废气生物过滤系统热质迁移过程的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在生物过滤系统中,受微生物代谢活动、气流特性以及填料特性的影响,填料床存在明显的热质迁移现象,使系统宏观运行不稳定。本文主要建立了生物过滤系统填料层热质迁移过程的数学模型,考察了一维情况下填料层温度和湿度的变化情况,以及气流特性对填料层湿度的影响,为生物滤床废气处理系统的工程设计提供了参考依据。
     参考多孔介质的体积平均模型和三参数模型,以流体质量和能量守恒方程为基础,建立了微体积单元中的质量和能量守恒方程,采用Galerkin有限元法,对生物滤床处理H_2S废气过程的一维热质迁移模型进行了数值计算,并与实验数据进行了比较。结果表明,模型计算值与实测点的温、湿度值吻合良好,其相关系数都达到0.9以上。
     气流特性与填料层湿度变化的数值模拟显示:随着进气气速增加、相对湿度减小、温度增加、浓度增大,填料层的湿度下降,且填料层湿分迁移速率与气速呈对数关系,与温度、浓度呈指数关系,与相对湿度呈负乘幂关系;H_2S计算浓度值沿轴向由下而上逐渐降低,且随着时间的推移,轴向各点的H_2S浓度逐渐增大。去除率、去除负荷和微生物相对活性随着填料层湿度的下降而减小。
There was heat and mass transfer in the biofilter media, as a result of microorganism metabolism activity, the properties of air flow and those of packing material, which made the system run unstable. The aim of this research was to develop a model for heat and mass transfer in a biofilter, and to investigate the migration of temperature and moisture under one-dimensional condition with an emphasis on factors affecting the moisture migration, so as to provide adequate data for the design and operation of a full-scale biofilter system.Firstly, a heat and mass transfer model was set up based on porous media volume-averaging model and three-parameter model. The operator splitting algorithms and the finite element method developed by Galerkin were adopted to deduce the discrete equations. The numerical values of one-dimensional model for heat and mass transfer of media in a biofilter system for the treatment of hydrogen sulfide were in good agreement with the experimental data, and all of the correlation coefficients are above 0.9.Secondly, the effects of air flow properties on moisture migration were investigated numerically. The results confirmed that the rate of moisture transportion was in proportion to the logarithm of gas velocity, exponential of temperature and concentration, and negative power of relative humidity, and in the relative order of gas velocity>temperature>concentration>relative humidity.
     Finally, the effect of moisture on removal efficiency was calculated based on the model, whose result showed that hydrogen sulfide concentration decreased along the biofilter, while increased as time passed. Both the removal efficiency and elimination capacity decreased as moisture of the media decreased. The microbiological relative activity, calculated as the maximum decomposition rate equal to one, increased as moisture of the media increased, and it tended to be one when the moisture was 60%.
引文
[1] Gostomski P A, Sisson J B. Water content dynamics in biofiltration: the role of humidity and microbial heat generation[J]. Journal of the Air and Waste Management Association, 1997, 47(9): 936~944.
    [2] Kennes C, Thalasso F. Review: waste gas biotreatment technology [J]. Journal of Chemical Technology and Biotechnology, 1998, 72(4): 303~319.
    [3] Cox H H J, Deshusses M A, Converse B M, et al. Odor and volatile organic compound treatment by biotrickling filters: pilot-scale studies at hyperion treatment plant [J]. Water Environment Research, 2002, 74(6): 557~563.
    [4] Oyarzun P, Arancibia F, Canales C, et al. Biofiltration of high concentration of hydrogen sulphide using Thiobacillus thioparus [J]. Process Biochemistry, 2003, 39(2): 165~170.
    [5] Otten L, Afzal M T, Mainville D M. Biofiltration of odours: laboratory studies using butyric acid [J]. Advances in Environmental Research, 2004, 8(3): 397~409.
    [6] Aurai R, Aycaguer A C, Devinny J S. Influence of water content on degradation rates for ethanol in biofiltration[J]. Journal of the Air and Waste Management Association, 1998, 48(1): 65~70.
    [7] Darlington A B, Dat J F, Dixon M A. The biofiltration of indoor air: air flux and temperature influences the removal of toluene, ethylbenzene, and xylene[J]. Environmental Science and Technology, 2001, 35(1): 240~246.
    [8] Bagherpour M B, Nikazar M, Welander U, et al. Effects of irrigation and water content of packings on aipha-pinene vapours biofiltration performance[J]. Biochemical Engineering Journal, 2005, 24(3): 185~193.
