活跃和惰性中微子振荡的若干研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究在考虑轻惰性中微子存在的普适框架下,中微子混合与振荡现象相关的理论推广和实验分析。我们首先仔细回顾中微子物理的发展历史,揭示其来龙去脉,立足现在、展望将来。在对中微子的混合与振荡理论进行简要介绍、为后面章节提供理论基础之后,我们对中微子振荡实验进行分类介绍,并决定对其中引入入胜的热点之一,轻惰性中微子进行系统研究。我们对目前所有短基线实验给出的振荡数据进行全局分析,以此对轻惰性中微子现象学的实验现状进行概括性总结。如果存在额外的惰性中微子,现有的一切振荡理论以及数据分析都必须进行推广扩充,于是我们首先针对太阳中微子实验开展相关的工作,而长基线的大气、反应堆以及加速器的相关工作则是我们计划在不久的将来要完成的。本论文具体由以下六个部分构成:
     第一章,导论。我们将介绍中微子物理的发展历史、简要阐述现阶段人们对中微子的基本认识,了解中微子物理学的过去、现在,并尝试藉由五组悬而未决的开放问题对未来的研究热点作一启发性的展望。对于中微子物理和弱相互作用的发展历程,我们进行了相当深入和细致的考证和归纳,在理论和实验两个方面都给出了比较精细、完整的描述,我们还为此专门列出年表以供查阅。
     第二章,中微子混合与振荡理论。本章试图对中微子的混合与振荡现象进行简洁明要而又自成体系的完整介绍。我们首先对粒子物理学的标准模型进行介绍,主要包含标准模型的物质场和相互作用拉氏量,生成规范波色场质量的Higgs机制;接着介绍超出标准模型的中微子质量产生机制,以及混合矩阵的定义及参数化;最后,我们将给出中微子真空振荡几率和物质中演化方程的介绍。
     第三章,振荡实验和短基线反常。我们首先对中微子振荡实验进行分类介绍,接着对短基线实验反常进行考察,分别在3+1,3+2,3+1+1框架内对全部短基线中微子振荡数据进行全局的振荡参数拟合分析。我们将展示3+1框架下振荡参数的允许区间,其中△m412位于0.82到2.19eV2之间(3σ)。此外,无振荡的情形在6σ置信度下被排除,但如果不把LSND的结果考虑在内,这个结果将令人惊讶的下降到2σ。LSND的结果依然是短基线中微子振荡决定性的主要证据,为此,我们需要其他更高精度的实验去检验LSND的结果。
     第四章,活跃-惰性太阳中微子振荡及CP相位。我们将研究包含任意Ns味惰性中微子的,3+Ns味中微子在太阳传播过程中的味演化,并着重研究中微子混合矩阵中各CP相角的效应;计算相应的、描述电子中微子生存几率的Parke公式,计算电子味到惰性味的中微子跃迁几率;更进一步,我们将基于3+1味混合的框架,对所有解析结果进行细致的数值验证,并演示、追踪三个CP相角的贡献和效应。我们所导出推广的Parke公式适用于将来高精度的太阳中微子活跃与惰性振荡实验的测量;在我们基于3+1味典型混合参数给出的例子中,三个未测知的CP相角对电子中微子生存几率造成的改变可以达到1%,而对电子味到惰性味中微子跃迁几率,则高达100%。将来的短基线中微子振荡实验有望对混合矩阵|uα4|(α=e,μ,τ)的绝对值进行精确测量,从而有可能依据这些结果通过太阳中微子实验测量CP相角。
     第五章,活跃-惰性太阳中微子振荡中的日夜不对称性。沿用第四章的任意3+Ns味中微子混合框架,我们进一步讨论活跃与惰性太阳中微子振荡中的日夜不对称性,给出微扰和分层两种不同近似下振荡几率的解析表达式。通过与数值结果的比较,我们指出分层近似解析公式的精度是足以信赖的;我们还将分别展示地球物质效应中的活跃及惰性两组中微子混参数的依赖关系以及CP相位对振荡几率的影响。我们发现,年平均重生因子对于实验位址并不敏感,且随着中微子能量递增而变大;对于高能的太阳中微子,其电子味生存几率和电子味到惰性味的转化几率的日夜不对称性Dee。和Des。,幅度可以分别达到10-2和10-3量级;我们还给出了CP相角对Dee和Des。的影响,这个效应在高能区间可以达到10-3的量级。因此,未来的高精度中微子实验有可能探测到活跃与惰性混合以及日夜不对称性中的CP相位。
     第六章,回顾和展望。作为结束,本章将对前文内容进行简要梳理和概括,并对惰性中微子现象学的未来发展进行思考和展望。
In this thesis we focus on the phenomenology of neutrino oscillation, assuming the existence of sterile neutrinos. The thesis is organized as follows:
     Chap.1, Introduction. In this chapter, we shall give an overview of the history of neutrino physics, outline some fundamental knowledge of neutrinos that we have accumulated until nowadays, and summarize the research frontier by stating five groups of open questions on neutrinos.
     Chap.2, Neutrino Oscillation Theory. In this chapter, we first give a brief summary to the standard model of electroweak interaction including introductions of the construction of the Standard Model Lagrangian, and the Higgs mechanism which endows gauge bosons in a gauge theory with mass through absorption of Nambu-Goldstone bosons arising in spontaneous symmetry breaking. We then introduce the description of a massive neutrino in the cases of Dirac/Majorana and the most general Dirac-Majorana mass. After that, we introduce the PMNS matrix which describe the neutrino mixing, and the parameterization of the mixing matrix for arbitrary3+Ns neutrinos where Ns stands for the number of sterile neutrino. Finally, we derive the expressions of neutrino oscillation probabilities and the famous MSW equation which formulize neutrino oscillations in matter.
     Chap.3, Oscillation Experiments and SBL anomaly. In this chapter, we first introduce different types of neutrino experiments。We shall introduce carefully the SBL neutrino experiments and anomalies from their recent results. A neutrino oscillation explanation of these anomalies implies the existence of at least one extra mass-squared Difference ΔmS2BL such that ΔmS2OL<<ΔmA2TM<     Chap.4, Active-Sterile Solar Neutrino Oscillations and CP-Violating Phases. In this chapter, we extend the discussion of the solar neutrino oscillations in a general scheme of3+Ns mixing, without any constraint on the mixing between the three active and the Ns sterile neutrinos, assuming only a realistic hierarchy of neutrino mass-squared differences. We find that effects of CP-violating phases take place in the oscillation probabilities. A generalized Parke formula describing the neutrino oscillation probabilities inside the Sun is calculated. The validity of the analytical calculation and the probability variation due to the unknown CP-violating phases are illustrated with a numerical calculation of the evolution equation in the case of3+1neutrino mixing.
