双尺寸超材料结构的设计及自组装
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超材料的制备方法包括精细加工法和自组装法,由于精细加工法具有设备昂贵、工艺复杂的缺点,不利于其推广应用。采用纳米、亚微米或微米级的球形颗粒进行自组装的方法是合成具有密堆积结构的胶体晶体的有效途径。目前,大部分研究集中于单尺寸胶体晶体的制备,所得到的结构往往局限于面心立方结构(fcc)和六方密堆结构(hcp)。自首次在巴西本士蛋白石中发现双尺寸晶格,双尺寸超材料结构的制备备受关注。
     由二氧化硅胶体球自组装而形成的超材料结构,由于本身结构存在的缺陷及二氧化硅较低的介电常数,其应用受到限制。提高二氧化硅胶体球的表面荷电可有效地减少超材料结构中的缺陷,使超材料结构周期性排列更为有序,从而改善其性能。含有其他高折射率材料的异质超材料结构可提高周期性介电函数的变化幅度,从而提供新的性能。
     本文通过不同St ber工艺过程合成不同粒径和形貌的SiO2胶体球,对三个St ber工艺进行对比分析,并对[TEOS]和[NH3]等工艺因素的影响及反应机理进行了探讨。引入NaCl为电荷控制剂对SiO2胶体球进行表面荷电,以提高其Zeta电位,探索了NaCl用量对SiO2胶体球的形貌、粒径及Zeta电位的影响。
     采用垂直沉积法、双基片法和电泳辅助提拉法制备了单尺寸SiO2胶体晶体,并对其结构和缺陷进行了探讨,分析了不同工艺、表面荷电、煅烧温度、电压及Zeta电位对胶体晶体形貌的影响。对LS_2、LS_4、LS6和LS_x型双尺寸超材料结构进行了设计及计算,并采用垂直沉积法制备出多种同质双尺寸超材料结构,研究了大小胶体球的粒径比及体积比对结构的影响规律,对双尺寸胶体晶体的生长过程进行了探讨,研究了同质双尺寸超材料结构的光学性能。
     采用Pechini溶胶-凝胶法制备了纯相二氧化硅、钛酸钡和氧化铁纳米粉体,探索了络合中间产物的结构和热处理过程,分析了pH值和煅烧温度等工艺因素对纳米粉体晶型、形貌和粒径的影响规律。利用所制备的纳米粉体材料自组装制备了多种异质双尺寸超材料结构,对超材料结构的排列方式进行分析,探讨了纳米粉体材料的种类、填充材料制备工艺及填充方式对异质超材料结构的影响,并探索了异质超材料结构的生长过程。
     论文的主要工作成果如下:
     1)采用三种不同的St ber工艺,通过改变反应物浓度成功合成了粒径分布均匀的单分散SiO_2胶体球、芽型SiO_2胶体球和双尺寸SiO_2胶体球,通过对三个工艺过程中不同反应物浓度下所得SiO_2胶体球的形貌及粒径的比较分析,探索性地对SiO_2胶体球形成机理进行了分析,获得可用于超材料结构制备用胶体球的制备工艺。
     2)采用NaCl改性SiO_2胶体球,获得粒径为443~701nm的单分散SiO_2胶体球,在相同TEOS和氨水的浓度下,与未改性SiO_2胶体球相比,NaCl改性SiO_2胶体球的粒径明显增大,大大提高了SiO_2胶体球的Zeta电位值,当氨水体积为3.5mL时,Zeta电位值平均可提高12.34mV。分别采用垂直沉积法和双基片法制备出六方排列SiO_2胶体晶体,利用NaCl改性SiO_2胶体球可获得有序性更好的六方排列胶体晶体。利用NaCl改性SiO_2胶体球,采用电泳辅助提拉法不仅获得了六方排列(111)结构,也创新性地获得了四方排列(100)胶体晶体,通过计算可知,所得四方排列胶体晶体表面为面心立方结构的(100)晶面。
     3)分别设计了LS_2、LS_4、LS_6和LSx型双尺寸超材料结构,并对其大小球体积比和胶体球的空间占有率进行了计算,利用两种粒径的SiO_2胶体球,采用垂直沉积法制备出了LS_2、LS_4、LS_6、LS_x1和LSx2型双尺寸超材料结构,发现大小胶体球的粒径比及体积比是决定能否形成双尺寸超材料结构及其排列方式的主要影响因素,提出了双尺寸胶体晶体的生长过程,研究了同质双尺寸超材料结构的光学性能,发现365/70nm(80:1)超材料结构的带隙中心波长与LS2型非密堆结构的理论计算值较为吻合,365/70nm(10:1)超材料结构的带隙中心波长与LSx型结构的理论计算值有一定的差距,这均由其胶体球的空间占有率所决定。
     4)采用Pechini溶胶-凝胶法分别制备出符合异质超材料结构用的纳米异质材料,其中所得SiO_2颗粒为非晶态的类球状颗粒,平均粒径分别约为10nm和20nm;所得BaTiO_3粉体为立方相,分别获得20~30nm、40~60nm的类球状颗粒以及20~130nm的类球状和块状颗粒;所得Fe_2O_3粉体为纯α-Fe_2O_3相,所得形貌多样,包括类球状颗粒、类“珊瑚状”板状颗粒和多孔板状颗粒,其中内部小颗粒的粒径为28~60nm。
     5)利用Pechini溶胶-凝胶法制备的纳米粉体探索性地制备了异质双尺寸超材料结构,并成功地获得多种异质双尺寸超材料结构。研究发现,SiO_2纳米颗粒包裹于SiO_2胶体球表面形成芽型结构;利用不同的钛酸钡凝胶可获得两种结构,一种为LS_2、LS_4和LS_6型结构,另一种为钛酸钡颗粒形成于层与层之间胶体球的间隙处;利用Fe_2O_3纳米粉体可制备出类“海胆状”异质结构。
Metamaterials can be prepared by precision process and self-assemblyMethod. The application of precision process is limited for its defects ofexpensive equipment and complex process. The self-assembly of colloidalnano-,submicro-or micro-spherical particles is a useful technique for obtainingcolloidal crystals with close-packed crystal structures. Most of the researcheshave focused on the preparation of colloidal crystals composed of single-sizespheres, and the obtained structures are limited to face-centered cubic (fcc) orhexagonal close-packed (hcp) structures. Since the first discovery of binarysuperlattice in native Brazilian opal, synthesis of binary metamaterial structureshas gained growing interest.
