PTFE/A1含能反应材料力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
PTFE(聚四氟乙烯)/Al(铝)含能反应材料是一种新型的直接毁伤式含能材料,其高化学潜能主要通过冲击引发化学反应的形式释放出来。力学性能、能量释放反应的冲击引发和能量释放水平是其三项重要特征性能。
     本文主要研究了PTFE/Al含能反应材料的冲击力学性能、准静态力学性能与能量释放反应的冲击引发。系统考察了制备工艺、试验条件和材料组分对其力学性能的影响规律;构建了该材料基于试验结果的压缩应力-应变本构方程,进行了含能反应材料弹丸冲击试验过程的数值模拟;探索了该类材料在冲击加载下的能量释放反应引发特性。
     实验研究了PTFE/Al含能反应材料模压烧结工艺参数和组分配比对其准静态力学性能的影响规律,分析并推测了材料在单轴拉伸加载下的破坏模式及各类添加剂的增强机制。影响拉伸强度的主要因素按影响程度从大到小依次是烧结温度、降温速率、烧结时间、预成型压力、降温过程中的保温温度和预成型温度。获得的优化组合工艺使典型的PTFE/Al(质量比为73.5/26.5)材料拉伸强度和断裂伸长率分别达到24.9MPa和395%。Al含量在6%时PTFE/Al材料有最大拉伸强度,遵循了Πугачев提出的球状颗粒填充PTFE模型。Al含量35%时PTFE/Al材料有最大的准静态压缩强度。纳米粉体和晶须的少量添加可使PTFE/Al材料拉伸强度提高26.2%和9.6%。偶联剂显著提高了高Al含量PTFE/Al材料的拉伸强度,使Al含量50%时的材料拉伸强度提高了62.3%。
     在标准摆锤式冲击试验机基础上,改进了冲击试验装置。利用改进前后的摆锤式冲击试验机和分离式霍普金斯压杆(SHPB)试验装置,测得了PTFE/Al含能反应材料的冲击压缩比、压缩应变、开裂阈值、解体阈值和标准冲击强度等动态力学性能参数,分析并推测了材料在冲击加载下的破坏模式及其增韧机制。研究结果表明,材料冲击压缩比随摆锤冲击能的增加呈线性增加趋势。材料标准冲击强度、开裂和解体破坏阈值均在Al含量40%时达到最高值,分别为25.3 J/cm_2、71.2 J/cm_2和85.6J/cm_2,冲击压缩应变则与Al含量成反比。高密度微米颗粒、纳米粉体和晶须使材料各破坏阈值呈下降趋势,偶联剂使材料破坏阈值略微升高。
     同时采用SHPB试验装置,研究了PTFE/Al含能反应材料的动态压缩性能,得到了Al含量、加载应变率与材料动态压缩强度和临界应变的相关关系。在压缩实验数据基础上,构建了PTFE/Al材料基于Johnson-Cook塑性模型的压缩应力-应变本构方程,该方程包含了材料的应变硬化效应、应变率效应、温度效应和Al含量的影响。与本研究基本同步的文献报道的本构方程相比,本研究构建的本构方程具有更宽的应变率实验基础(0.006~9000 s~(-1)),适用的Al含量范围更广,从26.5%到50%。
     用LS-DYNA模拟处理软件和自行构建的本构方程进行了PTFE/A(l质量比为73.5/26.5)含能反应材料弹丸侵彻靶板试验过程的数值模拟,且与试验结果符合较好,验证了所构建本构方程的可靠性、合理性和实用性。同时还获得了弹丸冲击速度对穿靶过程中弹-靶相互作用情况及穿靶后相关性能参数的影响规律。
     利用改进的摆锤式冲击试验和SHPB试验还研究了PTFE/Al含能反应材料能量释放反应的冲击引发特性,结合红外成像仪测温方法测得了试样的冲击温升。发现材料反应阈值可用摆锤的冲击能量或压杆的加载应变率表示。随着摆锤冲击能的增加,材料冲击温升也随之上升。化学计量配比的PTFE/A(l质量比为73.5/26.5)反应阈值最低,即最易被冲击引发反应。高密度微米颗粒、纳米粉体和晶须使材料反应阈值呈上升趋势,偶联剂对材料反应阈值影响较小。试样初始温度升高使材料反应阈值降低。
     PTFE/Al(质量比为73.5/26.5)含能反应材料绝热反应温度的计算值为4580K,绝热反应热的计算值为TNT炸药热值的2.0倍以上,其高能量释放主要源于冲击加载下被引发的氟-铝高放热反应,且能量释放水平可通过材料组分进行调节。
PTFE/Al energetic reactive material is a new kind of energetic material with directly destroys ability, their high chemical potential energy are released mostly in the form of chemical reaction by impact initiated. The most important characteristic performances of energetic reactive material are mechanical performance, reaction initiation under impact and energy release level.
     The basic mechanical performances of PTFE/Al were studied in this paper including impact mechanical performance, quasi-static mechanical performance and reaction initiation of energy release under impact. The influence laws of preparation technics, experiment conditions and material compositions on the mechanical performances of PTFE/Al were investigated. The compressive constitutive relation of PTFE/Al was established based on the experiment results. Moreover, the numerical simulations of PTFE/Al impact test process were done by using LS-DYNA and above established constitutive relation. The initiation characteristic of energy release reaction under impact was also explored.