     Chap.5, Day-Night Asymmetries in Active-Sterile Solar Neutrino Oscil-lations. In this chapter, we discuss the day-night asymmetries in active-sterile solar neutrino oscillations in the framework mentioned in Chap.4. Analytical expressions of the probability of neutrino flavor transitions in the Earth in the perturbative approximation and in the slab approximation are presented and the effects of active-sterile mixing and of the CP-violating phases are discussed. The accuracy of the analytical approximations and the properties of the day-night asymmetries are illustrated numerically in the3+1neutrino mixing framework.
     Chap.6, Conclusion and Prospect. In this chapter, we shall give a short review and summary of the previous six chapters and try to describe the prospects of sterile neutrino phenomenology.
引文
[1]Maltoni M, Schwetz T. Testing the statistical compatibility of independent data sets. Phys.Rev., 2003, D68:033020.
    [2]Lisi E, Montanino D. Earth regeneration effect in solar neutrino oscillations:An Analytic ap-proach. Phys.Rev.,1997, D56:1792-1803.
    [3]Bahcall J N, Serenelli A M, Basu S. New solar opacities, abundances, helioseismology, and neutrino fluxes. Astrophys.J.,2005,621:L85-L88.
    [4]Fogli G, Lisi E, Marrone A, et al. Global analysis of neutrino masses, mixings and phases:entering the era of leptonic CP violation searches. Phys.Rev.,2012, D86:013012.
    [5]Pauli W. On th Earlier and more recent history of the neutrino. Cam-b.Monogr.Part.Phys.Nucl.Phys.Cosmol.,2000,14:1-22.
    [6]Fermi E. Ricerca Scientifica,1933,2:12.
    [7]Perrin J. Remarks on the subject of neutrons. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES,1933,197:628-631.
    [8]Fermi E. An attempt of a theory of beta radiation.1. Z.Phys.,1934,88:161-177.
    [9]Fermi E. Test a theory of beta-rays. ZEITSCHRIFT FUR PHYSIK,1934,88:161-171.
    [10]Gamow G, Teller E. Selection Rules for the β-Disintegration. Phys. Rev.,1936,49:895-899.
    [11]Konopinski E J. Fermi's Theory of Beta-Decay. Rev. Mod. Phys.,1955,27:254-257.
    [12]Bethe H, Peierls R. The'neutrino'. Nature,1934,133:532.
    [13]Bethe H, Bacher R. Nuclear Physics A. Stationary States of Nuclei. Rev.Mod.Phys.,1936, 8:82-229.
    [14]Wang K C. A Suggestion on the Detection of the Neutrino. Phys. Rev.,1942,61:97-97.
    [15]Allen J S. Experimental Evidence for the Existence of a Neutrino. Phys. Rev.,1942,61:692-697.
    [16]Cowan C, Reines F, Harrison F, et al. Detection of the free neutrino:A Confirmation. Science, 1956,124:103-104.
    [17]Reines F, Cowan C L. The neutrino. Nature,1956,178:446-449.
    [18]Reines F, Cowan C, Harrison F, et al. Detection of the free anti-neutrino. Phys.Rev.,1960, 117:159-173.
    [19]Street J, Stevenson E. New Evidence for the Existence of a Particle of Mass Intermediate Between the Proton and Electron. Phys.Rev.,1937,52:1003-1004.
    [20]Neddermeyer S, Anderson C. Note on the Nature of Cosmic Ray Particles. Phys.Rev.,1937, 51:884-886.
    [21]Lattes C, Muirhead H, Occhialini G, et al. PROCESSES INVOLVING CHARGED MESONS. Nature,1947,159:694-697.
    [22]Pontecorvo B. Electron and Muon Neutrinos. Sov.Phys.JETP,1960,10:1236-1240.
    [23]Puppi G. On Mesons in Cosmic Radiation. (In Italian). Nuovo Cim.,1948,5:587-588.
    [24]Klein O. Mesons and nucleons. Nature,1948,161:897-899.
    [25]Tiomno J, Wheeler J A. Energy spectrum of electrons from meson decay. Rev.Mod.Phys.,1949, 21:144-152.
    [26]Lee T, Rosenbluth M, Yang C N. Interaction of Mesons With Nucleons and Light Particles. Phys.Rev.,1949,75:905.
    [27]Schwartz M. Feasibility of using high-energy neutrinos to study the weak interactions. Phys.Rev.Lett.,1960,4:306-307.
    [28]Danby G, Gaillard J, Goulianos K A, et al. Observation of High-Energy Neutrino Reactions and the Existence of Two Kinds of Neutrinos. Phys.Rev.Lett.,1962,9:36-44.
    [29]Konopinski E, Mahmoud H. The Universal Fermi interaction. Phys.Rev.,1953,92:1045-1049.
    [30]Lee T, Yang C N. Question of Parity Conservation in Weak Interactions. Phys.Rev.,1956, 104:254-258.
    [31]Wu C, Ambler E, Hayward R, et al. Experimental Test of Parity Conservation in Beta Decay. Phys.Rev.,1957,105:1413-1414.
    [32]Landau L. On the conservation laws for weak interactions. Nucl.Phys.,1957,3:127-131.
    [33]Lee T, Yang C N. Parity Nonconservation and a Two Component Theory of the Neutrino. Phys.Rev.,1957,105:1671-1675.
    [34]Salam A. On parity conservation and neutrino mass. Nuovo Cim.,1957,5:299-301.
    [35]Goldhaber M, Grodzins L, Sunyar A. Helicity of Neutrinos. Phys.Rev.,1958,109:1015-1017.
    [36]Bardon M, Franzini P, Lee J. Helicity of μ- Mesons:Mott Scattering of Polarized Muons. Phys.Rev.Lett.,1961,7:23-25.
    [37]Feynman R, Gell-Mann M. Theory of Fermi interaction. Phys.Rev.,1958,109:193-198.
    [38]Sudarshan E, Marshak R. Chirality invariance and the universal Fermi interaction. Phys.Rev., 1958,109:1860-1860.
    [39]Sakurai J. MASS REVERSAL AND WEAK INTERACTIONS. Nuovo Cim.,1958,7:649-660.
    [40]Christenson J, Cronin J, Fitch V, et al. Evidence for the 2 pi Decay of the k(2)0 Meson. Phys.Rev.Lett.,1964,13:138-140.
    [41]Yang C N, Mills R. Isotopic spin conservation and a generalized gauge invariance.1954..
    [42]Goldstone J. Field Theories with Superconductor Solutions. Nuovo Cim.,1961,19:154-164.
    [43]Nambu Y, Jona-Lasinio G. Dynamical Model of Elementary Particles Based on an Analogy with Superconductivity.1. Phys.Rev.,1961,122:345-358.