     The application of metamaterials self-assembled by SiO_2is limited for thestructure defects and low dielectric constant of SiO_2colloidal spheres. Withincreasing the surface charge of SiO_2colloidal spheres, the defects ofmetamaterials decrease which can improve the performance of metamaterials.Metamaterial heterostructures which contain the materials with high refractiveindex widen the range of periodicity dielectric function that could provide newperformances.
     The thesis worked on the preparation of silica particles with different sizedistributions and surface morphologies by St ber methods with different mixingprocesses. The comparison of three st ber methods was investigated. Thereaction conditions including TEOS and NH3concentrations and the formationmechanism of particles were also investigated. The silica spheres were modifiedby electrolyte NaCl to enhance the Zeta potential. The effects of NaClconcentration on the morphology, size and Zeta potential were discussed.
     Single-size silica colloidal crystals were synthesized by vertical depositionmethod, dual substrates method and electrophoresis-assisted self-assembly. The morphology, structure and defects of colloidal crystals were investigated. Theeffects of processes, surface charge, calcination temperature, voltage and Zetapotential on the morphology of colloidal crystals were discussed. The LS_2、LS_4、LS_6and LS_xbinary metamaterial structures were designed and calculated. Andseveral binary metamaterial structures were prepared by vertical depositionmethod. The effects of particle size ratio and volume ratio on the structure ofbinary colloidal crystals were discussed. The formation and optical property ofbinary colloidal crystals were studied.
     Single-phase SiO_2, BaTiO_3and Fe_2O_3nano-particles were synthesized viaPechini sol-gel method. The structural coordination and thermal behavior ofas-prepared polymeric intermediates were investigated. The effects of pH valueand calcination temperature on the crystalline phase, morphology and particlesize of nano-particles were studied. Several binary metamaterial heterostructureswere prepared by self-assembly method with the obtained nano-powders. Thestructure of binary metamaterial heterostructures was discussed. The effects ofthe types and fabricating technique of nano-powders and filling process on thestructure of metamaterial heterostructures were studied. And the growth ofmetamaterial heterostructures was investigated.
     The results were listed:
     1) Uniform, monodisperse silica spheres, budded silica spheres andbinary silica spheres were successfully prepared by three St berprocesses. By comparing the morphology and particle size of silicaparticles obtained by three St ber processes with different reactantsconcentrations, the formation mechanism of colloidal silica sphereswas analysed.
     2) Monodispersed SiO_2colloidal spheres with about443~701nm wereprepared by St ber method when NaCl electrolyte was introducedinto the system. At the same [TEOS] and [NH_3], the NaCl modifiedSiO_2colloidal spheres are larger than unmodified SiO_2colloidalspheres. And the Zeta potential of the modified SiO_2spheres isimproved. When VNH3=3.5mL, Zeta potential of the modified SiO_2spheres is averagely heightened12.34mV. Hexagonal array colloidalcrystals were prepared by vertical deposition method and dual substrates method. The NaCl modified SiO_2spheres couldself-assemble into more ordered structure compared to theunmodified SiO_2spheres. Besides hexagonal array structure, squarearray structure was also synthesized by electrophoresis-assistedself-assembly. And the obtained square array structure is the (111)direction of face-centered cubic structure.
     3) The LS_2, LS_4, LS_6and LSxbinary metamaterial structures weredesigned. The L/S (volume ratio) and space occupancy of colloidalspheres were calculated. LS_2, LS_4, LS_6, LS_x1and LSx2binarymetamaterial structures were successfully prepared by verticaldeposition method. The structure of binary metamaterials is decidedby particle size ratio and volume ratio of colloidal spheres. Thegrowth mechanism of binary metamaterial structures was proposed.The optical properties of binary metamaterial structures wereresearched. The results show that the photonic band gap of365/70nm(80:1) binary metamaterial structure is in accordance with thetheoretical prediction of LS2non-close-packed binary structure.However, the photonic band gap of365/70nm (10:1) binarymetamaterial structure is different from the theoretical prediction ofLSxbinary structure.
     4) The nano-powders which could be used to prepare the metamaterialheterostructures were synthesized by Pechini sol-gel method. Theobtained SiO_2powders are amorphous particles with about10nm or20nm. The obtained BaTiO_3powders are cubic phase particles whichare found to be20~30nm globe-like particles、40~60nm globe-likeparticles or20~130nm globe-like particles and blocks. The Fe_2O_3powders are pure α-Fe_2O_3phase. And the globe-like particles,coral-like blocks and porous blocks can be obtained. The particle sizeof small particles is about28~60nm.