    [9] 李琳,刘俊新.挥发性有机污染物与恶臭的生物处理技术及其工艺选择[J].环境污染治理技术与设备, 2001, 2(5): 41~47.
    [10] Leson G, Winer A M. Biofiltration: an innovative air pollution control technology for VOC emissions[J]. Journalof the Air and Waste Management Association, 1991, 41(8): 1045~1053.
    [11] Penciu O, Gavrilescu M. Biodegradation-innovative technology for treating gaseous fluxes containing VOCs[J]. Environmental Engineering and Management Journal, 2004, 3(4): 737~754.
    [12] Kapse V, Balomajumder C. Biofiltration: current option for volatile organic compound abatement[J]. Chemical Engineering World, 2003, 38(9): 79~86.
    [13] Burgess J E, Parsons S A, Stuetz R M. Developments in odour control and wastes gas treatment biotechnology: a review[J]. Biotechnology Advances, 2001, 19(1): 35~63.
    [14] Aitor A, Luc M, Jean-Claude R. Biofiltration of a mixture of volatile organic emissions[J]. Journal of the Air and Waste Management Association, 2001, 51 (12): 1662~1670.
    [15] Morrison J, Schowengerdt M, Vemengo S. Apply biofiltration methods to manage VOC emissions[J]. Hydrocarbon Processing, 2003, 82(10): 91~94.
    [16] Mukhopadhyay M. Biofiltration: a case study[J]. Chemical Industry Digest, 2002, 15(3): 88~92.
    [17] Cox H H J, Deshusses M A, Schroeder E D, et al. Practical experiences with biological treatment systems for odor and VOC removal at the Hyperion Treatment Plant[A]. In: Proceedings of WEF Odors and Toxic Air Emission 2002 Specialty Conference[C]. Albuquerque, NM: Kluwer Academic Publisher, 2002.714~724.
    [18] Cox H H J, Iranpour R, Moghaddam O, et al. Biological odor control strategies at wastewater treatment plants[A]. WEF/AWWA/CWEA Joint Residuals and Biosolids Management Conference and Exhibition: Partnering for a Safe, Sustainable Environment[C]. Baltimore, MD: Kluwer Academic Publisher, 2003. 552~564.
    [19] Johan W, van Groenestijn, Paul G M, et al. Biotechniques for air pollution control[J]. Biodegradation, 1993, 4: 283~301.
    [20] Koe L C C, Chew S H. Control of odorous emissions at wastewater treatment plants-singapore experience[A]. In: Proceedings of the 91st Annual Meeting of the Air &Waste Management Association[C]. San Diego, CA: Kluwer Academic Publisher, 1998.
    [21] Van Lith C, Leson C, Michelsen R. Evaluating design options for biofilters[J]. Journal of the Air and Waste Management Association, 1997, 47(1): 37~39.
    [22] 刘波,姜安玺,程养学,等.两级滴滤去除硫化氢和甲硫醇混合恶臭气体[J].中国环境科学,2003,23(6):618~621.
    [23] 羌宁,季学李,都基峻,等.苯系混合气体生物滴滤器非稳态工况性能[J].环境科学,2005,26(1):16~19.
    [24] 李国文,胡洪营,郝吉明,等.生物炭降解苯和甲苯混合废气性能研究[J].环境科学,2002,23(5):13~19.
    [25] 邵立明,何品晶,傅钟,等.固定化微生物处理含H_2S气体的试验研究[J].环境科学,1999,20(1):19~22.
    [26] 郭静,王召,张大群,等.复合式生物膜反应器脱臭及降解COD初步研究[J].给水排水,1999,25(2):14~18.
    [27] 孙佩石,杨显万,黄若华,等.生物膜填料塔净化有机废气研究[J].中国环境科学,1996,16(2):92~94.
    [28] 褚淑祎,陈建孟,沙昊雷,等.生物法处理高浓度H_2S废气的现场试验[J].环境科学,2006,27(3):431~436.
    [29] 陈建孟,马建锋,王家德,等.生物滴滤床中—氧化氮的好氧去除过程研究[J].环境科学学报,2005,25(11):1346~1442.
    [30] 田森林,宁平.有机废气治理技术及其新进展[J].环境科学动态,2000,(1):23~28.
    [31] Kim B, Zhu X Q, Suidan M, Yang C P. An innovative biofilter for treating VOCs in air emissions: a new concept of biofiltration[A]. In: Proceedings of 3~(rd) World Congress of the International Water Association[C], Melbourne, Australia: IWA, 2002. 21.