     The influences laws of pressing-sintering preparation technics parameters and material compositions on the quasi-static mechanical performance of PTFE/Al were studied experimentally, the destroy pattern of PTFE/Al under single axis tensile was analyzed and the strengthen mechanism of additives was also explained. The influence degree of technics parameters on the tensile strength of PTFE/Al is sintering temperature, cooling rate, sintering time, pressed pressure, kept temperature and pressed temperature in turn. The obtained optimized combinative technics make the tensile strength and elongation of PTFE/Al (73.5/26.5 wt %) increase to 24.9 MPa and 395%. The PTFE/Al sample with 6% content of Al particulate possesses maximal tensile strength, which follows the model of spherical particulate filled PTFE put forward byΠугачев. The PTFE/Al composite of 35% Al has the highest compressive strength. The addition of nano-powder and whisker make the tensile strength of PTFE/Al increased 26.2% and 9.6%. The coupling agent increase the tensile strength of PTFE/Al with high Al content obviously, the increase degree of PTFE/Al with 50% Al is higher to 62.3%.
     The impact equipment and impact test method was improved based on the standard pendulum impact tester. Multi impact parameters were obtained by using the above tester and Split Hopkins Compressive Bar (SHPB) test equipment, including impact compressive ratio, compressive strain, crack value, split value and standard impact strength. The destroy pattern of material under loaded impact and the increase mechanism of toughness was also analyzed and supposed. The results show that the impact compressive ratio is in direct ratio to the input energy of pendulum. The PTFE/Al sample with 40% content Al possesses maximal impact performance, the standard impact strength, split value and crack value was 25.3 J/cm2, 71.2 J/cm2 and 85.6J/cm2 respectively. The impact compressive strain is in inverse ratio to the Al content of samples. The addition of high density micron granule, nano-powder and whisker make the destroy value of samples decreased, and the coupling agent make the destroy value of samples increased slightly.
     The dynamic compressive performances of PTFE/Al energetic reactive material were studied by using SHPB test equipment at the same time, the correlativity between Al content, loaded strain rate with dynamic compressive strength and critical strain was obtained. Based on the obtained quasi-static and dynamic compressive experimental datum, the compressive stress-strain constitutive relation of PTFE/Al energetic reactive material was established according to Johnson-Cook plastic model, which takes account of strain harden effect, strain rate effect, temperature effect and the influence of Al content. Compare with the reported constitutive relation, the established constitutive relation could be put to use in broader range including strain rate of 0.006 to 9000 s-1 and Al content of 26.5% to 50%.
     At the same time, the numerical simulations of PTFE/Al bullet impact steel plate test process were done by using LS-DYNA software and above established constitutive relation. The simulative result is very close to experimental result, which validates the reliable, reasonable and applicable of established constitutive relation. The influences of impact speed of PTFE/Al bullet on the damage performance at impact process and after penetration were also obtained.
     The energy release reaction initiation characterization of PTFE/Al energetic reactive material under impact was studied by improved pendulum impact test and SHPB test, and the temperature increase of samples were obtained by using infrared imaging synchronously. The reaction value of sample can be expressed by impact energy of pendulum and loaded strain rate of bar. The increase of temperature is in direct ratio to the input energy of pendulum. The reaction initiated value of PTFE/Al (73.5/26.5 wt %) is the lowest, which means the sample is easiest to be initiated under impact. The addition of high density micron granule, nano-powder and whisker make the reaction value increased. The coupling agent has little influence on the reaction value, and the increase of sample temperature make the reaction value decreased.
     The calculated reactive temperature of PTFE/Al (73.5/26.5 wt %) was high to 4580K. The energy release level of PTFE/Al was more than 2.0 times to the energy of TNT explosive. The high energy release of PTFE/Al mainly roots in the reaction between fluorin and Al under impact, and the energy release level could be adjusted by the change of material compositions.
引文
[1] Willis M J, Jason T D. Effect of aluminum particle size on the impact initiation of pressed PTFE/Al composite rods [J]. Shock Compression of Condensed Matter, 2007, CP955: 971~974.
    [2] Hambling D. Behide the Reactive Materials Revolution. http://www.wired.com/politics/ security/news/2008/05/reactive_revolutions, 2008.
    [3]傅献彩,沈文霞,姚天扬.物理化学[M].北京:高等教育出版社, 1979, 481~482.
    [4]叶大伦.实用无机物热力学数据手册[M].北京:冶金工业出版社, 1979, 102~103.
    [5] Nauflett G W, Farncomb R E, Chordia L. Preparation of magnesium fluoropolymer pyrotechnic material [P]. US 5886293, 1999.
    [6] Ames R G. Vented chamber calorimetry for impact-initiated energetic materials [C]. 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2005, 279~283.
    [7] Ames R G. Energy release characteristics of impact-initiated energetic materials [J]. Mater. Res. Soc. Symp. Proc. 2006, CP896: 123~132.
    [8] Ames R G, Waggener S S. Reaction efficiencies for Impact-Initiated Energetic Materials [C]. 32nd International Pyrotechnics Seminar, Karlsruhe, Germany, 2005, 23~30.
    [9] Hambling D. In Next-Gen Bullets and Bombs, Even the Casing Explodes. http://blog.wired. com/defense/2008/07/reactive-revolu.html, 2008.
    [10] Dolgoborodov A Y, Makhov M N, Kolbanev I V, et al. Detonation in an aluminum-Teflon mixture [J]. JETP Letters, 2005, 81(7): 311~314.
    [11] Denisaev A A, Shteinberg A S, Academician A, et al. Study of the Impact Sensitivity ofAl/PTFE Layered Compositions [J]. Russia Doklady Physical Chemistry, 2007, 414(2): 139~142.
    [12] Dolgoborodov A Y, Makhov M N, Kolbanev I V. Detonation in metal-teflon mechanoactivated composites [C]. 13th International detonation Symposium, Norfolk, VA, 2006, 113~120.
    [13]彭培根,刘培谅,张仁等.固体推进剂性能及原理[M].国防科学技术大学出版社, 1987, 271-272.
    [14] Atkins R L. Advanced Energetic Materials [R]. Washington D. C: The National Academies Press, 2004, 17~21.
    [15] Reactive Materials. www.atk.com/Customer_Solutions_Launch Systems/ rm.asp, 2007.