     5) Several binary metamaterial heterostructures were successfullysynthesized with the nano-powders prepared by Pechini sol-gelmethod. The results show that the budded structure is obtained withSiO_2nano-particles. Two binary metamaterial heterostructures can be prepared with BaTiO_3powders. One includes LS_2, LS_4and LS_6strucrure, and another one includes the BaTiO_3particles which fillinto the voids of colloidal spheres between the layers. The urchin-likemetamaterial heterostructure is obtained with Fe_2O_3nano-powders.
引文
[1] Wikipedia. Metamaterial [EB/OL]. http://en.wikipedia.org/wiki/Metamaterial,2008-09.
    [2]周济.超材料metamaterials:超越材料性能的自然极限[J].四川大学学报(自然科学版),2005,42(S1):15-16.
    [3] Leskova T. A., Maradudin A. A., Garcia-Guerrero E. E., et sl. Structured surfaces asoptical metamaterials [J]. Metamaterials,2007,1:19-39.
    [4] Ignace B., Joris P., Femke O. Homogenization of metamaterials using full-wavesimulations [J]. Metamaterials,2008,2:101-112.
    [5]冯瑞华.超材料研究文献计量分析[J].材料导报,2009,23(4):66-71.
    [6] Ilin N.V., Smirnov A. I., Kondratiev I. G. Features of surface modes in metamateriallayers [J]. Metamaterials,2009,3:82-89.
    [7] Lin S. Y., Fleming J. G., Hetherington D. L., et al. A three-dimensional photoniccrystal operating at infrared wavelengths [J]. Nature,1998,394:251-253.
    [8] Noda S., Tomoda K., Yamamoto N., et al. Full three-dimensional photonic band gapcrystals at near-infrared wavelengths [J]. Science,2000,289:604-606.
    [9] Ferrand P., Seekamp J., Egen M., et al. Direct electron-beam lithography on opal filmsfor deterministic defect fabrication in three-dimensional photonic crystals [J].Microelectron. Eng.,2004,73-74:362-366.
    [10] King J. S., Heineman D., Graugnard E., et al. Atomic layer deposition in porousstructures:3D photonic crystals [J]. Appl. Surf. Sci.,2005,244:511-516.
    [11] Subramania G., Lee Y. J., Hernandez-Sanchez B. A., et al. CdSe infiltrated TiO2basedomnidirectional photonic crystals for visible light control [J]. Photonic. Nanostruct.,2008,6:12-18.
    [12] Yang Y. L., Yan H. W., Fu Z. P., et al. Enhanced photoluminescence fromthree-dimensional ZnO photonic crystals [J]. Solid State Communications,2006,139:218-221.
    [13] Veselago V. G. The Electrodynamics of substances with simultaneously negativevalues of [permittivity] and [permeability][J].1968,10:509-514.
    [14]高仁璟,史鹏飞,刘书田,等.左手材料微结构构型的传输线比拟模型[J].物理学报,2010,59(12):8566-8573.
    [15] Shelby R. A., Smith D. R., Schultz S. Experimental verification of a negative index ofrefraction [J]. Science,2001,292:77-79.
    [16]赵伟,赵晓鹏.左手材料的研究进展[J].材料导报,2006,20(2):26-28.
    [17]刘晓旭,王选章.左手材料的性质及研究动态[J].长春大学学报,2006,16(5):31-33.
    [18] Clavijo S., DiazR E., McKinzie W. E. Designmethodology for sievenpiperhigh-Impedance surfaces: an artificial magnetic conductor for positive gain electricallysmall antennas [J]. IEEE Trans. Antennas Propagat.,2003,51:2678-2690.
    [19] Zhang Y., Hagen J., Younis M., et al. Planar artificialmagnetic conductors and patchantennas [J]. IEEE Trans. Antennas Propagat.,2003,51:2704-2710.
    [20]王泉,谭渊,杨勇,等.人工磁导体在超近反导系统中的应用[J].国防科技大学学报,2012,34(1):123-126.
    [21] Shumpert J. D. Modeling of periodic dielectric structures (electromagnetic crystals)
    [D]. Ann Arbor: Dissertation of University of Michigan,2001.
    [22] Lu X. S., Lee Y., Yang S. F., et al. Fabrication of electromagneticcrystals by extrusionfreeforming [J]. Metamaterials,2008,2(1):36-44.
    [23] Lin Q. C., Zhu F. M., He S. L. A new photonic bandgap cover for a patch antenna witha photonic bandgap substrate [J]. J. Zhejiang Univ-Sc,2004,5(3):269-273.
    [24] Mirrta R., Chan C. H., Cwik T. Techniques for analyzing frequency selectivesurfaces-a review [J]. Proc. the IEEE,1998,76(12):1593-1615.
    [25] Munk B. Frequency selective surfaces: theory and design [M]. New York: John Wiley&Sons,2000.
    [26] Valentine J., Zhang S., Zentgraf T., et al. Three-dimensional optical metamaterial witha negative refractive index [J]. Naure,2008,455(7211):376-379.
    [27] Yao J., Liu Z. W., Liu Y. M. Optical negative refraction in bulk metamaterials ofnanowires [J]. Science,2008,321(5891):930.
    [28] Pendry J. B. Negative refraction makes a perfect lens [J]. Phys. Rev. Lett.,2000,85(18):3966-3969.
    [29]饶艳英,钱卫平.有序金属纳米壳材料[J].化学进展,2011,23(12):2489-2497.
