:A Mechanistic Model for Turbulence Induced Microgravity Bubbly Pipe Flow. J. Multiphase flow, 2001, 27:1363-1396.
    [130] Oolman T O, Blanch H W. Bubble Coalescence in Air-Sparged Bioreactors. Biotech. and Bioeng., 1986, 28(4):578-584.
    [131] Luo X Y, Pedley T J. A Numerical Simulation of Unsteady Flow in a Two-Dimensional Collapsible Channel. Journal of Fluid Mechanics, 1996, 314:191-225.
    [132] 朱丽.含液多相体系中气泡聚并行为的研究:(博士学位论文).天津:天津大学,2004.
    [133] Tsouris C, Tavlarides L L. Breakage and Coalescence Models for Drops in Turbulent Dispersions. AICHE J., 1994, 40(3):395-406.
    [134] Grevskott S, Sann B H, Dudukovi M P et al. Liquid Circulation, Bubble Size Distributions, and Solids Movement in Two- and Three-Phase Bubble Columns. Chemical Engineering Science, 1996, 51(10):1703-1713.
    [135] Martiez-Bazan C, Montanes J L, Lasheras J C. On the Break-up of an Air Bubble Injected into a Fully Developed Turbulent Flow. Part Ⅱ: Size Pdf of the Resulting Daughter Bubbles. J. FLUID MECH., 1999b, 401:183-207.
    [136] Miyahara T, Tanimoto M, Takahashi T. Bubble Formation from an Orifice at High Gas Injection Ratesthe Size of Bubbles above an Orifice. Kagaku Kogaku Ronbunshu, 1982, 8(3,1982):304-306.
    [137] Iguchi M, Terauchi Y. Effect of Parallel Flow on Frequency of Bubble Formation from Single-Hole Nozzle under Micro-Gravity Conditions. Journal of Chemical Engineering of Japan, 1999, 32(6):789-795.
    [138] Kapilashrami A, Lahiri A K, Seetharaman S. Bubble Formation through Reaction at Liquid-Liquid Interfaces. Steel Research International, 2005, 76(9):616-623.
    [139] Milne-Thomson L N. Theoretical Hydrodynamics, vol. 3rd. London: MacMillan, 1955
    [140] 王祝堂,田荣璋.铝合金及其加工手册.中南大学出版社,2000
    [141] L.F.蒙多尔福.铝合金的组织与性能.Trans.ISIJ,1975,15.
    [142] Schiller L, Naumann A. A Drag Coefficient Correlation. Z. Ver. Deutsch. Ing., 1935, 77:318-320.
    [143] Harmathy. Velocity of Large Drops and Bubbles in Media of Infinite and Restricted Extent AICHE J, 1960, 6:281.
    [144] Krishna R, Urseanu M I, Van Baten J M et al. Influence of Scale on the Hydrodynamics of Bubble Columns Operating in the Churn-Turbulent Regime: Experiments Vs. Eulerian Simulations. Chemical Engineering Science, 1999, 54(21):4903-4911.
    [145] 罗锐,宋蔷,杨献勇,等.非均匀尺寸气泡形成的层流泡状流.中国科学(E辑),2001,31(1):1-7.
    [146] Tomiyama A. Struggle with Computational Bubble Dynamics. Multiphase Sci. Tech., 1998, 10:369-405.
    [147] Sheu M-F, Lin Y-K, Chuang Y-H et al, Process Development for Composite Electric Bus Body Using Resin Transfer Molding Technology. International SAMPE Symposium and Exhibition (Proceedings), 2000, 45:Ⅱ/.
    [148] Cook T L, Harlow F H. Vortices in Bubbly Two-Phase Flow.. Int. J. Multiphase Flow, 1986, 12:35-61.
    [149] Deen N G, Solberg T, Hjertager B H. Large Eddy Simulation of the Gas-Liquid Flow in a Square Cross-Sectioned Bubble Column. Chemical Engineering Science, 2001, 56(21-22):6341-6349.
    [150] Turkoglu H, Farouk B. Numerical Computations of Fluid Flow and Heat Transfer in a Gas-Stirred Liquid Bath. Metallurgical transactions. B, Process metallurgy, 1990, 21(4):771-781.
    [151] Faure J L, Megardgalli J. Jurassic Emersion in the Brianconnais Zone-Continental Sedimentation and Extensional Fracturing. Bulletin de la Societe Geologique de France, 1999, 4(4):681.
    [152] MARTIN M, RENDUELES M, DIAZ M. Global and Local Mixing Determinations for Steel Converter Analysis Chem. Eng. Sci., 2005, 60(21):5781-5791
    [153] 詹树华,欧俭平,赖朝彬.两种浸入式侧吹模式下的熔池搅拌现象.中南大学学报(自然科学版),2005,36(1):49-54.
    [154] Xie Y, Oeters F. Experimental Studies on the Flow Velocity of Molten Metals in a Ladle Model at Centric Gas Blowing. Steel Research, 1992, 63(3):93-104.
    [155] Xia J L, Ahokainen T, Holappa L. Modelling of Flows Ina Ladle with Gas Stirred Liquid Wood's Metal. CSIRO, 1999.
    [156] Forrester S E, Rielly C. Bubble Formation from Cylindrical, Flat and Concave Sections Exposed to a Strong Liquid Cross-Flow. Chem Eng Sci, 1998, 53(8):1517-1527.
    [157] Rayleigh, Lord. On the Stability of Cylindrical Fluid Surfaces. Philosophical Magazine, 1892, 34:177—180.
    [158] Aubin J, Le Sauze N, Bertrand J et al. Piv Measurements of Flow in an Aerated Tank Stirred by a Downand an up-Pumping Axial Flow Impeller. Experimental Thermal and Fluid Science, 2004, 28(5):447-456.
    [159] Kumaresan T, Joshi J B. Effect of Impeller Design on the Flow Pattern and Mixing in Stirred Tanks. Chemical Engineering Journal, 2006, 115(3):173-193.
    [160] Magnico P, Fongarland P. Cfd Simulations of Two Stirred Tank Reactors with Stationary Catalytic Basket. Chemical Engineering Science, 2006, 61(4):1217-1236.
    [161] Jade A M, Jayaraman V K, Kulkarni B D et al. A Novel Local Singularity Distribution Based Method for Flow Regime Identification: Gas-Liquid Stirred Vessel with Rushton Turbine. Chemical Engineering Science, 2006, 61 (2):688-697.
    [162] Alcamo R, Micale G, Grisafi F et al. Large-Eddy Simulation of Turbulent Flow in an Unbaffled Stirred Tank Driven by a Rushton Turbine. Chemical Engineering Science, 2005, 60(8-9 SPEC. ISS.):2303-2316.
    [163] Sanada T, Watanabe M, Sato A et al. Viscosity Effects on Coalescence Condition of a Pair of Bubbles. Nippon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B, 2004, 70(700):3128-3135.
    [164] Tse K L, Martin T, McFarlane C M et al. Small Bubble Formation Via a Coalescence Dependent Breakup Mechanism. Chemical Engineering Science, 2003, 58(2):275-286.
    [165] Brunke O, Hamann A, Cox S J et al. Experimental and Numerical Analysis of the Drainage of Aluminium Foams. Journal of Physics Condensed Matter, 2005, 17(41):6353-6362.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700