    [44]Nambu Y. Axial vector current conservation in weak interactions. Phys.Rev.Lett.,1960,4:380-382.
    [45]Glashow S. Partial Symmetries of Weak Interactions. Nucl.Phys.,1961,22:579-588.
    [46]Higgs P W. Broken Symmetries and the Masses of Gauge Bosons. Phys.Rev.Lett.,1964, 13:508-509.
    [47]Higgs P W. Broken symmetries, massless particles and gauge fields. Phys.Lett.,1964,12:132-133.
    [48]Englert F, Brout R. Broken Symmetry and the Mass of Gauge Vector Mesons. Phys.Rev.Lett., 1964,13:321-323.
    [49]Guralnik G, Hagen C, Kibble T. Global Conservation Laws and Massless Particles. Phys.Rev.Lett., 1964,13:585-587.
    [50]Weinberg S. A Model of Leptons. Phys.Rev.Lett.,1967,19:1264-1266.
    [51]Salam A. Weak and Electromagnetic Interactions. Conf.Proc.,1968,0680519:367-377.
    [52]Hooft G. Renormalizable Lagrangians for Massive Yang-Mills Fields. Nucl.Phys.,1971, B35:167-188.
    [53]Hooft G. Renormalization of Massless Yang-Mills Fields. Nucl.Phys.,1971, B33:173-199.
    [54]Hooft G, Veltman M. Regularization and Renormalization of Gauge Fields. Nucl.Phys.,1972, B44:189-213.
    [55]Hasert F, et al. Observation of Neutrino Like Interactions without Muon or Electron in the Gargamelle Neutrino Experiment. Nucl.Phys.,1974, B73:1-22.
    [56]Hasert F, Faissner H, Krenz W, et al. Search for Elastic vμ Electron Scattering. Phys.Lett.,1973, B46:121-124.
    [57]Hasert F, et al. Observation of Neutrino Like Interactions Without Muon Or Electron in the Gargamelle Neutrino Experiment. Phys.Lett.,1973, B46:138-140.
    [58]Benvenuti A, al e. Observation of Muonless Neutrino Induced Inelastic Interactions. Phys.Rev.Lett.,1974,32:800-803.
    [59]Kobayashi M, Maskawa T. CP Violation in the Renormalizable Theory of Weak Interaction. Prog.Theor.Phys.,1973,49:652-657.
    [60]Cabibbo N. Unitary Symmetry and Leptonic Decays. Phys.Rev.Lett.,1963,10:531-533.
    [61]Aubert J, Becker U, Biggs P, et al. Nonobservation of Heavier J Particles from p-Nucleon Reactions. Phys.Rev.Lett.,1974,33:1624.
    [62]Augustin J, et al. Discovery of a Narrow Resonance in e+e-Annihilation. Phys.Rev.Lett.,1974, 33:1406-1408.
    [63]Glashow S, Iliopoulos J, Maiani L. Weak Interactions with Lepton-Hadron Symmetry. Phys.Rev., 1970, D2:1285-1292.
    [64]Perl M L, Abrams G, Boyarski A, et al. Evidence for Anomalous Lepton Production in e+-e-Annihilation. Phys.Rev.Lett.,1975,35:1489-1492.
    [65]Herb S, Hom D, Lederman L, et al. Observation of a Dimuon Resonance at 9.5-GeV in 400-GeV Proton-Nucleus Collisions. Phys.Rev.Lett.,1977,39:252-255.
    [66]Abachi S, et al. Observation of the top quark. Phys.Rev.Lett.,1995,74:2632-2637.
    [67]Arnison G, et al. Experimental Observation of Isolated Large Transverse Energy Electrons with Associated Missing Energy at s**(1/2)=540-GeV. Phys.Lett.,1983, B122:103-116.
    [68]Banner M, et al. Observation of Single Isolated Electrons of High Transverse Momentum in Events with Missing Transverse Energy at the CERN anti-p p Collider. Phys.Lett.,1983, B122:476-485.
    [69]Arnison G, et al. Experimental Observation of Lepton Pairs of Invariant Mass Around 95-GeV/c**2 at the CERN SPS Collider. Phys.Lett.,1983, B 126:398-410.
    [70]Bagnaia P, et al. Evidence for Z0-&gt; e+e-at the CERN anti-p p Collider. Phys.Lett., 1983, B129:130-140.
    [71]Decamp D, et al. Determination of the Number of Light Neutrino Species. Phys.Lett.,1989, B231:519.
    [72]Aarnio P, et al. Measurement of the Mass and Width of the Z0 Particle from Multi-Hadronic Final States Produced in e+e-Annihilations. Phys.Lett.,1989, B231:539.
    [73]Adeva B, et al. A Determination of the Properties of the Neutral Intermediate Vector Boson Z0. Phys.Lett.,1989, B231:509.
    [74]Akrawy M, et al. Measurement of the Z0 Mass and Width with the OPAL Detector at LEP. Phys.Lett.,1989, B231:530.
    [75]Kodama K, et al. Observation of tau neutrino interactions. Phys.Lett.,2001, B504:218-224.
    [76]CERN. CERN experiments observe particle consistent with long-sought Hig-gs boson. Technical report,2012. http://press.web.cern.ch/press-releases/2012/07/ cern-experiments-observe-particle-consistent-long-sought-higgs-boson.
    [77]Aad G, et al. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys.Lett.,2012, B716:1-29.
    [78]Chatrchyan S, et al. Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys.Lett.,2012, B716:30-61.
    [79]CERN. New results indicate that new particle is a Higgs boson. Technical report,2013. http: //home.web.cern.ch/about/updates/2013/03/new-results-indicate-new-particle-higgs-boson.
    [80]Pontecorvo B. Mesonium and anti-mesonium. Sov.Phys.JETP,1957,6:429.
    [81]Gell-Mann M, Pais A. Behavior of neutral particles under charge conjugation. Phys.Rev.,1955, 97:1387-1389.
    [82]Maki Z, Nakagawa M, Sakata S. Remarks on the unified model of elementary particles. Prog.Theor.Phys.,1962,28:870-880.
    [83]Pontecorvo B. Neutrino Experiments and the Problem of Conservation of Leptonic Charge. Sov.Phys.JETP,1968,26:984-988.
    [84]Gribov V, Pontecorvo B. Neutrino astronomy and lepton charge. Phys.Lett.,1969, B28:493.
    [85]Eliezer S, Swift A R. Experimental Consequences of electron Neutrino-Muon-neutrino Mixing in Neutrino Beams. Nucl.Phys.,1976, B105:45.
    [86]Fritzsch H, Minkowski P. Vector-Like Weak Currents, Massive Neutrinos, and Neutrino Beam Oscillations. Phys.Lett.,1976, B62:72.