    [30]万勇,赵修松,蔡仲雨,等.利用水平沉积法制作PS微球二元胶体薄膜及其它复杂结构[J].人工晶体学报,2011,40(5):1295-1298.
    [31]王充,彭同江,段涛.异质结构光子晶体的制备与带隙特性研究[J].人工晶体学报,2010,39(2):474-480.
    [32] Toader O., John S. Proposed Square Spiral Microfabrication Architecture for LargeThree-Dimensional Photonic Band Gap Crystals [J]. Science,2001,292:1133-1135.
    [33] Velev O. D., Lenhoff A. M. Colloidal crystals as templates for porous materials [J].Curr. Opin. Colloid Interface Sci.,2000,5(1-2):56-63.
    [34]快素兰.光子晶体的胶体模板法制备及性能研究[D].上海:上海硅酸盐研究所,2002.
    [35] Zhang K. Q., Liu X. Y. In situ observation of colloidal monolayer nucleation drivenby an alternating electric field [J]. Nature,2004,429:739-743.
    [36] Chen X., Sun Z. Q., Chen Z. M., et al. Two-substrate vertical deposition for stablecolloidal crystal chips [J]. Chinese Sci Bull,2005,50(8):765-769.
    [37] Braun P. V., Wiltzius P. Microporous materials: Electrochemically grown photoniccrystals [J]. Nature,1999,402:603-604.
    [38] Jonson N. P., Mccomb O. W., Riche A., et al. Synthesis and optical properties of opaland inverse opal photonic crystals [J]. Synthetic. Met.,2001,116:469-473.
    [39] Vlsaov Y. A., Bo X. Z., Sturm J. C., et al. On-chip natural assembly of silicon photonicbandgap crystals [J]. Nature,2001,414:289-293.
    [40] Denkov N. D., Velev O. D., Kralchevsky P. A., et al. Two-dimensional crystallization[J]. Nature,1993,361:26-28
    [41] Im S. H., Kim M. H., Park O. O. Thickness control of colloidal crystals with asubstrate dipped at a tilted angle into a colloidal suspension [J]. Chem. Mater.,2003,15(9):1797-1802.
    [42]周倩,董鹏.二氧化硅胶体晶体制备方法进展[J].化工新型材料,2003,31(6):16-18.
    [43] Sharma V., Yan Q. F., Wong C. C., et al. Controlled and rapid ordering of oppositelycharged colloidal particles [J]. J. Colloid Interf. Sci.,2009,333:230-236.
    [44] Dechézelles J. F., Massé P., Cloutet E., et al. Building planar defects into colloidalcrystals using particles of different chemical nature [J]. Colloid Surface A,2009,343:8-11.
    [45] Nina V. D., Mark A. H., Vancso G. J. Layer-by-layer templated growth of colloidalcrystals with packing and pattern control [J]. Colloid Surface A,2009,342:8-15.
    [46] Xia Y. N., Yin Y. D., Lu Y., et al. Template-Assisted Self-Assembly of SphericalColloids into Complex and Controllable Structures [J]. Adv. Funct. Mater.,2003,13(12):907-918.
    [47] Maury P. A., Péter M., Crespo-Biel O., et al. Patterning the molecular printboard:patterning cyclodextrin monolayers on silicon oxide using nanoimprint lithography,and its application in3D multilayer nanostructuring [J]. Nanotechnology,2007,18:044007.
    [48] Maury P. A., Reinhoudt D. N., Huskens J. Assembly of nanoparticles on patternedsurfaces by noncovalent interactions [J]. Curr. Opin. Colloid In.,2008,13:74-80.
    [49] Maury P., Escalante M., Reinhoudt D. N., et al. Directed assembly of nanoparticlesonto polymer imprinted or chemically patterned templates fabricated by nanoimprintlithography [J]. Adv. Mater.,2005,17:2718-2723.
    [50] St ber W., Fink A., Bohn E. Controlled Growth of Monodisperse Silica Spheres in theMicron Size Range [J]. J. Colloid Interf. Sci.,1968,26:62-69.
    [51] Howard A. G., Khdary N. H. Spray Synthesis of Monodisperse Sub-micron SphericalSilica Particles [J]. Mater. Lett.,2007,61:1951-1954.
    [52]符远翔,孙艳辉,葛杏心.单分散纳米二氧化硅的制备与表征[J].硅酸盐通报,2008,27(1):154-159.
    [53]毛丹,姚建曦,王丹.有机溶剂对正硅酸乙酯水解制备二氧化硅微球的影响[J].稀有金属材料与工程,2007,36(1):180-183.
    [54]孙露敏. sol-gel法在有机-无机杂化体系中制备二氧化硅微粒[J].分子科学学报,2008,24(4):284-287.
    [55]朱捷,朱红.正交设计在单分散球形SiO2制备中的研究[J].功能材料,2005,4(36):577-579.
    [56]陈宗淇,王光信,徐桂英.胶体与界面化学[M].北京:高等教育出版社,2001.
    [57]郑典模,苏学军.等.化学沉淀法制备纳米SiO2的研究[J].南昌大学学报(工科版),2003,25(2):39-41.
    [58]王纪霞,张秋禹,苗振华,等.单分散二氧化硅微球的制备及粉体分散方法的研究进展[J].材料科学与工程,2008,26(5):798-801.
    [59]王丽君,王力.二氧化硅种子在硅溶胶粒径增长中的行为研究[J].化工文摘,2008,1:36-40.