    [16] Vasant S J, Waldorf .M D. Process for making polytetrafluoroethylene-Aluminum composite and product made [P]. US 6547993, 2003.
    [17] Nielson D B, Truitt R M, Rasmussen N. Low temperature extrudable high density reactive materials [P]. US 20040020397, 2004.
    [18] Nielson D B, Truitt R M, Rasmussen N. Low temperature extrudable high density reactive materials [P]. US 6962634, 2005.
    [19] Nielson D B, Richard L T. High strength reactive materials [P]. US 20030096897, 2003.
    [20] Nielson D B, Richard L T, Gary K L. High strength reactive materials [P]. US 6593410, 2003.
    [21] Rose M T, Nielson D B, Gary K L. High strength reactive materials and methods of making [P]. US 20040116576, 2004.
    [22] Daniel J V. Reinforced reactive material [P]. US 20050067072, 2005.
    [23] Nielson D B, Tanner R L, Lund G K. High strength reactive materials and methods of making [P]. US 7307117, 2007.
    [24] Saigal A, Joshi V S. Strength and stiffness of Al/PTFE reactive composites [A]. American Society of Mechanical Engineers, Pressure Vessels and Piping Division [C]. 2001, 107~112.
    [25] Gu Y B, Nesterenko V F, Cai J. Shear localization and patterning of shear bands in PTFE and its mixtures with metals [J]. Shock Compression of Condensed Matter, 2003, CP707: 775~778.
    [26] Cai J, Jiang F C, Vecchio K S, et al. Mechanical and microstrusctural properties of PTFE/Al/W system [J]. Shock Compression of Condensed Matter, 2007, CP955: 723~726.
    [27] Cai J, Nesterenko V F, Vecchio K S, et al. The influence of metallic particle size on the mechanical properties of PTFE-Al-W powder composites [J]. Materials Science and Engineering, 2007, 468: 1~18.
    [28] Herbold E B, Neterenko V F, Benson D J, et al. Particle size effect on strength, failure and shock behavior in Polytetrafluoroethylene/Al/W granular composites [J]. Shock Compression of Condensed Matter, 2008, CP1013: 12~35.
    [29] Cai J, Walley S M, Hunt R J, et al. High-strain, high-strain-rate flow and failure in PTFE/Al/W granular composite [J]. Materials Science and Engineering, 2008, 472: 308~315.
    [30] Willis M J, Holt W H. Impact Initiation of Rods of Pressed Polytetrafluoroethylene (PTFE) and Aluminum Powders [J]. Shock Compression of Condensed Matter, 2005, CP845: 871~879.
    [31] Cai J, Nesterenko V F. Collapse of Hollow Cylinders of PTFE and Aluminum Particles Mixtures Using Hopkinson Bar [J]. Shock Compression of Condensed Matter, 2005, CP845: 793~796.
    [32] Lee R J, Willis M J, Carney J R, et al. Reactive materials studies [J]. Shock Compression ofCondensed Matter, 2005, CP845: 654~659.
    [33] Mcgregor N M, Sutherland G T. Plate Impact Experiments on a Porous Teflon-Aluminum Mixture [J]. Shock Compression of Condensed Matter, 2003, CP706: 532~537.
    [34] Gogulya M F, Makhov M N, Brazhnikov M A. Detonation-like processes Teflon/Al-based explosive mixture [C]. 13th International detonation Symposium, Norfolk, VA, July 2006, 56~62.
    [35] Parker L J, Ladouceur H D, Russell T P. Teflon and Teflon AF-Al decomposition chemistry at high pressures [J]. Shock Compression of Condensed Matter, 1999, 374: 941~944.
    [36] Selivanov V V, Imkhovik N A, Lashkov V N et al. Investigating the process of physicochemical Destruction of PTFE and PTFE-metal compounds during thermal and shock-wave actions [J]. Khimicheskaya Fizika, 2001, 20(8): 80~86.
    [37] Osborne D T. The effect of fuel particle size on the reaction of Al/Teflon mixtures [D]. Texas: Texas Tech University, 2006, 32~35.
    [38] Osborne D T. Effect of al particle size on the thermal degradation of Al/Teflon mixtures [J]. Combustion Science and Technology, 2007, 179(8): 1467~1480.
    [39] DE Technologies Inc. Reactive Fragment Warhead for Enhanced Neutralization of Mortar, Rocket, and Missile threats [R]. ONR-SBIR, N04-903, 2005.
    [40] General Sciences, Inc. Fast Mortar Defeat. http://www.general-sciences.com, 2007.
    [41] USA Department of Defense. Defense Science and Technology Strategy and Plans. http://www.usadod.com, 2000.
    [42] Rose M T, Doll D W, Hodgson J R, et al. Reactive material enhanced projectiles and related methods [P]. US 20060011086, 2006.
    [43] Nielson D B, Ashcroft B N, Doll D W. Reactive material enhanced munition compositions and projectiles containing same [P]. US 20050199323, 2005.
    [44] Nielson D B, Truitt R M, Rochelle D P, et al. Reactive material compositions, shotshells including reactive materials and a method of producing [P]. US 20070272112, 2007.
    [45] Nielson D B, Truitt R M, Ashcroft B N. Reactive material enhanced projectiles and related methods [P]. US 20080035007, 2008.
    [46] Defense Technology International [Z]. US, 2008, March, 13.
    [47] Hambling D. Reactive Revolution: Meet the Pulverizers. http://blog.wired.com/defense/ reactive_ revolution/ index.html, 2008.
    [48] Nielson D B, Truitt R M, Ashcroft B N. Reactive material enhanced projectiles and related methods [P]. EP 1780494, 2006.
    [49] Nielson D B, Truitt R M, Ashcroft B N. Reactive material enhanced projectiles and related methods [P]. EP20060020829, 2006.
    [50] ATK Inc. Reactive compositions including metal and methods of forming same [P]. GB 2412116, 2005.