    
    [32] Vinage I, Rohr R V. Biological waste gas treatment with a modified rotating biological contactor. I. control of biofilm growth and long-term performance. Bioprocess Biosystems Engineering, 2003, 26(1): 69-74.
    
    [33] 张海杰,罗阳春,王家德,等。生物转鼓反硝化净化一氧化氮废气。中国环境科学, 2006, 26(2).
    [34] Deshusses M A, Hamer G, Dunn I J. Behavior of biofilters for waste air biotreatment. 1 .Dynamic model development[J]. Environmental Science and technology, 1995a, 29(4): 1048.
    [35] Govind R, Wang Z, Bishop D F. Biofiltration kinetics for volatile organic compounds and the development of a structure-biodegradability relationship[A]. In: Proceedings of the 90~(th) Annual Meeting and Exhibition of the Air and Waste Management Association[C]. Pittsburgh, PA: Kluwer Academic Publisher, 1997B.
    [36] Viotti P, Eramo B, Boni M R, et al. Development and calibration of a mathematical model for the simulation of the biofiltration process[J]. Advances in Environmental Research, 2002, 7(1): 11-33.
    [37] Devinny J S, Ramesh J. A phenomenological review of biofilter models[J]. Chemical Engineering Journal, 2005, 113(2): 187-196.
    [38] Ottengraf S P P, van der Oever A H C. Kinetics of organic compound removal fromwaste gases with a biological filter[J]. Biotechnology and Bioengineering, 1983, 25(12): 3089-3102.
    [39] Alonso C, Zhu X, Suidan M T, et al. Mathematical model for biofiltration of VOCs: effect of nitrate concentration and backwashing[J]. Journal of Environmental Engineering, 2001, 127(7): 655-665.
    [40] William M M, Robert L I. Effect of nitrogen limitation on performance of toluene degrading biofilters[J]. Water Research, 2001, 35(6): 1407-1414.
    [41] Moe W M, Qi B. Performance of a fungal biofilter treating gas-phase solvent mixtures during intermittent loading[J]. Water Research, 2004, 38(9): 2259-2268.
    
    [42] Nguyen H D, Sato C, Wu J, et al. Modeling biofiltration of gas streams containing TEX components[J]. Journal of Enrivonmental Engineering, 1997, 123(6): 615-621.
    [43] Okkerse W J H, Ottengraf S P P, Osinga-kuipers B, et al. Biomass accumulation and clogging in biotrickling filters for waste gas treatment: evaluation of a dynamic model using dichloromethane as a model pollution[J]. Biotechnology and Bioengineering, 1999, 63(4): 418-430.
    
    [44] Morgenroth E, Schroeder E D, Chang D P Y, et al. Modeling of a compost biofilter incorporating microbial growth[A]. In: Proceedings of the ASCE National Conference: Innovative Technologies for Site Remediation and Hazardous Waste Management[C]. Pittsburgh, PE: ASCE, 1995.23~26.
    [45] Zarook S M, Shaikh A A, Azam S M. Axial dispersion in biofilters[J]. Biochemical Engineering Journal, 1998, 1(1): 77~84.
    [46] Cherry R S, Thompson D N. Shift from growth to nutrient-limited maintenance kinetics during biofilter acclimation[J]. Biotechnology and Bioengineering, 1997, 56(3): 330-339.
    [47] Marcia M, Sergio H, Thomas C, et al. Effect of drying on biofilter performance: modeling and experimental approach[J]. Environmental Science and Technology, 2003, 37(5): 985~992.
    [48] 孙佩石,黄若华,杨海燕.生物膜填料塔净化低浓度有机的动力学模型研究[J].云南化工,1996,(3):23~27.
    [49] 陈建孟,王家德,庄利,等.生物滴滤池净化二氯甲烷废气的实验研究[J].环境科学,2002,23(4):8~12.
    [50] Ergas S J, Schroeder E D, Chang D P Y, et al. Spatial distribution of microbial populations in biofilter[A]. In: Proceeding of the 87# Annual meeting of the air and waster managetment assication[C]. Cincinnati, OH: Kluwer Academic Publishers, 1994.
    [51] Devinny J S, Deshusses M A, Webster T S. Biofiltration for air pollution control[M]. New York: Lewis publishers, 1999.
    [52] Krailas S, Pham Q T, Amal R, et al. Effect of inlet mass loading, water and total bacteria count on methanol elimination using upward flow biofilters[J]. Journal of Chemical Technology and Biotechnology, 2000, 75(4): 299~305.