    [60] Nozawa K., Gailhanou H., Raison L., et al. Smart control of monodisperse st bersilica particles: effect of reactant addition rate on growth process [J]. Langmuir,2005,21(4):1516-1523.
    [61] Zhao D. Y., Feng J. L., Huo Q. S. Triblock copolymer syntheses of mesoporous silicawith periodic50to300angstrom pores [J]. Science,1998,279:548-552.
    [62]庄清平.白炭黑与单分散二氧化硅粒子补强橡胶的差异[J].橡胶工业,2004,51(1):138-142.
    [63]阮娟,王君,陈明强.纳米二氧化硅的表面改性研究[J].化学与生物工程,2011,28(3):22-23.
    [64]程冰.光子晶体用纳米颗粒的制备改性自组装及其光学性能[D].西安:陕西科技大学,2008.
    [65] Sanders J. V., Murray M. J. Ordered arrangements of spheres of two different sizes inopal [J]. Nature,1978,275:201-203.
    [66] Velikov K. P., Christova C. G., Dullens R. A., et al. Layer-by-layer growth of binarycolloidal crystals [J]. Science,2002,296:106-109.
    [67]李澄,齐利民.胶体晶体[J].大学化学,2006,21(5):1-12.
    [68] Wan Y., Cai Z. Y., Xia L. H., et al. Simulation and fabrication of binary colloidalphotonic crystals and their inverse structures [J]. Mater. Lett.,2009,63:2078-2081.
    [69] Cho Y. S., Yi G. R., Kim S. H., et al. Homogeneous and heterogeneous binary colloidalclusters formed by evaporation-induced self-assembly inside droplets [J]. J. ColloidInterf. Sci.,2008,318:124-133.
    [70] Duan G. T., Cai W. P., Luo Y. Y., et al. Design and electrochemical fabrication of goldbinary ordered micro/nanostructured porous arrays via step-by-step colloidallithography [J]. Langmuir,2009,25:2558-2562.
    [71] Redl F. X., Cho K. S., Murray C. B., et al. Three-dimensional binary superlattices ofmagnetic nanocrystals and semiconductor quantum dots [J]. Nature,2003,423:968-971.
    [72] Shevchenko E. V., Talapin D. V., Kotov N. A., et al. Structural diversity in binarynanoparticle supperlattices [J]. Nature,2006,439:55-59.
    [73]万勇,蔡仲雨,赵修松,等.自组装方法与三维光子晶体制作[J].中国科学,2010,40(12):1794-1806.
    [74] Palacios-Lidón E., Juárez B. H., Castillo-Martínez E., et al. Optical and morphologicalstudy of disorder in opals [J]. J. Appl. Phys.,2005,97(6):063502-063508.
    [75] Gates B., Xia Y. Photonic band-gap properties of opaline lattices of spherical colloidsdoped with various concentrations of smaller colloids [J]. Appl. Phys. Lett.,2001,78(21):3178-3180.
    [76] Jonsson F., Torres C. M. S., Seekamp J., et al. Artificially inscribed defects in opalphotonic crystals [J]. Microelectron. Eng.,2005,78-79:429-435.
    [77] Braun P. V., Rinne S. A., García-Santamaría F. Introducing defects in3D photoniccrystals: State of the art [J]. Adv. Mater.,2006,18(20):2665-2678.
    [78]严鸿维,张林,朱方华,等.二氧化硅光子晶体异质结构的制备与性质研究[J].光学学报,2010,30(12):3592-3596.
    [79]范宝林,向礼琴,马鹤立,等.海胆状Ag@TiO2超材料的制备与平板聚焦效应[J].材料导报,2011,25(8):19-22.
    [80]丁观军,祝名伟,钱国栋,等.单分散SiO2/Ag/SiO2核壳结构微球制备及自组装光子晶体[J].硅酸盐学报,2007,35(1):81-84.
    [81]王井伟,韩培德,夏伶勤,等. T a2O5/MgF2异质结构三维光子晶体的偏振性[J].光子学报,2010,39(5):839-841.
    [82]严鸿维,张林,李波,等.孔径梯度变化的聚苯乙烯多孔薄膜的制备[J].强激光与粒子束,2010,22(12):2897-2900.
    [83] Duan L. L., You B., Wu L. M., et al. Facile fabrication of mechanochromic-responsivecolloidal crystal films [J]. J. Colloid Interf. Sci.,2011,353:163-168.
    [84]黄学光,杨正文,孙丽,等.二元胶体晶体及二氧化硅复杂有序介孔膜的制备[J].稀有金属材料与工程,2009,38(增刊2):344-346.
    [85]何龙君,徐园园,陈佳斌,等. SiO2/ZnO三维光子晶体的制备及光学性质[J].科学技术与工程,2010,10(32):7878-7885.
    [86] Alessandri I., Zucca M., Ferroni M., et al. Tailoring the pore size and architecture ofCeO2/TiO2core/shell inverse opals by atomic layer deposition [J]. Small,2009,5(3):336-340.
    [87] Costa C. A. R., Valadares L. F., Galembeck F. St ber silica particle size effect on thehardness and brittleness of silica monoliths [J]. Colloid Surface A,2007,302:371-376.
    [88]赵贝贝,田彩华,王克宇,等.两相溶胶-凝胶法制备微米二氧化硅[J].无机盐工业,2009,41(6):37-39.
    [89]党文修,韩书华,亓贯林,等.棒状有序纳米介孔二氧化硅的合成[J].化学通报,2006,6:430-433.