    [87]Bilenky S M, Pontecorvo B. Quark-Lepton Analogy and Neutrino Oscillations. Phys.Lett.,1976, B61:248.
    [88]Davis J, Harmer D S, Hoffman K C. Search for neutrinos from the sun. Phys.Rev.Lett.,1968, 20:1205-1209.
    [89]Davis R. A review of the Homestake solar neutrino experiment. Prog.Part.Nucl.Phys.,1994, 32:13-32.
    [90]Cleveland B, Daily T, Davis J, et al. Measurement of the solar electron neutrino flux with the Homestake chlorine detector. Astrophys.J.,1998,496:505-526.
    [91]Anselmann P, et al. Implications of the GALLEX determination of the solar neutrino flux. Phys.Lett.,1992, B285:390-397.
    [92]Anselmann P, et al. Solar neutrinos observed by GALLEX at Gran Sasso. Phys.Lett.,1992, B285:376-389.
    [93]Anselmann P, et al. GALLEX solar neutrino observations:The Results from GALLEX-Ⅰ and early results from GALLEX-Ⅱ. Phys.Lett.,1993, B314:445-458.
    [94]Anselmann P, et al. GALLEX results from the first 30 solar neutrino runs. Phys.Lett.,1994, B327:377-385.
    [95]Anselmann P, et al. GALLEX solar neutrino observations:Complete results for GALLEX Ⅱ. Phys.Lett.,1995, B357:237-247.
    [96]Hampel W, et al. GALLEX solar neutrino observations:Results for GALLEX Ⅲ. Phys.Lett., 1996, B388:384-396.
    [97]Hampel W, et al. GALLEX solar neutrino observations:Results for GALLEX IV. Phys.Lett., 1999, B447:127-133.
    [98]Altmann M, et al. GNO solar neutrino observations:Results for GNO I. Phys.Lett.,2000, B490:16-26.
    [99]Altmann M, et al. Complete results for five years of GNO solar neutrino observations. Phys.Lett., 2005, B616:174-190.
    [100]Abdurashitov D, Faizon E, Gavrin V, et al. Results from SAGE. Phys.Lett.,1994, B328:234-248.
    [101]Abdurashitov J, et al. Measurement of the solar neutrino capture rate by SAGE and implications for neutrino oscillations in vacuum. Phys.Rev.Lett.,1999,83:4686-4689.
    [102]Abdurashitov J, et al. Solar neutrino flux measurements by the Soviet-American Gallium Exper-iment (SAGE) for half the 22 year solar cycle. J.Exp.Theor.Phys.,2002,95:181-193.
    [103]Hirata K, et al. Observation of B-8 Solar Neutrinos in the Kamiokande-II Detector. Phys.Rev.Lett.,1989,63:16.
    [104]Hirata K, et al. Constraints on neutrino oscillation parameters from the Kamiokande-II solar neutrino data. Phys.Rev.Lett.,1990,65:1301-1304.
    [105]Hirata K, et al. Results from one thousand days of real time directional solar neutrino data. Phys.Rev.Lett.,1990,65:1297-1300.
    [106]Fukuda Y, et al. Solar neutrino data covering solar cycle 22. Phys.Rev.Lett.,1996,77:1683-1686.
    [107]Fukuda Y, et al. Measurements of the solar neutrino flux from Super-Kamiokande's first 300 days. Phys.Rev.Lett.,1998,81:1158-1162.
    [108]Fukuda Y, et al. Measurement of the solar neutrino energy spectrum using neutrino electron scattering. Phys.Rev.Lett.,1999,82:2430-2434.
    [109]Fukuda Y, et al. Constraints on neutrino oscillation parameters from the measurement of day night solar neutrino fluxes at Super-Kamiokande. Phys.Rev.Lett.,1999,82:1810-1814.
    [110]Fukuda S, et al. Constraints on neutrino oscillations using 1258 days of Super-Kamiokande solar neutrino data. Phys.Rev.Lett.,2001,86:5656-5660.
    [111]Pukuda S, et al. Solar B-8 and hep neutrino measurements from 1258 days of Super-Kamiokande data. Phys.Rev.Lett.,2001,86:5651-5655.
    [112]Gando Y, et al. Search for anti-nu(e) from the sun at Super-Kamiokande I. Phys.Rev.Lett.,2003, 90:171302.
    [113]Ahmad Q, et al. Measurement of the rate of nu/e+d-&gt; p+p+e-interactions produced by B-8 solar neutrinos at the Sudbury Neutrino Observatory. Phys.Rev.Lett.,2001,87:071301.
    [114]Ahmad Q, et al. Measurement of day and night neutrino energy spectra at SNO and constraints on neutrino mixing parameters. Phys.Rev.Lett.,2002,89:011302.
    [115]Ahmad Q, et al. Direct evidence for neutrino flavor transformation from neutral current interac-tions in the Sudbury Neutrino Observatory. Phys.Rev.Lett.,2002,89:011301.
    [116]Ahmed S, et al. Measurement of the total active B-8 solar neutrino flux at the Sudbury Neutrino Observatory with enhanced neutral current sensitivity. Phys.Rev.Lett.,2004,92:181301.
    [117]Bahcall J, Fowler W A, Iben J, et al. Solar neutrino flux. Astrophys.J.,1963,137:344-346.
    [118]Bahcall J N. NEUTRINO ASTROPHYSICS.1989..
    [119]Bahcall J N, Pinsonneault M, Basu S. Solar models:Current epoch and time dependences, neutrinos, and helioseismological properties. Astrophys.J.,2001,555:990-1012.
    [120]Bahcall J N, Pinsonneault M. What do we (not) know theoretically about solar neutrino fluxes? Phys.Rev.Lett.,2004,92:121301.
    [121]Bahcall J N, Serenelli A M, Basu S.10,000 standard solar models:a Monte Carlo simulation. Astrophys.J.Suppl.,2006,165:400-431.
    [122]Hirata K, et al. Experimental Study of the Atmospheric Neutrino Flux. Phys.Lett.,1988, B205:416.
    [123]Oyama Y, et al. Experimental Study of Upward Going Muons in Kamiokande. Phys.Rev.,1989, D39:1481.
    [124]Hirata K, et al. Observation of a small atmospheric muon-neutrino/electron-neutrino ratio in Kamiokande. Phys.Lett.,1992, B280:146-152.
    [125]Fukuda Y, et al. Atmospheric muon-neutrino/electron-neutrino ratio in the multiGeV energy-range. Phys.Lett.,1994, B335:237-245.
    [126]Hatakeyama S, et al. Measurement of the flux and zenith angle distribution of upward through, going muons in Kamiokande Ⅱ+Ⅲ. Phys.Rev.Lett.,1998,81:2016-2019.