    [51] Better Warheads through Plastics. http://www.sciencedaily.com/releases/2002/12/02120307491 0.htm, 2003.
    [52] Pop Mech: Explosive Metal. http://www.defensetech.org/archives/003653.html, 2007.
    [53] Hambling D. Reactive Revolution: Set Landmines to 'Stun' or 'Disintegrate'. http://blog.wired. com/defense/ ammo_and_munitions/index.html, 2008.
    [54]张彤.含能破片材料的制备及毁伤性研究[D].长沙:国防科学技术大学, 2006, 32~37.
    [55]阳世清,徐松林,张彤. PTFE/Al反应材料制备工艺及性能研究[J].国防科技大学学报, 2008, 30(6): 512~516.
    [56]徐文涛.反应材料工艺与力学性能[D].长沙:国防科学技术大学, 2008, 17~23.
    [57]黄亨建,黄辉,阳世清等.毁伤增强型破片探索研究[J].含能材料, 2007, 15(6): 566~569.
    [58] Xue Y J, Cheng X H, Effect of rare earth elements' surface treatment on tensile properties and microstructure of glass fiber-reinforced polytetrafluoroethylene composites. J. Appl. Poly. Sci. 2002, 86(7): 1667~1672.
    [59] US Defense Science Office. Reactive Material Structure [R]. DARPA-BAA 08-23, 2008.
    [60] Cvetnic M. Reactive Materials in Mines and Demolitions Systems [Z]. www.atk.com, 2007.
    [61] Sullivan S. Process Research and Development for High Density Metal-Metal Composites [Z]. Navy SBIR, N08-080, 2008.
    [62] Taylor P A. Al/PTFE reactive material (RM-4) sandia effort: Experiments & Modeling [R]. SAND2003-1840P.
    [63]高原,谷良贤.超高速动能反坦克导弹技术[J].火力与指挥控制, 2008, 33(10): 1~4.
    [64]李向动,钱建平,曹兵等.弹药概论[M].北京:国防工业出版社, 2004, 262~270.
    [65]王祖典.空空导弹发展今昔[J].航空兵器, 2004, 2: 1~5.
    [66]钱知勉.氟树脂性能与加工应用[J].化工生产与技术, 2004, 11(4): 1~8.
    [67]徐兆瑜.氟树脂及塑料生产与应用[J].化学推进剂与高分子材料, 2003, 1(5): 40~44.
    [68]杜小刚,刘亚青.聚四氟乙烯的加工成型方法[J].绝缘材料, 2007, 40(3): 67~69.
    [69]陈碧波.聚四氟乙烯蠕变性能研究[D].西安:西北工业大学, 2007, 32~41.
    [70]陈旭,回素彩.聚四氟乙烯烧结成型的制备工艺[J].塑料工业, 2005, 33(10): 38~40.
    [71]汪萍.聚四氟乙烯的烧结工艺技术[J].工程塑料应用, 2001, 29(3): 19~21.
    [72]王进华.关于模压用聚四氟乙烯树脂烧结工艺条件的探讨[J].塑料加工应用, 2000, 3: 21~23.
    [73]李燕青.聚四氟乙烯复合材料的性能研究[D].成都:西华大学, 2006, 14~21.
    [74]大金氟树脂. http://www.daikin.jp/chm, 2005.
    [75]汪萍.聚四氟乙烯材料烧结技术的研究和应用[J].塑料加工应用, 2001, 22: 28~33.
    [76] Joyce P J, Joyce J A. Evaluation of the Fracture Toughness Properties of Polytetrafluoroethylene [J]. International Journal of Fracture, 2004, 127(4): 361~385.
    [77] Rae P J, Dattelbaum D M. The properties of Polytetrafluoroethylene in compression [J]. Polymer, 2004, 45(22): 7615~7625.
    [78] Rae P J, Brown E N. The properties of polytetrafluoroethylene in tension PTFE [J]. Polymer, 2005, 46(19): 8128~8140.
    [79] Perepechko I I, Startsev O V, Savina M E. Viscoelastic behavior of deformed polytetrafluoroethylene [J]. Mekhanika Polimerov, 1974, 5: 943~945.
    [80] Bourne N K, Gray G T. Equation of state of polytetrafluoroethylene [J]. J. Appl. Phys. 2003, 93(11): 8966~8970.
    [81] Sun H L, Robert S C, Douglas W B, et al. Supercritical CO2 processing and annealing of polytetrafluoroethylene (PTFE) and modified PTFE for enhancement of crystallinity and creep resistance [J]. Polymer, 2005, 46: 8872~8882.
    [82]杜小刚,刘亚青,谢江波等.超临界CO2辅助PTFE/PP挤出的研究[J].工程塑料应用, 2008, 36(2): 35~38.
    [83]傅政.高分子材料强度及破坏行为[M].北京:化学工业出版社, 2004, 44~46.
    [84]黄丽,陈晓红,宋怀河.聚合物复合材料[M].北京:中国轻工业出版社, 2001, 4~11.
    [85]孙春峰,李丽,张旺玺.玻璃纤维增强聚四氟乙烯材料性能的研究[J].合成树脂及塑料, 2003, 20(3): 36~38.
    [86]薛玉君,程先华,谢超英.稀土元素对玻璃纤维增强PTFE复合材料拉伸性能的影响[J].无机材料学报, 2002, 17(3): 531~538.
    [87] Faughnan P, Bryan C, Gan Y, et al. Correlation between the Dynamic Mechanical Properties and the Fatigue Behavior of Filled and Unfilled PTFE Materials [J]. Materials Science Letters, 1998, 17: 1743~1746.
    [88] Zhang Z, Aglan H, Faughnan P, et al. Fracture and fatigue analysis of 15% chopped glass fiber reinforced PTFE. J. Reinf. Plast. Compos, 1998, 17: 752~771.