    [90]张琳,翟江,李克训,等. CaCl2电解质对制备二氧化硅微球的影响[J].功能材料,2009,10(40):1656-1659.
    [91]何清玉,郭锴,王琳.超重力反应沉淀法制备超细二氧化硅[J].无机盐工业,2005,37(9):26-28.
    [92] Huang Y., Pemberton J. E. Synthesis of uniform, spherical sub-100nm silica particlesusing a conceptual modification of the classic LaMer model [J]. Colloid Surface A,2010,360:175-183.
    [93] Wang X. D., Shen Z. X., Sang T., et al. Preparation of spherical silica particles byst ber process with high concentration of tetra-ethyl-orthosilicate [J]. J. Colloid Interf.Sci.2010,341:23-29.
    [94] Kust P. R., Hendel R. A., Markowitz M. A., et al. Effect of surfactant and oil type onthe solution synthesis of nanosized silica [J]. Colloid Surface A,2000,168:207-214.
    [95] Liu X. M., He J. Hierarchically structured superhydrophilic coatings fabricated byself-assembling raspberry-like silica nanospheres [J]. J. Colloid Interf. Sci.,2007,314:341-345.
    [96] Chen H. M., He J. H. Rapid evaporation-induced synthesis of monodisperse buddedsilica spheres [J]. J. Colloid Interf. Sci.,2007,316:211-215.
    [97]闫志军.可见光区域三维SiO2光子晶体的制备研究[D].兰州:兰州大学,2006.
    [98] Wang H. C., Wu C. Y., Chung C. C., et al. Analysis of parameters and interactionbetween parameters in preparation of uniform silicon dioxide nanoparticles usingresponse surface methodology [J]. Ind. Eng. Chem. Res.,2006,45:8043-8048.
    [99] Bogush G. H., Zukoski IV. CF. Uniform silica particle precipitation: an aggregativegrowth model [J]. J. Colloid Interf. Sci.,1991,142:19-34.
    [100] Suslick K. S., Doktycz S. J., Flint E. B. On the origin of sonoluminescence andsonochemistry [J]. Ultrasonics,1990,28:280-290.
    [101] Enomoto N., Katsumoto M., Nakagawa Z. Effect of ultrasound on thedissolution-precipitation process in the aluminum hydroxide-water system [J]. J.Ceram. Soc. Jap.,1994,102:1105-1110.
    [102] Enomoto N., Koyano T., Nakagawa Z. Effect of ultrasound on synthesis of sphericalsilica [J]. Ultrason. Sonochem.,1996,3: S105-S109.
    [103] Shukla B. S., Johari G. P. Effect of ethanol on the density and morphology ofmonolithic SiO2glass prepared by the sol-gel method [J]. J. Non-Cryst. Solids,1988,101:263-270.
    [104]方俊. SiO2光子晶体的自组装制备及其光子带隙性质研究[D].西安:陕西科技大学,2007.
    [105] Szekeres M., Kamalin O., Grobet P. G., et al. Two-dimensional ordering of St bersilica particles at the air/water interface [J]. Colloid Surface A,2003,227:77-83.
    [106] Green D. L., Jayasundara S., Lam Y. F., et al. Chemical reaction kinetics leading tothe first Stober silica nanoparticles-NMR and SAXS investigation [J]. J. Non-Cryst.Solids,2003,315:166-179.
    [107] Matsoukas T., Gulari E. Dynamics of growth of silica particles fromammonia-catalyzed hydrolysis of tetra-ethyl-orthosilicate [J]. J. Colloid Interface Sci.,1988,124(1):252-261.
    [108] Matsoukas T., Gulari E. Monomer-addition growth with a slow initiation step: Agrowth model for silica particles from alkoxides [J]. J. Colloid Interface Sci.,1989,132(1):13-21.
    [109] van Blaaderen A., Kentgens A. P. M. Particle morphology and chemicalmicrostructure of colloidal silica spheres made from alkoxysilanes [J]. J. Non-Cryst.Solids,1992,149(3):161-178.
    [110] Chen S. L., Dong P., Yang G. H., et al. Kinetics of formation of monodispersecolloidal silica particles through the hydrolysis and condensation oftetraethylorthosilicate [J]. Ind. Eng. Chem. Res.1996,35(12):4487-4493.
    [111] Sinitskii A. S., Tretyakov Y. D., Knolko A. V. Silica photonic crystals: synthesis andoptical properties [J]. Solid State Ionics,2004,172:477-479.
    [112] Wang H., Yan K. P., Xie J., et al. Fabrication of ZnO colloidal photonic crystal byspin-coating method [J]. Mat. Sci. Semicon. Proc.,2008,11:44-47.
    [113] Liddell C. M., Summers C. J. Nonspherical ZnS colloidal building blocks forthree-dimensional photonic crystals [J]. J. Colloid Interface Sci.,2004,274:103-106.
    [114] Xie J., Deng H., Xu Z. Q., et al. Photonic Crystals Growth From ZnO ColloidalSpheres [J]. Journal of Sichuan University (Natural Science Edition),2005,42(2):183-186.
    [115] Wang W., Gu B. H., Liang L. Y., et al. Fabrication of two-and three-dimensionalsilica nanocolloidal particle arrays [J]. J. Phys. Chem. B.,2003,107:3400-3404.
    [116]刘立营,王秀峰,章春香,等.钠离子改性二氧化硅微球的制备及其光子晶体自组装[J].科学通报,2009,54(12):1706-1710.