    [127]Haines T, Bionta R, Blewitt G, et al. Calculation of Atmospheric Neutrino Induced Backgrounds in a Nucleon Decay Search. Phys.Rev.Lett.,1986,57:1986-1989.
    [128]Casper D, Becker-Szendy R, Bratton C, et al. Measurement of atmospheric neutrino composition with IMB-3. Phys.Rev.Lett.,1991,66:2561-2564.
    [129]Becker-Szendy R, Bratton C, Casper D, et al. A Search for muon-neutrino oscillations with the IMB detector. Phys.Rev.Lett.,1992,69:1010-1013.
    [130]Becker-Szendy R, Bratton C, Casper D, et al. The Electron-neutrino and muon-neutrino content of the atmospheric flux. Phys.Rev.,1992, D46:3720-3724.
    [131]Clark R, Becker-Szendy R, Bratton C, et al. Atmospheric muon-neutrino fraction above 1-GeV. Phys.Rev.Lett.,1997,79:345-348.
    [132]Hirata K, et al. Observation of a Neutrino Burst from the Supernova SN 1987a. Phys.Rev.Lett., 1987,58:1490-1493.
    [133]Hirata K, Kajita T, Koshiba M, et al. Observation in the Kamiokande-II Detector of the Neutrino Burst from Supernova SN 1987a. Phys.Rev.,1988, D38:448-458.
    [134]Bionta R, Blewitt G, Bratton C, et al. Observation of a Neutrino Burst in Coincidence with Supernova SN 1987a in the Large Magellanic Cloud. Phys.Rev.Lett.,1987,58:1494.
    [135]Bratton C, et al. Angular Distribution of Events From Sn1987a. Phys.Rev.,1988, D37:3361.
    [136]Van Der Velde J, et al. Neutrinos From SN1987A in the Imb Detector. Nucl.Instrum.Meth.,1988, A264:28-31.
    [137]Alekseev E, Alekseeva L, Krivosheina I, et al. Detection of the Neutrino Signal From S-N1987A in the LMC Using the Inr Baksan Underground Scintillation Telescope. Phys.Lett., 1988, B205:209-214.
    [138]Alekseev E, Alekseeva L, Volchenko V, et al. Possible Detection of a Neutrino Signal on 23 February 1987 at the Baksan Underground Scintillation Telescope of the Institute of Nuclear Research. JETP Lett.,1987,45:589-592.
    [139]Chudakov A, Elensky Y, Mikheev S. Characteristics of the Neutrino Emission From Supernova SN1987A. JETP Lett.,1987,46:373-377.
    [140]Dadykin V, Zatsepin G, Korchagin V, et al. Detection of a Rare Event on 23 February 1987 by the Neutrino Radiation Detector Under Mont Blanc. JETP Lett.,1987,45:593-595.
    [141]Wolfenstein L. Neutrino Oscillations in Matter. Phys.Rev.,1978, D17:2369-2374.
    [142]Mikheev S, Smirnov A Y. Resonance Amplification of Oscillations in Matter and Spectroscopy of Solar Neutrinos. Sov.J.Nucl.Phys.,1985,42:913-917.
    [143]Mikheev S, Smirnov A Y. Resonant amplification of neutrino oscillations in matter and solar neutrino spectroscopy. Nuovo Cim.,1986, C9:17-26.
    [144]Langacker P, Leveille J P, Sheiman J. On the Detection of Cosmological Neutrinos by Coherent Scattering. Phys.Rev.,1983, D27:1228.
    [145]Fukuda Y, et al. Evidence for oscillation of atmospheric neutrinos. Phys.Rev.Lett.,1998, 81:1562-1567.
    [146]Eguchi K, et al. First results from KamLAND:Evidence for reactor anti-neutrino disappearance. Phys.Rev.Lett.,2003,90:021802.
    [147]An F, et al. Observation of electron-antineutrino disappearance at Daya Bay. Phys.Rev.Lett., 2012,108:171803.
    [148]Wolfenstein L. Neutrino physics. Rev.Mod.Phys.,1999,71:S140-S144.
    [149]Giunti C, Kim C W. Fundamentals of Neutrino Physics and Astrophysics.2007..
    [150]Xing Z z, Zhou S. Neutrinos in particle physics, astronomy and cosmology,2011..
    [151]Wikipedia. http://en.wikipedia.org/..
    [152]Schael S, et al. Precision electroweak measurements on the Z resonance. Phys.Rept.,2006, 427:257-454.
    [153]Ade P, et al. Planck 2013 results. XVI. Cosmological parameters.2013..
    [154]Gninenko S, Krasnikov N, Rubbia A. Search for millicharged particles in reactor neutrino exper-iments:A Probe of the PVLAS anomaly. Phys.Rev.,2007, D75:075014.
    [155]Gando A, et al. Constraints on 13 from A Three-Flavor Oscillation Analysis of Reactor Antineu-trinos at KamLAND. Phys.Rev.,2011, D83:052002.
    [156]Beringer J, et al. Review of Particle Physics (RPP). Phys.Rev.,2012, D86:010001.
    [157]Adamson P, et al. Measurement of the neutrino mass splitting and flavor mixing by MINOS. Phys.Rev.Lett.,2011,106:181801.
    [158]Aseev V, et al. An upper limit on electron antineutrino mass from Troitsk experiment. Phys.Rev., 2011, D84:112003.
    [159]An F, et al. Improved Measurement of Electron Antineutrino Disappearance at Daya Bay. Chin. Phys.,2013, C37:011001.
    [160]Abe K, et al. Search for Differences in Oscillation Parameters for Atmospheric Neutrinos and Antineutrinos at Super-Kamiokande. Phys.Rev.Lett.,2011,107:241801.
    [161]Thummler T. Introduction to direct neutrino mass measurements and KATRIN. Nu-cl.Phys.Proc.Suppl.,2012,229-232:146-151.
    [162]Piquemal F. Future double beta decay experiments. Nucl.Phys.Proc.Suppl.,2013,235-236:273-280.
    [163]Mondal N K. India-based Neutrino Observatory. Pramana,2012,79:1003-1020.
    [164]Clark K, Cowen D. IceCube/DeepCore and IceCube/PINGU:Prospects for few-GeV scale v physics in the ice. Nucl.Phys.Proc.Suppl.,2012,233:223-228.
    [165]IceCube T. PINGU Sensitivity to the Neutrino Mass Hierarchy.2013..
    [166]Kearns E, et al. Hyper-Kamiokande Physics Opportunities.2013..
    [167]Edgecock T, Caretta O, Davenne T, et al. The EUROnu Project. Phys.Rev.ST Accel.Beams, 2013,16:021002.
    [168]Kobayashi T. Super beams. Nucl.Phys.Proc.Suppl.,2005,143:303-308.
    [169]Scholberg K. The Long-Baseline Neutrino Experiment. Nucl.Phys.Proc.Suppl.,2013,237-238:184-186.