    [89] Zhang Z, P Klein, K Friedrich. Dynamic mechanical properties of PTFE based short carbon fiber reinforced composites: experiment and artificial neural network prediction [J]. Composites Science and Technology, 2002, 62: 1001~1009.
    [90]胡福田,杨卓如.玻璃纤维布增强聚四氟乙烯复合材料的制备及性能研究[J].化工新型材料, 2006, 34(12): 19~22.
    [91]孙春峰,李丽,张旺玺等.碳纤维增强聚四氟乙烯耐磨材料的研究[J].塑料工业, 2002, 30(4): 25~26.
    [92]师延龄.碳纤维填充聚四氟乙烯的性能及应用[J].有机氟工业, 2005, 3: 23~25.
    [93]丁美平,寇开昌,田普锋等.不同方法处理碳纤维增强PTFE复合材料性能的研究[J].工程塑料应用, 2006, 34(4): 25~28.
    [94]包丹丹,程先华.稀土处理对碳纤维增强聚四氟乙烯复合材料拉伸性能的影响[J].上海交通大学学报, 2006, 40(6): 914~917.
    [95]王家序,陈战,秦大同.填料对聚四氟乙烯工程塑料改性的影响[J].机械工程材料, 2002, 26(10): 35~37.
    [96] Shangguan Q Q, Chen Xianhua. Effect of Rare Earths on Tribological Properties of Carbon Fiber Reinforced PTFE Composites [J]. J. Rare Earths, 2007, 25: 469~473.
    [97]回素彩.纳米Al2O3/PTFE复合材料的制备与力学性能的研究[D].天津:天津大学, 2005, 55~57.
    [98]田爱国.纳米氧化铝粉体填充增强聚醚醚酮复合材料及其性能研究[D].上海:上海材料研究所, 2002: 35~39.
    [99]何春霞,顾红艳,丁为民.不同纳米材料填充聚四氟乙烯复合材料的力学性能[J].工程塑料应用, 2000, 28(12): 1~3.
    [100]何春霞.纳米氧化铝填充聚四氟乙烯摩擦磨损性能研究[J].摩擦学学报, 2000, 20(2): 153~156.
    [101]王海宝,吴光杰.纳米氧化铝改性聚四氟乙烯力学性能的研究[J].塑料工业, 2003, 31(8): 40~43.
    [102]张雁鸿.纳米颗粒增强PTFE材料的制备方法及其性能研究[D].武汉:华中科技大学, 2006, 43~46.
    [103]张艳诚.纳米材料填充改性PTFE力学性能的研究[J].机械工程师, 2006, 1:101~102.
    [104]赵正平,栾道成,饶耀.纳米碳酸钙填充PTFE复合材料力学性能的研究[J].塑料工业, 2006, 34(9): 39~41.
    [105]冯新,汪怀远,王昌松等.钛酸钾晶须增强聚四氟乙烯复合材料性能的研究[J].材料科学与工艺, 2006, 14(3): 312~315.
    [106]刁晓松.钛酸钾晶须/聚四氟乙烯复合材料的摩擦学研究[D].南京:南京工业大学, 2005, 17~19.
    [107] Feng X, Wang H Y, Shi Y J, et al. The effects of the size and content of potassium titanate whiskers on the properties of PTW/PTFE composites [J]. Materials Science and Engineering A, 2007, 448: 253~258.
    [108]张招柱,薛群基,浏维民等.陶瓷颗粒填充PTFE复合材料的摩擦磨损性能研究[J].高分子材料科学与工程, 2001, l7(2): 121~124.
    [109]张招柱.几种金属氧化物填充聚四氟乙烯复合材料在干摩擦条件下的摩擦磨损性[J].摩擦学学报, 1997, 1: 46~49.
    [110]韩崇科. SiO_2/聚四氟乙烯复合材料的研制及应用研究[D].西安:西北工业大学, 2006, 14~16.
    [111]丁美平.聚四氟乙烯改性及其性能研究[D].西安:西北工业大学, 2006, 7~9.
    [112] Sun L H, Yang Z G, Li X H. Effects of the treatment of attapulgite and filler contents on tensile properties of PTFE and attapulgite reinforced fabric composites [J]. J. Composites: Part A, 2009, 175: 197~205.
    [113]赵普,刘近朱,王齐华等.聚苯酯、聚酰亚胺填充聚四氟乙烯复合材料的摩擦学性能研究[J].材料科学与工程学报, 2003, 21(6): 851~854.
    [114]李晶.聚四氟乙烯复合涂层的研制及性能研究[D].沈阳:东北大学, 2005, 23~26.
    [115] Zhao R G, Luo W B, Xiao H M, et al. Water-absorptivity and mechanical behaviors of PTFE/PA6 and PTFE/PA66 blends [J]. Trans. Nonferrous Met. Soc. China, 2006, 16: 498~503.
    [116] Zhang X T, Liao G X, Jin Q F, et al. On dry sliding friction and wear behavior of PPESK filled with PTFE and graphite [J]. Tribology International, 2008, 41: 195~201.
    [117] Jayashree Bijwe, Sukanta Sen, Anup Ghosh. Influence of PTFE content in PEEK/PTFE blends on mechanical properties and tribo-performance in various wear modes [J]. Wear, 2005, 258: 1536~1542.
    [118] Raftenberg M N, Willis M J, Kirby G C. Modeling the impact deformation of rods of a pressed PTFE-Al composite mixture [J]. International Journal of Impact Engineering, 2008, 35: 1735~1744.
    [119] Raftenberg M N, Scheidler M J, Casem D A. A Yield Strength Model and Thoughts on an Ignition Criterion for a Reactive PTFE-Aluminum Composite [R]. 55th JANNAF Conference, Newton, MA, May, 2008.
    [120]姜伟之,赵时熙,王春生等.工程材料的力学性能[M].北京:北京航空航天大学出版社, 2000, 157~164.