    [53] Sun Y M, Quan X, Chen J W, et al. Toluene vapour degradation and microbial community in biofilter at various moisture content[J]. Process Biochemistry, 2002, 38(1): 109~113.
    [54] Sheridan J, Williams A, Close D J. An experimental study of natural convection with coupled heat and mass transfer in porous media[J]. International Journal of Heat and Mass Transfer, 1992, 35(9): 2131~2143.
    [56] Weber A Z, Newman J. Modeling gas-phase flow in porous media[J]. International Communications in Heat and Mass Transfer, 2005, 32(7): 855~860.
    [55] Perre P, Moser M, Martin M. Advances in transport phenomena during convective drying with superheated steam and moist air[J]. Heat and Mass Transfer, 1993, 36(11): 2725~2740.
    [57] Unger D R, Lam T T, Schaefer C E, et al. Predicting the effect of moisture on vapor-phase sorption of volatile organic compounds to soils[J]. Environmental Science and Technology, 1996, 30(4): 1081.
    [58] Wang B X, Yu W P. Heat and mass transfer in moist porous media[A]. Heat Transfer Science and Technology[C]. New York: Hemisphere, 1987.
    [59] Wang B X, Yu W P. A method for evaluation of heat and mass transport properties of moist porous media[J]. Heat and Mass Transfer, 1988, 31(5): 1005~1009.
    [60] Philip J R, DeVries D A. Moisture movement in porous materials under temperature gradients[J]. Transaction, American Geophysical Union, 1957, 38: 222~232.
    [61] DeVries D A. Simultaneous transfer of Heat and Moisture in Porous Media[J]. Transaction, American Geophysical Union, 1958, 39(5): 909~916.
    [62] VLuikov A. System of diferential equation of heat and mass transfer in capillary porous-bodies[J]. Heat and Mass Transfer, 1975, 18: 1~14.
    [63] Eckert E R G, Faghri M. A general analysis of migration caused by temperature difference in an unsaturated porous media[J]. International Journal of Heat and Mass Transfer, 1980, 23: 1613~1623.
    [64] Wang B X, Fang Z H. Water absorption and measurement of the mass diffusivity in porous media[J]. International Journal of Heat and Mass Transfer, 1988, 31(2): 251~257.
    [65] 雷树业,杨荣贵,杜建华.非饱和含湿多孔介质传热传质的渗流模型研究[J].清华大学学报(自然科学版),1999,39(6):74~77.
    [66] Whitaker S. Advances in Heat Transfer[M]. New York: Academic Press, 1977.
    [67] Slattery J C. Momentum, energy and mass transfer in continua[M]. New York: McGraw Hill, 1972.
    [68] Mysliwiec M J, VanderGheynst J S, Rashid M M, et al. Dynamic volume-averaged model of heat and mass transport within a compost biofilter: l. model development[J]. Biotechnology and Bioengineering, 2001, 73(4): 282~294.
    [69] Lewandowska J, Auriault J L. Modelling of unsaturated water flow in soils with highly permeable inclusions[J]. Comptes Rendus Mecanique, 2004, 332(1): 91~96.
    [70] Chung J N, Plumb O A, Lee W C. Condensation in a porous region bounded by a cold vertical surface[J]. Journal of Heat Transfer, 1992, 114: 1011~1018.
    [71] Wang C Y, Beckermann C. A two-phase mixture model liquid-gas flow and heat transfer in capillary porous media-1, formulation[J]. International Journal of Heat and Mass Transfer, 1993, 36: 2747~2758.
    [72] Celia M A, Binie P. A mass conservative numerical solution for two-phase flow in porous media with application to unsaturated flow[J]. Water Resource Research, 1992, 28(10): 2819~2828.
    [73] Ilic M, Turner I W. Drying of a wet porous materials[J]. Applied Mathematical Modelling, 1986, 10(1): 16~24.
    [74] Sabau A S, Tao Y X, Liu G, et al. Effective thermal conductivity for anisotropic granular porous media using fractal concepts[A]. In: Proceedings of National Heat Transfer Conference[C], Washington: ASME Publication, 1997. 121~128.
    [75] Chen Z Q, Cheng P, Hsu C T. A theoretical and experimental study on stagnant thermal conductivity of bi-dispersed porous media[J]. International Communications in Heat and Mass Transfer, 2000, 27(5): 604~610.
    [76] Jiang P X, Si G S, Li M, et al. Experimental and numerical investigation of forced convection heat transfer of air in non-sintered porous media[J]. Experimental Thermal and Fluid Science, 2004, 28(6): 545~555.
