织构化铌酸盐系无铅压电陶瓷的制备和机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着环境保护越来越受到世界各国的重视,无铅压电陶瓷作为一种环境友好型材料,其研究已成为目前材料领域的热点之一。然而,通过掺杂改性方法对无铅压电陶瓷材料性能的提高有限,陶瓷的织构化控制是提高无铅压电陶瓷性能的有效的方法。很多实验证明,在某一极化方向拥有高度晶粒取向(高织构度)的压电陶瓷将表现出大幅优于非织构化陶瓷的电性能。
     本论文主要采用丝网印刷反应模板晶粒生长(screen-printing reactive templatedgrain growth,缩写为Sp-RTGG)技术,制备了具备<001>择优取向生长的钙钛矿结构铌酸钾钠(K,Na)NbO_3(KNN)和钨青铜结构铌酸铋钾K_2BiNb_5O_(15)(KBIN)织构化陶瓷。论文主要研究了丝网印刷反应模板晶粒生长技术的工艺过程和原理、模板晶粒的合成、影响陶瓷织构度的因素、织构化陶瓷的显微结构和电性能。论文中主要研究内容如下:
     (1)总结出一条有效的丝网印刷反应模板晶粒生长技术工艺流程,包括:丝网印刷网眼参数的选择,印刷浆料的配置,基体粉末的制备,模板晶粒的分散,切片和叠层,排胶工艺,以及陶瓷坯体的致密化方式等。提出了丝网印刷反应模板晶粒生长法制备织构化陶瓷的反应机理,其中印刷界面的存在不仅保证了模板晶粒的有效定向,更对其取向生长起着重要作用。
     (2)以铋层状结构Bi2.5Na3.5Nb5O18为前驱体,采用拓扑微晶置换法合成片状的钙钛矿结构NaNbO_3模板晶粒;采用熔盐法合成出片状的K_4Nb_6O_(17)晶粒,研究了其吸水特性;以K_4Nb_6O_(17)为前驱体通过拓扑微晶置换反应法合成钙钛矿结构片状的KNN晶粒,并研究了层状结构的K_4Nb_6O_(17)通过拓扑微晶置换反应生成KNN晶粒的反应机理;通过熔盐法制备了柱状的KBIN晶粒,研究了其中料/盐比和合成温度对晶粒尺寸的影响,给出了KBIN晶粒在熔盐中的生长机理。
     (3)以10mol%片状NaNbO_3为模板晶粒,0.5mol%K_4CuNb_8O_(23)为烧结助剂,采用丝网印刷反应模板晶粒生长技术成功地制备了<001>方向晶粒取向度为95%的织构化(K_(0.45)Na_(0.55))NbO3陶瓷,研究了烧结温度和升温速率对陶瓷织构度的影响;SEM分析结果表明,织构化(K_(0.45)Na_(0.55))NbO3陶瓷晶粒呈规则的砖块状,并沿着丝网印刷方向定向排列;相比于传统的固相反应法制备的非取向陶瓷,丝网印刷技术制备的(K_(0.45)Na_(0.55))NbO3织构化陶瓷的压电性能取得明显提高:在sp(//)面上,介电常数εr,压电系数d33,机电耦合系数kp分别提高了75%,44%,42%,在sp()面上,它们的提高幅度相对较小,分别为35%,30%,35%,在sp(//)面上的电性质明显优于sp()面。
     (4)以10mol%片状NaNbO_3为反应模板晶粒,0.5mol%CuO为烧结助剂,采用丝网印刷反应模板晶粒生长技术制备了织构度为93%,d33和kp分别高达138pC/N和0.54的(K_(0.5)Na_(0.5))NbO3陶瓷。研究了模板晶粒随烧结温度升高的生长过程,以及Ta原子的引入对陶瓷织构度的影响,发现Ta原子的引入对(K_(0.5)Na_(0.5))NbO_3陶瓷的织构产生负面影响。
     (5)采用棒状模板通过丝网印刷反应模板晶粒生长技术制备出各向异性的织构化陶瓷。采用15mol%棒状KBIN为模板晶粒,通过丝网印刷反应模板晶粒生长技术首次制备出沿<001>方向织构度为45%的KBIN陶瓷,介电性能分析结果显示其具备明显各向异性。
With increasing attention to environmental protection globally, as a type ofeco-friendly materials,lead-free piezoelectric ceramics have become one of the hot areasof current materials research. However, the doping method has been unable to keep upwith the pace of performance improvement of ceramic, the texture control ofpolycrystalline ceramics is a convenient and effective approach to improve thepiezoelectric properties of lead-free ceramics. Many reports show that piezoelectricceramics with a high degree of grain orientation in a certain polar direction will exhibitsignificantly better performances compared to those of non-textured ceramics.