    [117] Wang W., Gu B. H., Liang L. Y., et al. Fabrication of near-infrared photonic crystalsusing highly monodisperse submicrometer SiO2spheres [J]. J. Phys. Chem. B.,2003,107:12113-12117.
    [118]伍媛婷,王秀峰,王列松,等.丁二酸改性电子墨水用球形SiO2颗粒的FTIR及XPS分析[J].液晶与显示,2006,21(6):649-654.
    [119]方俊,王秀峰.丁二酸改性二氧化硅胶体球的制备及其胶体晶体的组装[J].科学通报,2006,51(24):2842-2846.
    [120]伍媛婷,王秀峰.二氧化硅胶体球的制备、改性及其胶体晶体的组装[J].功能材料与器件学报,2011,17(3):323-326.
    [121] Cheng B., Wang X. F., Wang L. S., et al. Surface modification of sub-micronspherical SiO2particles with butanedioic acid for electrophoresis intetrachloroethylene [J]. Materials letters,2007,61:1350-1353.
    [122] Lee M. H., Beyer F. L., Furst E. M. Synthesis of monodisperse fluorescent core-shellsilica particles using a modified St ber method for imaging individual particles indense colloidal suspensions [J]. J. Colloid Interface Sci.,2005,288:114-123.
    [123] Blaaderren V. A., Geest V. J., Vrij A. Monodisperse colloidal silica spheres fromtetraalkoxysilanes: particle formation and growth mechanism [J]. J. Colloid.Interface.Sci.,1992,154:481-501.
    [124] Pantina J.P., Furst E.M. Directed assembly and rupture mechanics of colloidalaggregates [J]. Langmuir,2004,20(10):3940-3946.
    [125]李葵英.界面与胶体的物理化学[M].哈尔滨:哈尔滨工业大学出版社,1998,155-183.
    [126]宋世谟,王正烈,李文彬.物理化学[M].北京:高等教育出版社,2001,394-425.
    [127]刘立营,王秀峰,程冰,等. NaCl改性SiO2微球的制备及其自组装光子晶体研究[J].功能材料与器件学报,2009,15(4):345-349.
    [128] Bogush G. H., Zukoski C. F. Studies of the kinetics of the precipitation of uniformsilica particles through the hydrolysis and condensation of silica alkoxides [J]. J.Colloid Interface Sci.,1990,142:1-18.
    [129] Philipse A. P., Vrij A. Preparation and properties of nanaqueous model dispersions ofchemically modified, charged silica spheres [J]. J. Colloid Interface Sci.,1989,128:121-136.
    [130] Green D. L., Lin J. S., Lam Y. F., et al. Size, volume fraction, and nucleation ofStober silica nanoparticles [J]. J. Colloid Interface Sci.,2003,266:346-358.
    [131] Bogush G. H., Tracy M. A., Zukoski C. F. Preparation of monodisperse silica particles:control of size and mass fraction [J]. J. Non-Cryst. Solids,1988,104:95-106.
    [132] E. Yablonovitch. Inhibited spontaneous emission in solid-state physics and electronics[J]. Phys. Rev. Lett.,1987,58:2059-2062.
    [133] S. John. Strong localization of photons in certain disordered dielectric superlattices [J].Phys. Rev. Lett.,1987,58:2486-2489.
    [134] Vanmaekelbergh D. Self-assembly of colloidal nanocrystals as route to novel classesof nanostructured materials [J]. Nano Today,2011,6:419-437.
    [135] Cai Z. Y., Teng J. H., Yan Q. F., et al. Solvent effect on the self-assembly of colloidalmicrospheres via a horizontal deposition method [J]. Colloid Surface A,2012,402:37-44.
    [136] Mastro M. A., Mazeina L., Kim B. J., et al. Vertical zinc oxide nanowires embeddedin self-assembled photonic crystal [J]. Photonic Nanostruct.,2011,9:91-94.
    [137] Landon P. B., Gutierrez J., Ferraris J. P., et al. Inverse gold photonic crystals andconjugated polymer coated opals for functional materials [J]. Physica B,2003,338:165-170.
    [138] Jiang P., Bertone J. F., Hwang K. S., et al. Single-crystal colloidal multilayers ofcontrolled thickness [J]. Chem. Mater.,1999,11(8):2132-2140.
    [139]许丹. SiO2乳胶粒子及其有序组装体的制备研究[D].武汉:武汉理工大学,2011.
    [140] Kulkarni S., Wunder S. L. Moduli of ordered polymer composites prepared bycolloidal crystallization of nano-and micro-SiO2spheres in crosslinked methacrylateresins [J]. Mech. Mater.,2011,43:643-653.
    [141] Moroz A. Metallo-dielectric diamond and zinc-blende photonic crystals [J]. Phys. Rev.B,2002,66:115109-115123.
    [142] Bohaty A. K., Zharov I. Suspended self-assembled opal membranes [J]. Langmuir,2006,22(13):5533-5536.
    [143] Sun F., Cai W., Li Y., et al. Direct growth of mono-and multilayer nanostructuredporous films on curved surfaces and their application as gas sensors [J]. Adv. Mater.2005,17(23):2872-2877.
    [144] Yablonovitch E., Gmitter T. J., Meade R. D., et al. Donor and acceptor modes inphotonic band structure [J]. Phys. Rev. Lett.,1991,67(24):3380-3383.
    [145] Wang D. Y., Mohwald H. Rapid fabrication of binary colloidal crystals by stepwisespin-coating [J]. Adv. Mater.,2004,16(3):244-247.