    [121]胡福增,郑安呐,张群安.聚合物及其复合材料的表界面[M].北京:中国轻工业出版社, 2001, 96~106.
    [122]刘英俊.塑料填充改性[M].北京:中国轻工业出版社, 1998, 124~129.
    [123]刘春连.短纤维增强聚四氟乙烯摩擦材料的研究[D].厦门:华南理工大学, 2005, 22~24.
    [124]刘瑞堂,刘文博,刘锦云.工程材料力学性能[M].哈尔滨:哈尔滨工业大学出版社, 2001, 178~187.
    [125] Aglan H, Gan Y, Hadik E M, et al. Evaluation of the fatigue fracture resistance of unfilled and filled polytetrafluoroethylene materials. J. Mater.Sc, 1999, 34: 83~97.
    [126]郑强,冯金茂,俞月初等.聚合物增韧机理研究进展[J].高分子材料科学与工程, 1998, 14(4): 12~15.
    [127]刘宏治,杨桂生,欧玉春等.核-壳粒子增韧聚合物的研究进展[J].高分子通报, 2006, 9: 1~15.
    [128]吕坤.聚合物增韧机理研究进展[J].现代塑料加工应用, 2000, 12(4): 50~54.
    [129]张龙彬,朱光明.无机刚性粒子增韧聚合物研究进展[J].化工新型材料, 2005, 33(10): 25~28.
    [130]陈尔凡,陈东.晶须增强增韧聚合物基复合材料机理研究进展[J].高分子材料科学与工程, 2006, 22(2): 20~26.
    [131]宗志宇,许涌深,戴建华.无机纳米粒子增强增韧聚合物的研究进展[J].天津化工, 2003, 17(2): 18~21.
    [132]张以河,付绍云,李国耀等.聚合物基纳米复合材料的增强增韧机理[J].高技术通讯, 2004, 14(5): 99~105.
    [133] Xue Y J, Cheng X H, Effect of rare earth elements' surface treatment on tensile properties and microstructure of glass fiber-reinforced polytetrafluoroethylene composites. J. Appl. Poly. Sci. 2002, 86(7): 1667~1672.
    [1]周达飞.高分子材料成型加工[M].北京:中国轻工业出版社, 2005, 136~144.
    [2]黄丽,陈晓红,宋怀河.聚合物复合材料[M].北京:中国轻工业出版社, 2001, 4~11.
    [3]杜小刚,刘亚青.聚四氟乙烯的加工成型方法[J].绝缘材料, 2007, 40(3): 67~69.
    [4]王进华.关于模压用聚四氟乙烯树脂烧结工艺条件的探讨[J].塑料加工应用, 2000, 3: 21~23.
    [5]汪萍.聚四氟乙烯的烧结工艺技术[J].工程塑料应用, 2001, 29(3): 19~21.
    [6]汪萍.聚四氟乙烯材料烧结技术的研究和应用[J].塑料加工应用, 2001, 22: 28~33.
    [7]陈旭,回素彩.聚四氟乙烯烧结成型的制备工艺[J].塑料工业, 2005, 33(10): 38~40.
    [8]钱知勉.氟树脂性能与加工应用[J].化工生产与技术, 2004, 11(4): 1~8.
    [9]刘燕萍.硬铝合金化学复合镀-聚四氟乙烯性能的研究[J].电镀与精饰,2001, 23(3): 11~14.
    [10]黄其忠,任明法,陈浩然等.复合材料网络结构软模成型工艺参数分配分析[J].材料工程, 2008, Z1: 1058~1064.
    [11]杜小刚,刘亚青,谢江波等.超临界CO2辅助PTFE/PP挤出的研究[J].工程塑料应用, 2008, 36(2): 35~38.
    [12] Kenneth W, Suresh S. Fluoropolymer-carbon dioxide compositons and methods of proceeding fluoropolymers [P]. US6960633, 2001.
    [13]刘英俊.塑料填充改性[M].北京:中国轻工业出版社, 1998, 124~129.
    [14]付海梅,王伟明,刘继红.聚四氟乙烯成型加工新技术[J].塑料工业, 2005, 33: 237~239.
    [15]徐下忠,乐启发,张良武等.聚四氟乙烯的加工成型技术[J].工程塑料应用, 2002, 30(3): 22~25.
    [16]李孝兰,王占江.聚四氟乙烯动态特性的实验研究[J].高压物理学报, 1990, 4(3): 210~217.
    [17]卢芳云,林玉亮,王晓燕等.含能材料的高应变率响应实验[J].火炸药学报, 2006, 29(1): 1~4.
    [18]晋勇,孙小松,薛屺. X射线衍射分析技术[M].北京:国防工业出版社, 2008, 187~189.
    [19]马礼敦.近代X射线多晶体衍射[M].北京:化学工业出版社, 2004, 109~110.
    [20]丁美平.聚四氟乙烯改性及其性能研究[D].西安:西北工业大学, 2006, 37~39.
    [21]胡福增,陈国荣,杜永娟.材料表界面[M].上海:华东理工大学出版社, 2008, 132~134.
    [1]周达飞.高分子材料成型加工[M].北京:中国轻工业出版社, 2005, 136~144.
    [2]黄丽.聚合物复合材料[M].北京:中国轻工业出版社, 2001, 4~11.
    [3]杜小刚,刘亚青.聚四氟乙烯的加工成型方法[J].绝缘材料, 2007, 40(3): 67~69.
    [4]刘瑞堂,刘文博,刘锦云.工程材料力学性能[M].哈尔滨:哈尔滨工业大学出版社, 2001, 178~187.
    [5]刘英俊.塑料填充改性[M].北京:中国轻工业出版社, 1998, 124~129.
    [6]张彤.含能破片材料的制备及毁伤性研究[D].长沙:国防科学技术大学, 2006, 32~37.
    [7]徐文涛.反应材料工艺与力学性能[D].长沙:国防科学技术大学, 2008, 17~23.