    [77] Sepaskhah A R, Boersma L. Thermal conductivity of soil as a function of temperature and water content[J]. Soil Science Society of America Journal, 1979, 48: 439~444.
    [78] Russell H W. Prnciplcs of heat flow in porous insulators[J]. Journal of the American Chemical Society, 1935, 18(1): 1~5.
    [79] Loeb A L. Thermal conductivity Ⅶ: a theory of thermal conductivity of porous materials[J]. Journal of the American Chemical Society, 1954, 37(2): 96~99.
    [80] Hsu C T, Cheng P, Wong K W. Modified Zehner-Schlunder models for stagnant thermal conductivity of porous media[J]. Journal of Heat Transfer, 1994, 37(17): 2751.
    [81] Hsu C T, Cheng P, Wong K W. A lumped-parameter model for stagnant thermal conductivity of spatially periodic porous media[J]. Journal of Heat Transfer, 1995, 177: 264~269.
    [82] Yu B M, Cheng P. Fractal model for the effective thermal conductivity of bi-dispersed porous media[J]. Journal of Thermophys Heat Transfer, 2002, 16(1): 22.
    [83] 吕兆华.泡沫型多孔介质等效导热系数的计算[J].南京理工大学学报,2001,25(3):257~261.
    [84] 陈永平,施明恒.基于分形理论的多孔介质导热系数研究[J].工程热物理学报,1999,20(5):608~612.
    [85] 陈奎,于帆,张欣欣,等.基于空心球聚合体的多孔介质有效导热系数的两种模型[J].北京科技大学学报,2004,26(6):650~654.
    [86] 胡雪蛟,杜建华,王补宣.液相饱和度对多孔介质稳态导热系数的影响[J].工程热学报,2001,22增刊:125~128.
    [87] 韩吉田,施明恒,虞维平,等.同时测定含湿多孔介质热湿迁移特性的参数估算法[J].计量学报,1995,16(2):153~159.
    [88] 王补宣,虞微平.在第三类边界条件下测定含湿多孔介质热湿迁移特性的方法[J].工程热物理学报,1987,8(3):363~369.
    [89] 韩吉田,施明恒,虞维平,等.同时测定含湿多孔介质热湿迁移特性的参数估算法[J].计量学报,1995,16(2):153~159.
    [90] 雷树业,王利群,贾兰庆,等.颗粒床孔隙度与渗透率的关系[J].清华大学学报,1998,38(5):78~81.
    [91] Wyckoff R D, Botset H G. The flow of gas-liquid mixture through unsaturated sands[J]. Physics, 1936, 7: 335~337.
    [92] Udell K S. Heat transfer in porous media considering phase change and capillary-the heat pipe effect[J]. Intemational Journal of Heat and Mass Transfer, 1985, 28(2): 485~495.
    [93] Mujumdar A S. Advances in Drying[M]. New York: Hemisphere Publishing Corporation, 1980.23~61.
    [94] Whitaker S. Advance in Heat Transfer[M]. New York: Academic Press, 1977.119~203.
    [95] Mitchell R J, Mayer A S. A numerical model for transient-hysteretic flow and solute transport in unsaturated porous media[J]. Journal of Contaminant Hydrology, 1998, 53: 243~264.
    [96] Lenhard R J, Parker J C, Kaluarachchi J J. Comparing simulated and experimental hysteretic two-phase transient fluid flow phenomena[J]. Water Resources Research, 1991, 23(12): 2197~2206.
    [97] Mualen Y. A new model for predicting the hydraulic conductivity of unsaturated porous media[J]. Water Resouces Research, 1976, 12(3): 513~522.
    [98] 丘树林,钱滨江.换热器原理、结构与设计[M].上海:上海交通大学出版社,1990.
    [99] Clough R W. The finite element method in plane stress analysis[A]. In: Proceedings of 2nd ASCE Conference on Electronic Computation[C]. Pittsburgh, Pennsylvania: ASCE, 1960.
    [100] 冯康.基于变分原理的差分格式[J].应用数学和计算数学,1965,2(4):238~262.
    [101] White R E. An introduction to the finite element method with applications to nonlinear problems[M]. New York: John Wiley and Sons, 1985.
    [102] Pinder G F, Gray W G. Finite element simulation in surface and subsurface hydrology[M]. London: Academic Press, 1977. 295.
    [103] Morales M, Hernandez S, Cornabe T, et al. Effect of drying on biofilter performance: modeling and experimental approach[J]. Environmental Science and Technology, 2003, 37(5): 985-992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700