    [146] Wang J., Ahl S., Li Q., et al. Structural and optical characterization of3D binarycolloidal crystal and inverse opal films prepared by direct co-deposition [J]. J. Mater.Chem.,2008,18:981-988.
    [147] Zheng Z., Gao K., Luo Y., et al. Rapidly infrared-assisted cooperativelyself-assembled highly orderedmultiscale porous materials [J]. J. Am. Chem. Soc.,2008,130:9785-9789.
    [148] Huang X., Zhou J., Fu M., et al. Binary colloidal crystals with a wide range of sizeratios via template-assisted electricfield-induced assembly [J]. Langmuir,2007,23:8695-8698.
    [149] Singh G., Griesser H. J., Bremmell K., et al. Highly ordered nanometerscale chemicaland protein patterns by binary colloidal crystal lithography combined with plasmapolymerization [J]. Adv. Funct. Mater.,2011,21:540-546.
    [150] Emoto A., Uchida E., Fukuda T. Fabrication and optical properties of binary colloidalcrystal monolayers consisting of micro-and nano-polystyrene spheres [J]. ColloidSurface A,2012,396:189-194.
    [151] Dushkin C. D., Yoshimura Y., Nagayama K. Nucleation and growth of twodimensional colloidal crystals [J]. Chem. Phys. Lett.,1993,204:455-460.
    [152] Woodcock L. V. Entropy difference between the face centred cubic packed andhexagonal closed packed crystal structure [J]. Nature,1997,385:141-143.
    [153]黄学光.复杂胶体晶体的制备、结构及其光子带隙性质的研究[D].北京:清华大学,2009.
    [154] Goncalves M. C., Fortes L. M., Almeida R. M., et al.3-D rare earth-doped colloidalphotonic crystals [J]. Opt. Mater.,2009,31:1315-1318.
    [155] Razpotnik T., Mǎcek J. Synthesis of nickel oxide/zirconia powders via a modifiedPechini method [J]. J Eur. Ceram. Soc.,2007,27:1405-1410.
    [156] Vivekanandhan S., Venkateswarlu M., Satyanarayana N., et al. Effect of calciningtemperature on the electrochemical performance of nanocrystalline LiMn2O4powdersprepared by polyethylene glycol (PEG-400) assisted Pechini process [J]. Mater. Lett.,2006,60(27):3212-3216.
    [157] Mariappan C. R., Galven C., Crosnier-Lopez M. P., et al. Synthesis of nanostructuredLiTi2(PO4)3powder by a Pechini-type polymerizable complex method [J]. J. SolidState Chem.,2006,179:450-456.
    [158] Grzebielucka E. C., Chinelatto A. S. A., Tebcherani S. M., et al. Synthesis andsintering of Y2O3-doped ZrO2powders using two Pechini-type gel routes [J]. Ceram.Int.,2010,36:1737-1742.
    [159] Chandradass J., Balasubramanian M., Kim K. H. Synthesis and characterization ofLaAlO3nanopowders by various fuels [J]. Mater. Manuf. Process.,2010,25:1449-1453.
    [160] Wang X., Chen X. Y., Gao L. S., et al. Citric acid-assisted sol-gel synthesis ofnanocrystalline LiMn2O4spinel as cathode material [J]. J. Cryst. Growth,2003,256:123-127.
    [161] Kemp W. Organic spectroscopy [M]. New York: Palgrave,2002.
    [162] Hon Y. M., Fung K. Z., Lin S. P., et al. Effects of metal ion sources on synthesis andelectrochemical performance of spinel LiMn2O4using tartaric acid gel process [J]. J.Solid State Chem.,2002,163:231-238.
    [163] Nakamoto K. Infrared spectra of inorganic and coordination compounds [M]. NewYork: Wiley,1970.
    [164] Gopalakrishnamurthy H. S., Subba R. M., Narayanan K. T. R. Thermal decompositionof titanyl oxalates–1: barium titanyl oxalate [J]. J. Inorg. Nucl. Chemistry,1975,37:891-898.
    [165] Cho S. G., Johnson P. F., Condrate R. A. Thermal decomposition of (Sr, Ti) organicprecursors during the process [J]. J. Mater. Sci.,1990,25:4738-4744.
    [166] Durán P., Capel F., Tartaj J., et al. Heating-rate effect on the BaTiO3formation bythermal decomposition of metal citrate polymeric precursors [J]. Solid State Ionics,2001,141-142:529-539.
    [167] Dutta P. K., Asiaie R., Akbar S. A., et al. Hydrothermal synthesis and dielectricproperties of tetragonal BaTiO3[J]. Chem. Mater.,1994, S6:1542-1548.
    [168] Li X. P., Shih W. H. Size effects in barium titanate particles and clusters [J]. J Am.Ceram. Soc.,1997,80:2844-2852.
    [169]中本一雄著,黄德如,汪仁庆译.无机和配位化合物的红外和拉曼光谱[M].北京:化学工业出版社,1991,257.
    [170]蔡小梅,陈福义,介万奇. SiO2/CdS光子晶体的制备及其光学性能[J].功能材料,2006,8(37):1201-1203.
    [171] Tan C. H., Fan G. H., Zhou T. M., et al. Preparation of InP-SiO23D photonic crystals[J]. Physica B,2005,363:1-6.
    [172]谭春华. InP-SiO2二维光子晶体的MOCVD制备和表征[D].广州:华南师范大学,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700