    [8]韩崇科. SiO2/聚四氟乙烯复合材料的研制及应用研究[D].西安:西北工业大学, 2006, 63~69.
    [9]纪占敏,杜仕国,施冬梅.硅烷偶联剂在复合材料中的应用研究[J].现代涂料与涂装, 2006 (12): 42~44.
    [10]张立新.钛酸酯偶联剂的应用[J].辽宁化工, 2005, 34(6): 268~270.
    [11]冯亚青,王利军.助剂化学及工艺学[M].北京:化学工业出版社, 1997, 38~44.
    [12] Bijwe J, Nwje S, Indumath J. Friction and wear performance evaluation of carbon fiber reinforced PTFE composite [J]. Journal of Reinforced Plastics and Composites, 2002, 21(13): 1221~1240.
    [13]何春霞,史丽萍,沈惠平.纳米氧化铝填充PTFE摩擦磨损性能的研究[J].摩擦学学报, 2000, 20(2): 153~155.
    [14]刁晓松.钛酸钾晶须/聚四氟乙烯复合材料的摩擦学研究[D].南京:南京工业大学, 2005, 17~19.
    [15]傅政.高分子材料强度及破坏行为[M].北京:化学工业出版社, 2004, 44~46.
    [16] Brown E N, Dattelbaum D M. The role of crystalline phase on fracture and microstructure evolution of polytetrafluoroethylene (PTFE) [J]. Polymer, 2005, 46(9): 3056~3068.
    [17]丁美平.聚四氟乙烯改性及其性能研究[D].西安:西北工业大学, 2006, 21~27.
    [18]ПyraчeвA. K.氟塑料制品的加工方法(十一) [J].有机氟工业, 1990(3): 52~58.
    [19]张雁鸿.纳米颗粒增强PTFE材料的制备方法及其性能研究[D].武汉:华中科技大学, 2006, 43~46.
    [20]贺鹏,赵安赤.聚合物改性中纳米复合新技术[J].高分子通报, 2001 (2): 74~81.
    [21]回素彩.纳米Al2O3/PTFE复合材料的制备与力学性能的研究[D].天津:天津大学, 2005, 55~57.
    [22]黄丽,杨儒,郭江江等.微米和纳米SiO2改性聚四氟乙烯的摩擦磨损性能[J].复合材料学报, 2004, 21(4): 82~86.
    [23] Kahn R W, Hason P, Kelemo E J.聚合物的结构与性能(材料科学与技术丛书, Vl12) [M].北京:科学出版社, 1999, 36~38.
    [24]何曼君.高分子物理[M].上海:复旦大学出版社, 1990: 103~104.
    [25]陈东辉.钛酸钾晶须增强PTFE基复合材料界面与组分及性能的研究[D].南京,南京工业大学, 2002, 51~52.
    [26]冯磊,包永忠,黄志明.聚四氟乙烯-全氟丙基乙烯基醚共聚物结构和性能[J].合成树脂及塑料, 2005, 22(2): 60~62.
    [27]胡福增,郑安呐,张群安.聚合物及其复合材料的表界面[M].北京:中国轻工业出版社, 2001, 96~106.
    [28] Osborne D T. The effect of fuel particle size on the reaction of Al/Teflon mixtures [D]. Texas: Texas Tech University, 2006, 32~35.
    [29] Monte.S. J. Processing of Composites with Titanate Coupling Agent-A Review [J]. J. Polymer Engineering and Science, 1984 (24): 1369~1381.
    [30]杨宁,贵大勇,刘吉平.硅烷偶联剂对晶须的表面处理及应用[J].塑料科技, 2004 (160): 14~17.
    [31]廖俊,陈圣云,刘英伟等.硅烷偶联剂在涂料中的应用及其进展[J].精细与专用化学品, 2006, 14(19): 1~4.
    [1]王礼立.爆炸与冲击载荷下结构和材料动态响应研究的新进展[J].爆炸与冲击, 2001(21): 81~88.
    [2]刘瑞堂,刘文博,刘锦云.工程材料力学性能[M].哈尔滨:哈尔滨工业大学出版社, 2001, 178~187.
    [3]张江涛,刘立胜,周安等.颗粒增强复合材料的动态压缩力学性能研究[J].华中科技大学学报, 2006, 23(2): 11~13.
    [4]姜伟之,赵时熙,王春生等.工程材料的力学性能[M].北京:北京航空航天大学出版社, 2000, 157~164.
    [5] Forrestal M J, Wright T W, Chen W. The effect of radial inertia on brittle sample during the split Hopkinson pressure bar test [J]. Int J Impact Eng, 2007, 34: 405~411.
    [6]刘英俊.塑料填充改性[M].北京:中国轻工业出版社, 1998, 124~129.
    [7]胡福增,郑安呐,张群安.聚合物及其复合材料的表界面[M].北京:中国轻工业出版社, 2001, 96~106.
    [8]回素彩.纳米Al_2O_3/PTFE复合材料的制备与力学性能的研究[D].天津:天津大学, 2005: 55~57.
    [9]田爱国.纳米氧化铝粉体填充增强聚醚醚酮复合材料及其性能研究[D].上海:上海材料研究所, 2002: 35~39.
    [10]曹菊珍,周淑荣.材料的本构关系在数值计算中的作用[J].兵工学报, 1998, 19(1): 69~72.
    [11]孙建运,李国强.动力荷载作用下固体材料本构模型研究的进展[J].四川建筑科学学报, 2006, 32(5): 144 ~149
    [12]龚晓南,叶黔元.工程材料本构方程[M].北京:中国建筑工业出版社, 2005, 123~126.
    [13] Raftenberg M N, Willis M J, Kirby G C. Modeling the impact deformation of rods of a pressed PTFE-Al composite mixture [J]. International Journal of Impact Engineering, 2008, 35: 1735~1744.