    [170]Patzak T. LAGUNA and LAGUNA-LBNO:Future megaton neutrino detectors in Europe. Nu-cl.Instrum.Meth.,2012, A695:184-187.
    [171]Adey D, et al. nuSTORM-Neutrinos from STORed Muons:Proposal to the Fermilab PAC. 2013..
    [172]Choubey S, et al. International Design Study for the Neutrino Factory, Interim Design Report. 2011..
    [173]Gando A, et al. Partial radiogenic heat model for Earth revealed by geoneutrino measurements. Nature Geo.,2011,4:647-651.
    [174]Bellini G, et al. Observation of Geo-Neutrinos. Phys.Lett.,2010, B687:299-304.
    [175]Greisen K. End to the cosmic ray spectrum? Phys.Rev.Lett.,1966,16:748-750.
    [176]Zatsepin G, Kuzmin V. Upper limit of the spectrum of cosmic rays. JETP Lett.,1966,4:78-80.
    [177]Maneira J. The SNO+experiment:status and overview. J.Phys.Conf.Ser.,2013,447:012065.
    [178]Wurm M, et al. The next-generation liquid-scintillator neutrino observatory LENA. As-tropart.Phys.,2012,35:685-732.
    [179]Aartsen M, et al. The IceCube Neutrino Observatory Part Ⅰ:Point Source Searches.2013..
    [180]Aartsen M, et al. The IceCube Neutrino Observatory Part Ⅱ:Atmospheric and Diffuse UHE Neutrino Searches of All Flavors.2013..
    [181]Aartsen M, et al. The IceCube Neutrino Observatory Part Ⅲ:Cosmic Rays.2013..
    [182]Aartsen M, et al. The IceCube Neutrino Observatory Part Ⅳ:Searches for Dark Matter and Exotic Particles.2013..
    [183]Aartsen M, et al. The IceCube Neutrino Observatory Part Ⅴ:Neutrino Oscillations and Supernova Searches.2013..
    [184]Aartsen M, et al. The IceCube Neutrino Observatory Part Ⅵ:Ice Properties, Reconstruction and Future Developments.2013..
    [185]Ageron M, et al. ANTARES:the first undersea neutrino telescope. Nucl.Instrum.Meth.,2011, A656:11-38.
    [186]Aab A, et al. The Pierre Auger Observatory:Contributions to the 33rd International Cosmic Ray Conference (ICRC 2013).2013..
    [187]Abbasi R, et al. The Design and Performance of IceCube DeepCore. Astropart.Phys.,2012, 35:615-624.
    [188]Hernandez-Rey J J. Neutrino Telescopes in the Mediterranean Sea. J.Phys.Conf.Ser.,2009, 171:012047.
    [189]Avrorin A, et al. The prototyping/early construction phase of the BAIKAL-GVD project.2013..
    [190]Boser S. Prospects for a radio air-shower detector at South Pole.2012..
    [191]Klein S R. ARIANNA:A radio detector array for cosmic neutrinos on the Ross Ice Shelf. IEEE Trans.Nucl.Sci.,2013,60(2):637-643.
    [192]Aguilar-Arevalo A, et al. Evidence for neutrino oscillations from the observation of anti-neutrino (electron) appearance in a anti-neutrino(muon) beam. Phys.Rev.,2001, D64:112007.
    [193]Aguilar-Arevalo A, et al. Event Excess in the MiniBooNE Search for vμ→ve Oscillations. Phys.Rev.Lett.,2010,105:181801.
    [194]Mention G, Fechner M, Lasserre T, et al. The Reactor Antineutrino Anomaly. Phys.Rev.,2011, D83:073006.
    [195]Huber P. On the determination of anti-neutrino spectra from nuclear reactors. Phys.Rev.,2011, C84:024617.
    [196]Giunti C, Laveder M. Statistical Significance of the Gallium Anomaly. Phys.Rev.,2011, C83:065504.
    [197]Giunti C, Laveder M, Li Y, et al. Update of Short-Baseline Electron Neutrino and Antineutrino Disappearance. Phys.Rev.,2012, D86:113014.
    [198]Giunti C, Laveder M, Li Y, et al. Short-Baseline Electron Neutrino Oscillation Length After Troitsk. Phys.Rev.,2013, D87:013004.
    [199]Magg M, Wetterich C. Neutrino Mass Problem and Gauge Hierarchy. Phys.Lett.,1980, B94:61.
    [200]Schechter J, Valle J. Neutrino Masses in SU(2) x U(1) Theories. Phys.Rev.,1980, D22:2227.
    [201]Cheng T, Li L F. Neutrino Masses, Mixings and Oscillations in SU(2) x U(1) Models of Electroweak Interactions. Phys.Rev.,1980, D22:2860.
    [202]Mohapatra R N, Senjanovic G. Neutrino Masses and Mixings in Gauge Models with Spontaneous Parity Violation. Phys.Rev.,1981, D23:165.
    [203]Schechter J, Valle J. Neutrino Decay and Spontaneous Violation of Lepton Number. Phys.Rev., 1982, D25:774.
    [204]Antusch S, King S F. Type II Leptogenesis and the neutrino mass scale. Phys.Lett.,2004, B597:199-207.
    [205]Georgi H, Nanopoulos D V. Ordinary Predictions from Grand Principles:T Quark Mass in 0(10). Nucl.Phys.,1979, B155:52.
    [206]Fritzsch H, Minkowski P. Unified Interactions of Leptons and Hadrons. Annals Phys.,1975, 93:193-266.
    [207]Mohapatra R N, Senjanovic G. Neutrino Mass and Spontaneous Parity Violation. Phys.Rev.Lett., 1980,44:912.
    [208]Pati J C, Salam A. Lepton Number as the Fourth Color. Phys.Rev.,1974, D10:275-289.
    [209]Kwon H, Boehm F, Hahn A, et al. Search for Neutrino Oscillations at a Fission Reactor. Phys.Rev., 1981, D24:1097-1111.
    [210]Zacek G, et al. Neutrino Oscillation Experiments at the Gosgen Nuclear Power Reactor. Phys.Rev., 1986, D34:2621-2636.
    [211]Declais Y, Favier J, Metref A, et al. Search for neutrino oscillations at 15-meters,40-meters, and 95-meters from a nuclear power reactor at Bugey. Nucl.Phys.,1995, B434:503-534.
    [212]Armbruster B, et al. Upper limits for neutrino oscillations muon-anti-neutrino-> electron-anti-neutrino from muon decay at rest. Phys.Rev.,2002, D65:112001.
    [213]Aguilar-Arevalo A, et al. Improved Search for vμ-ve Oscillations in the MiniBooNE Experiment. Phys.Rev.Lett.,2013,110:161801.