     In this disertation,screen-printing reactive templated grain growth (Sp-RTGG) wasstudied to fabricate the textured perovskite-structured (K,Na)NbO_3(KNN) andtungsten-bronze-structured K_2BiNb_5O_(15)(KBIN) ceramics with a preferred grainorientation in the <001> direction. The screen-printing process, the mechanism ofscreen-printing reactive templated grain growth, the synthesis of template, the factorsaffecting the texture degree, the microstructure, and the electrical properties of thetextured ceramics are studied in detail. The main contents are as follows:
     (1) We study the complete process of screen-printing reactive templated graingrowth and introduces an effective process flow, including: the parameter selection ofscreen-printing mesh, the configuration of screen-printing ink, the preparation of matrixpowder, the dispersion of template, sliced and stacked, the process of binder removal, andthe densification method of ceramic green body. Proposing the reaction mechanism ofscreen-printing reactive templated grain growth, in which the existence of printing interfaces not only make template grains effectively oriented but also plays an importantrole in their oriented growth.
     (2) Plate-like perovskite-structured NaNbO_3templates were synthesized by thetopo-chemical microcrystal conversion (TMC) method, using bismuth layer-structuredBi2.5Na3.5Nb5O18as precursors. Plate-like K_4Nb_6O_(17)particles were obtained by the moltensalt synthesis, and the behavior of adsorption layer of water on K_4Nb_6O_(17)was studied.Plate-like perovskite-structured KNN particles were synthesized by the topo-chemicalmicrocrystal conversion method, using layer-structured K_4Nb_6O_(17)as precursors.Furthermore, the topo-chemical reaction mechanism from K_4Nb_6O_(17)to KNN was alsoinvestigated. Rod-like KBIN particles were synthesized by the molten salt synthesis, theinfluence of powder/salt and reaction temperature on the particle size of KBIN werestudied, and the growth mechanism of KBIN in molten salt was proposed.
     (3) Textured (K_(0.45)Na_(0.55))NbO_3lead-free piezoelectric ceramics exhited both a highgrain orientation (Lotgering factor F=95%) along <001> direction and a relative highdensity (92%of theoretical density) have been successfully fabricated by thescreen-printing reactive templated grain growth technique, using10mol%plate-likeNaNbO_3templates and0.5mol%K4CuNb8O23sintering aids. The influence of sinteringtemperature and heating rate on grain orientation degree were investigated. SEM imagesshow that the textured ceramics is composed of well-ordered brick-like grains arrangedalong the screen-printing direction. The piezoelectric properties of the textured(K_(0.45)Na_(0.55))NbO_3ceramics were significantly improved compared to non-texturedsamples: the dielectric constant εr, piezoelectric constant d33, and electromechanicalcoupling coefficient kpwere increased by about75%,44%and42%in (sp//) plane, andthose were increased by about35%,30%and35%in<001> orientation (F=93%)were fabricated by the screen-printing reactive temp (sp) plane, respectively.
     (4) Highly textured (K_(0.5)Na_(0.5))NbO_3ceramics with lated grain growth technique, using10mol%plate-like NaNbO_3templates and0.5mol%CuO sintering aids. The textured (K_(0.5)Na_(0.5))NbO3ceramics showed very high piezoelectric constant d33=133pC/N, andhigh electromechanical coupling factor kp=0.54. The growth process of template grainwith sintering temperature increasing and the influence of Ta atom on grain orientationdegree were studied. It was found that the introduction of Ta atoms had a negative impacton the grain orientation degree of (K_(0.5)Na_(0.5))NbO3textured ceramics.