    [14]杨桂通.塑性动力学[M].北京:高等教育出版社, 2000, 63~67.
    [15]匡震帮,顾海澄,李中华.材料的力学行为[M].北京:高等教育出版社, 1998, 53~57.
    [16] Johnson G R. A constitutive model and data for metals subjected to large strain, high strain rate and high temperature [A]. In. 15th International Symposium on Ballistics[C], 1983: 541~547.
    [17] Holmquist T J, Johnson G R, Cook W H. A Computational Constitutive for Concrete Subjected to Strains, High Strain Rates and High Pressure [A]. Proceeding of the Fourteenth International Symposium on Ballistics[C]. 1995, 591~600.
    [18]卢芳云,林玉亮,王晓燕等.含能材料的高应变率响应实验[J].火炸药学报, 2006, 29(1): 1~4.
    [19]李孝兰,王占江.聚四氟乙烯动态特性的实验研究[J].高压物理学报, 1990, 4(3): 210~217.
    [20] Khan A, Zhang H Y. Finite deformation of a polymer-experiments and modeling [J]. International Journal of Plasticity. 2001, 17: 1167~1188.
    [21] Herbold E B, Cai J, Benson D J. Simulation of particle size effect on dynamic properties and fracture of PTFE-Al-W composite [A]. Shock 07 meeting of the American Physical Society [C]. 2007, 3, 161~173.
    [22] Khan A S, Suh S Y, Chen X, et al. Nanocrystalline aluminum and iron- Mechanical behavior at quasi-static and high strain rates [J]. International Journal of Plasticity, 2006, 22: 195~209.
    [23]赵海鸥. LS-DYNA动力分析指南[M].北京:兵器工业出版社, 2003: 17~21.
    [24]白金泽. LS-DYNA3D理论基础与实例分析[M].北京:科学出版社, 2005: 5~9.
    [25]万军.动能杆类战斗部杀伤元素爆炸驱动的数值模拟研究[D].长沙:国防科技大学, 2002: 57~60.
    [26]任磊,宋笔锋,斐扬等.靶板击穿极限速度的数值模拟分析与试验验证[J].航空计算技术, 2006, 36(1): 62~68.
    [27]武竞雄,何煌,曾首义.杆式穿甲弹侵彻金属靶板的试验与数值模拟研究[A].第17届全国结构工程学术会议[C],武汉, 2007: 277~281.
    [28]王少龙,李卫平,汪德武等.卵形弹丸对金属靶板侵彻深度的研究[J].弹箭与制导学报, 2006 , 26(1): 922~926.
    [29]纪冲,龙源,万文乾.杆式弹丸贯穿金属靶板数值模拟及影响因素研究[J].弹箭与制导学报, 2005, 25(3): 57~63.
    [30]王晓兵,王维保,胡浩等.预制钨破片穿甲仿真分析[J].应用实践, 2008, 12: 71~73.
    [31]张彤.含能破片材料的制备及毁伤性研究[D].长沙:国防科学技术大学, 2006, 32~37.
    [1] Wang H F, Liu Z W, Wang H, et al. Impact Initiated Characteristics of Reactive Material Fragments [A]. 2007 International Autumn Seminar on Propellants, Explosives and pyrotechnics [C]. Oct 2007, Xi’an, 429~432.
    [2]张彤.含能破片材料的制备及毁伤性研究[D].国防科学技术大学, 2006, 56~63.
    [3]黄亨建,黄辉,阳世清等.毁伤增强型破片探索研究[J].含能材料, 2007, 15(6): 566~569.
    [4] DE Technologies Inc. Reactive Fragment Warhead for Enhanced Neutralization of Mortar, Rocket, Missile threats [R]. ONR-SBIR, N04-903, 2005.
    [5] Lee R J, Willis M J, Carney J R, et al. Reactive materials studies [J]. Shock Compression of Condensed Matter, 2005, CP845, 169~174.
    [6] Dolgoborodov A Y, Makhov M N, Kolbanev I V. Detonation in metal-teflon mechanoactivated composites [A]. 13th International detonation Symposium [C], Norfolk, VA. July 2006, 53~57.
    [7] Dolgoborodov A Y, Makhov M N, Kolbanev I V. et al. Detonation in an aluminum- Teflon mixture [J]. JETP Letters, 2005, 81(7): 311~314.
    [8] Gogulya M F, Makhov M N, Brazhnikov M A. Detonation-like processes Teflon/Al-based explosive mixture [A]. 13th International Detonation Symposium [C], Norfolk, July 2006, 168~175.
    [9] Willis M J, Holt W H. Impact Initiation of Rods of Pressed Polytetrafluoroethylene (PTFE) and Aluminum Powders [J]. Shock Compression of Condensed Matter, 2005, CP845: 1097~1010.
    [10] Willis M J, Jason T D. Effect of aluminum particle size on the impact initiation of pressed PTFE-Al composite rods [J]. Shock Compression of Condensed Matter, 2007, CP955, 971~974.
    [11] Denisaev A A, Shteinberg A S, Academician A, et al. Study of the Impact Sensitivity of Al–PTFE Layered Compositions [J]. Russia Doklady Physical Chemistry, 2007, 414(2): 139~142.
    [12] Dumitras M, Odochian L. Study on the influence of PTFE particle size on the polymer thermal behavior-I. Melting [J]. J of Thermal Analysis and Calorimetry, 2002, 69: 599~606.
    [13]李梦龙.化学数据速查手册[M].北京:化学工业出版社, 2002, 64~65.
    [14]欧育湘.炸药学[M].北京:北京理工大学出版社, 2006, 332~336.
    [15]傅献彩,沈文霞,姚天扬.物理化学[M].北京:高等教育出版社, 1979, 481~482.
    [16]叶大伦.实用无机物热力学数据手册[M].北京:冶金工业出版社, 1979, 102~103.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700