    [214]Dydak F, Feldman G, Guyot C, et al. A Search for Muon-neutrino Oscillations in the Delta m**2 Range 0.3-eV**2 to 90-eV**2. Phys.Lett.,1984, B134:281.
    [215]Astier P, et al. Search for nu(mu)-> nu(e) oscillations in the NOMAD experiment. Phys.Lett., 2003, B570:19-31.
    [216]Borodovsky L, Chi C, Ho Y, et al. Search for muon-neutrino oscillations muon-neutrino-> electron-neutrino (anti-muon-neutrino -> anti-electron-neutrino in a wide band neutrino beam. Phys.Rev.Lett.,1992,68:274-277.
    [217]Apollonio M, et al. Search for neutrino oscillations on a long baseline at the CHOOZ nuclear power station. Eur.Phys.J.,2003, C27:331-374.
    [218]Franke A. Double Chooz:Results and Perspectives. Nucl.Phys.Proc.Suppl.,2013,237-238:71-76.
    [219]Boehm F, Busenitz J, Cook B, et al. Final results from the Palo Verde neutrino oscillation experiment. Phys.Rev.,2001, D64:112001.
    [220]Ahn J, et al. Observation of Reactor Electron Antineutrino Disappearance in the RENO Experi-ment. Phys.Rev.Lett.,2012,108:191802.
    [221]Ahn M, et al. Indications of neutrino oscillation in a 250 km long baseline experiment. Phys.Rev.Lett.,2003,90:041801.
    [222]Ahn M, et al. Measurement of Neutrino Oscillation by the K2K Experiment. Phys.Rev.,2006, D74:072003.
    [223]Michael D, et al. Observation of muon neutrino disappearance with the MINOS detectors and the NuMI neutrino beam. Phys.Rev.Lett.,2006,97:191801.
    [224]Abe K, et al. The T2K Experiment. Nucl.Instrum.Meth.,2011, A659:106-135.
    [225]Ayres D, et al. NOvA:Proposal to build a 30 kiloton off-axis detector to study nu(mu)-> nu(e) oscillations in the NuMI beamline.2004..
    [226]Ambrosio M, et al. Measurement of the atmospheric neutrino induced upgoing muon flux using MACRO. Phys.Lett.,1998, B434:451-457.
    [227]Sanchez M C, et al. Measurement of the L/E distributions of atmospheric neutrinos in Soudan 2 and their interpretation as neutrino oscillations. Phys.Rev.,2003, D68:113004.
    [228]Bandyopadhyay A, et al. Physics at a future Neutrino Factory and super-beam facility. Rep-t.Prog.Phys.,2009,72:106201.
    [229]Zucchelli P. A novel concept for a anti-nu/e/nu/e neutrino factory:The beta beam. Phys.Lett., 2002, B532:166-172.
    [230]Arpesella C, et al. Direct Measurement of the Be-7 Solar Neutrino Flux with 192 Days of Borexino Data. Phys.Rev.Lett.,2008,101:091302.
    [231]Giunti C, Laveder M. Status of 3+1 Neutrino Mixing. Phys.Rev.,2011, D84:093006.
    [232]Kopp J, Machado P A N, Maltoni M, et al. Sterile Neutrino Oscillations:The Global Picture. JHEP,2013,1305:050.
    [233]Hamann J, Hasenkamp J. A new life for sterile neutrinos:resolving inconsistencies using hot dark matter.2013..
    [234]Gonzalez-Garcia M, Maltoni M. Phenomenology with Massive Neutrinos. Phys.Rept.,2008, 460:1-129.
    [235]Abazajian K, Acero M, Agarwalla S, et al. Light Sterile Neutrinos:A White Paper.2012..
    [236]Drewes M. The Phenomenology of Right Handed Neutrinos. Int.J.Mod.Phys.,2013, E22:1330019.
    [237]Palazzo A. Phenomenology of light sterile neutrinos:a brief review. Mod.Phys.Lett.,2013, A28:1330004.
    [238]Volkas R R. Introduction to sterile neutrinos. Prog.Part.Nucl.Phys.,2002,48:161-174.
    [239]Mohapatra R, Smirnov A. Neutrino Mass and New Physics. Ann.Rev.Nucl.Part.Sci.,2006, 56:569-628.
    [240]Diaferio A, Angus G W. The Acceleration Scale, Modified Newtonian Dynamics, and Sterile Neutrinos.2012..
    [241]Archidiacono M, Giusarma E, Hannestad S, et al. Cosmic dark radiation and neutrinos.2013..
    [242]Riemer-Sorensen S, Parkinson D, Davis T M. What is half a neutrino? Reviewing cosmological constraints on neutrinos and dark radiation.2013..
    [243]Di Bari P, King S F, Merle A. Dark Radiation or Warm Dark Matter from long lived particle decays in the light of Planck. Phys.Lett.,2013, B724:77-83.
    [244]Di Valentino E, Melchiorri A, Mena O. Dark Radiation candidates after Planck.2013..
    [245]Mirizzi A, Mangano G, Saviano N, et al. The strongest bounds on active-sterile neutrino mixing after Planck data.2013..
    [246]Said N, Di Valentino E, Gerbino M. Dark Radiation after Planck. Phys.Rev.,2013, D88:023513.
    [247]Verde L, Feeney S M, Mortlock D J, et al. (Lack of) Cosmological evidence for dark radiation after Planck. JCAP,2013,1309:013.
    [248]Wyman M, Rudd D H, Vanderveld R A, et al. nu-LCDM:Neutrinos reconcile Planck with the Local Universe.2013..
    [249]Giunti C, Laveder M.3+1 and 3+2 Sterile Neutrino Fits. Phys.Rev.,2011., D84:073008.
    [250]Giunti C, Laveder M. Implications of 3+1 Short-Baseline Neutrino Oscillations. Phys. Lett.,2011, B706:200-207.
    [251]Kopp J, Maltoni M, Schwetz T. Are there sterile neutrinos at the eV scale? Phys.Rev.Lett.,2011, 107:091801.
    [252]Archidiacono M, Fornengo N, Giunti C, et al. Sterile Neutrinos:Cosmology vs Short-BaseLine Experiments.2013..
    [253]Maltoni M, Schwetz T. Sterile neutrino oscillations after first MiniBooNE results. Phys.Rev., 2007, D76:093005.
    [254]Adamson P, et al. Active to sterile neutrino mixing limits from neutral-current interactions in MINOS. Phys.Rev.Lett.,2011,107:011802.
    [255]Mahn K, et al. Dual baseline search for muon neutrino disappearance at 0.5eV2<Am2<40eV2. Phys.Rev.,2012, D85:032007.
    [256]Cheng G, et al. Dual baseline search for muon antineutrino disappearance at 0.1eV2<Δm2<100eV2. Phys.Rev.,2012, D86:052009.