     (5) The work focuses on the fabrication of anisotropic textured ceramics with rod-liketemplates using screen-printing reactive templated grain growth technique. TexturedKBIN ceramics were first successfully fabricated by this method, using15mol%rod-likeKBIN templates. The textured KBIN ceramics showed an orientation degree of45%along<001> direction. The analysis of the dielectric properties of the textured KBIN ceramicsrevealed obvious anisotropies.
引文
[1]李言荣,恽正中.电子材料导论.北京:清华大学出版社.2000.
    [2]钟维烈,铁电物理学.北京:科学出版社.1996.
    [3]严永科,模晶生长法制备织构化无铅压电陶瓷的研究.清华大学博士学位论文.2008.
    [4] B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric ceramics, Academic press, New
    [5]周东祥,黎惠.无铅压电陶瓷材料的研究进展.功能材料.2007,4(4):7-12.
    [6] J. Yamashita,上海无铅压电材料国际研讨会上的报告,上海:2003.
    [7]张福学,孙慷主编.压电学(下册).北京:国防科技出版社.1984,24-27.
    [8]彭春娥,李敬峰.无铅压电陶瓷材料的应用及研究进展.新材料产业.2005,(3):45-51.
    [9]杨群保,荆学珍等.无铅压电陶瓷研究的新进展.电子元件与材料.2004,23(11):56-61.
    [10]尹奇异,赁敦敏,肖定全等.无铅压电陶瓷及其应用研究.金属功能材料.2004,12(6):40-45.
    [11] S. E. Park, S. J. Chung, I. et al. Nonstoichiometry and long-range cation ordering incrystals of (Na1/2Bi1/2)TiO3, J. Am. Ceram. Soc.,1994,77(10):2641-2647.
    [12] G. O. Jones, and P. A. Thomas, Investigation of the structure and phase transitions inthe novel A-site substituted distorted perovskite compound Na1/2Bi1/2TiO3, Acta.Cryst.,2002, B58(2):168-178.
    [13] S. Said, and J. P. Mercurio, Relaxor behavior of low lead and lead free ferroelectricceramics of the Na1/2Bi1/2TiO3-PbTiO3and Na1/2Bi1/2TiO3-K1/2Bi1/2TiO3systems, J.Eur. Ceram. Soc.,2001,21(10-11):1133-1136.
    [14] T. Takenaka, A. Huzurmi, et al. Mechanical properties of (Bi,Na)0.5TiO3-basedpiezoelectric ceramics. Silic Ind,1993,7(8): l36-142.
    [15] T. Takenaka, T. Okuda, et al. Lead-free piezoelectric ceramics based on(BiNa)1/2TiO3-NaNbO3. Ferroelectrics,1997,196(1-4):495-498.
    [16] H. Nagata, and T. Takenaka. Lead-free piezoelectric ceramics of(Bi,Na)1/2TiO3-NaNbO3-l/2(Bi2O3Sc2O3) system.Jpn. J. Appl. Phys.,1998,37(9B):5311-5314.
    [17] J. F. Dorrian, R. E. Newnham, et al. Crystal structure of Bi4Ti3O12, Ferroelectrics,1971,3(1):17-27
    [18] A. David Rae, G. John. Thompson, et al. Structure refinement of commensuratelymodulated bismuth titanate, Bi4Ti3O12. Acta. Cryst. B-Structural Science,1990,46(4):474-487.
    [19]晏海学,李承恩等.高Tc铋层状压电陶瓷结构于性能.无机材料学报.2000,15(2):209-220.
    [20] C. A-Paz de Araujo, J. D. Cuchlaro, et al. Fatigue-free ferroelectric capacitors withplatinum electrodes. Nature,1995,374(6523):627-629.
    [21] H. S. Shulman, M. Testorf, et al. Microstructure electrical conductivity, andpiezoelectric properties of bismuth titanate. J. Am. Ceram. Soc.,1996,79(12):3124-3128.