    [257]Antonello M, et al. Search for anomalies in the ve appearance from a vμ beam.2013..
    [258]Agafonova N, et al. Search for vμ→ve oscillations with the OPERA experiment in the CNGS beam. JHEP,2013,1307:004.
    [259]Martini M, Ericson M, Chanfray G. Neutrino energy reconstruction problems and neutrino oscil-lations. Phys.Rev.,2012, D85:093012.
    [260]Martini M, Ericson M, Chanfray G. Energy reconstruction effects in neutrino oscillation experi-ments and implications for the analysis. Phys.Rev.,2013, D87:013009.
    [261]Conrad J, Ignarra C, Karagiorgi G, et al. Sterile Neutrino Fits to Short Baseline Neutrino Oscil-lation Measurements. Adv.High Energy Phys.,2013,2013:163897.
    [262]Archidiacono M, Fornengo N, Giunti C, et al. Testing 3+1 and 3+2 neutrino mass models with cosmology and short baseline experiments. Phys.Rev.,2012, D86:065028.
    [263]Aguilar-Arevalo A, et al. Unexplained Excess of Electron-Like Events From a 1-GeV Neutrino Beam. Phys.Rev.Lett.,2009,102:101802.
    [264]Nelson A E. Effects of CP Violation from Neutral Heavy Fermions on Neutrino Oscillations, and the LSND/MiniBooNE Anomalies. Phys.Rev.,2011, D84:053001.
    [265]Fan J, Langacker P. Light Sterile Neutrinos and Short Baseline Neutrino Oscillation Anomalies. JHEP,2012,1204:083.
    [266]Kuflik E, McDermott S D, Zurek K M. Neutrino Phenomenology in a 3+1+1 Framework. Phys.Rev.,2012, D86:033015.
    [267]Huang J, Nelson A E. MeV dark matter in the 3+1+1 model. Phys.Rev.,2013, D88:033016.
    [268]Rubbia C, Guglielmi A, Pietropaolo F, et al. Sterile neutrinos:the necessity for a 5 sigma definitive clarification.2013..
    [269]Delahaye J P, Ankenbrandt C, Bogacz A, et al. Enabling Intensity and Energy Frontier Science with a Muon Accelerator Facility in the U.S.:A White Paper Submitted to the 2013 U.S. Com-munity Summer Study of the Division of Particles and Fields of the American Physical Society. 2013..
    [270]Elnimr M, Stancu I, Yeh M, et al. The OscSNS White Paper.2013..
    [271]Adey D, Agarwalla S, Ankenbrandt C, et al. Neutrinos from Stored Muons nuSTORM:Expression of Interest.2013..
    [272]Stanco L, Dusini S, Longhin A, et al. An Appraisal of Muon Neutrino Disappearance at Short Baseline Neutrino Beams.2013..
    [273]Razzaque S, Smirnov A Y. Searching for sterile neutrinos in ice. JHEP,2011,1107:084.
    [274]Giunti C, Li Y. Matter Effects in Active-Sterile Solar Neutrino Oscillations. Phys. Rev.,2009, D80:113007.
    [275]Dighe A S, Liu Q Y, Smirnov A Y. Coherence and the Day-Night Asymmetry in the Solar Neutrino Flux.2007..
    [276]Parke S J. Nonadiabatic Level Crossing in Resonant Neutrino Oscillations. Phys.Rev.Lett.,1986, 57:1275-1278.
    [277]Palazzo A. An estimate of θ14 independent of the reactor antineutrino flux determinations. Phys.Rev.,2012, D85:077301.
    [278]Press W H, Teukolsky S A, Vetterling W T, et al. Numerical Recipes in FORTRAN:The Art of Scientific Computing.1992..
    [279]Akhmedov E K, Tortola M, Valle J. A Simple analytic three flavor description of the day night effect in the solar neutrino flux. JHEP,2004,0405:057.
    [280]Blennow M, Ohlsson T, Snellman H. Day-night effect in solar neutrino oscillations with three flavors. Phys.Rev. D,2004,69:073006.
    [281]Holanda P, Liao W, Smirnov A Y. Toward precision measurements in solar neutrinos. Nucl.Phys., 2004, B702:307-332.
    [282]Liao W. Precise Formulation of Neutrino Oscillation in the Earth. Phys.Rev.,2008, D77:053002.
    [283]Aleshin S S, Kharlanov O G, Lobanov A E. Analytical treatment of long-term observations of the day-night asymmetry for solar neutrinos. Phys. Rev. D,2013,87,:045025.
    [284]Dooling D, Giunti C, Kang K, et al. Matter effects in four neutrino mixing. Phys.Rev.,2000, D61:073011.
    [285]Giunti C, Gonzalez-Garcia M, Pena-Garay C. Four-neutrino oscillation solutions of the solar neutrino problem. Phys.Rev.,2000, D62:013005.
    [286]Palazzo A. Testing the very-short-baseline neutrino anomalies at the solar sector. Phys. Rev., 2011, D83:113013.
    [287]Akhmedov E K, Johansson R, Lindner M, et al. Series expansions for three flavor neutrino oscillation probabilities in matter. JHEP,2004,0404:078.
    [288]Ioannisian A, Smirnov A Y. Neutrino oscillations in low density medium. Phys.Rev.Lett.,2004, 93:241801.
    [289]Ioannisian A, Kazarian N, Smirnov A Y, et al. A Precise analytical description of the earth matter effect on oscillations of low energy neutrinos. Phys.Rev.,2005, D71:033006.
    [290]Long H, Li Y, Giunti C. Day-Night Asymmetries in Active-Sterile Solar Neutrino Oscillations. JHEP,2013,1308:056.
    [291]Dziewonski A, Anderson D. Preliminary reference earth model. Phys.Earth Planet.Interiors,1981, 25:297-356.
    [292]Li Y F, Cao J, Wang Y, et al. Unambiguous Determination of the Neutrino Mass Hierarchy Using Reactor Neutrinos. Phys.Rev.,2013, D88:013008.
    [293]Abbasi R, et al. IceCube Sensitivity for Low-Energy Neutrinos from Nearby Supernovae. As-tron.Astrophys.,2011,535:A109.
    [294]Hayes A, Friar J, Garvey G, et al. Reanalysis of the Reactor Neutrino Anomaly.2013..
    [295]Petcov S. Exact analytic description of two neutrino oscillations in matter with exponentially varying density. Phys.Lett.,1988, B200:373-379.
    [296]Petcov S. On the Oscillations of Solar Neutrinos in the Sun. Phys.Lett.,1988, B214:139-146.
    [297]Kuo T K, Pantaleone J T. Nonadiabatic Neutrino Oscillations in Matter. Phys.Rev.,1989, D39:1930.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700