    [22]黄泽铣.功能材料及其应用手册.北京:机械工业出版社.1991
    [23]赁敦敏,肖定全等.铌酸盐系无铅压电陶瓷的研究与进展—无铅压电陶瓷20年专利分析之四.功能材料.2003,34(6):615-618.
    [24] L. A.Reznitchenko, N. V. Dergunova, et al. New binary systems of solid solutionsbased on NaNbO3. Ferroelectrics.1998,214(3-4):241-254.
    [25] E. Ringgaard, T. Wurlitzer. Lead-free piezoceramics based on alkali niobates. J. Eu.Ceram. Soc.,2005,25(12):2701-2706.
    [26] E. Ringgaard, T. Wurlitzer, et al. Properties of lead-free piezoceramics based onalkali niobates. Ferroelectrics,2005,319(1):97-107.
    [27] S. Lanfredi, M. A. L. Nobre, Ferroelectric state analysis in grain boundary ofNa0.85Li0.15NbO3ceramic. J. App. Phys.,2003,93(9):5557-5562.
    [28] J. Dec, Real domain-structure in orthorhombic phase of NaNbO3Crystals. Cryst. Res.Technol.1983,18(2):195-204.
    [29] L. A. Reznitchenko, A. V. Turik, et al. Piezoelectricity in NaNbO3ceramics, J. Phys.:Condens. Matter.,2001,13:3875-3881
    [30] L. Wu, J. L. Zhang, et al. Influence of compositional ratio K/Na on physicalproperties in KxNa1-xNbO3ceramics. J. Appl. Phys.,2008,103(8):084116-5.
    [31] R. Zuo, J. Rodel, et al. Sintering and electrical properties of lead-free Na0.5K0.5NbO3piezoelectric ceramics. J. Am. Ceram. Soc.,2006,89(6):2010-2015.
    [32] N. S. Panwar, V. Lingwal, et al. Relaxational behavior of mixed NaNbO3-KNbO3system. Ferroelectrics,2006,332(1):219-225.
    [33] H. Birol, D. Damjanovic, et al. Preparation and characterization of (K0.5Na0.5)NbO3ceramics. J. Eur. Ceram. Soc.2006,26(6):861-866.
    [34] Kakimoto, I. Masuda, et al. Ferroelectric property and crystal structure of KNbO3based ceramics. J. Electroceram.,2004,13(1-3):555-559.
    [35] H. Birol, D. Damjanovic, et al. Preparation and characterization of KNbO3ceramics.J. Am. Ceram. Soc.,2005,88(7):1754-1759.
    [36]杜红亮,李智敏等,(Na0.5K0.5)NbO3基无铅压电陶瓷的研究进展,无机材料学报,2006,21(6):1281-1291.
    [37] T. Takenaka, K. Matsumoto, et al. Piezoelectric properties of KNbO3ceramicsprepared by ordinary sintering. Ferroelectrics,2007,358(1):1051-1056.
    [38] E. Ringgaard, T. Wurlitzer, Lead-free piezoceramics based on alkali niobates, J. Euro.Ceram. Soc.,2005,25(12):2701-2706.
    [39] L. Egerton, D. M. Dillon, Piezoelectric and Dielectric Properties of Ceramics in thePotassium-Sodium Niobate System. J. Electrochem. Soc.,1959,106(3): C56-C56.
    [40] M. D. Maeder, D. Damjanovic, et al. Lead-free piezoelectric materials. J.Electroceram.,2004,13(1-3):385-392.
    [41] K. Kakimoto, I. Masuda, et al. Lead-free KNbO3piezoceramics synthesized bypressure-less sintering, J. Europ. Ceram. Soc.,2005,25(12):2719-2722.
    [42] Y. Saito, Alkali metal-containing niobate-based piezoelectric material compositionand a method for producing the same, United States Patent,2002, May14, No.: US6,387,25B1
    [43] D. M. Lin, K. W. Kwok, et al. Dielectric and piezoelectric properties ofK0.5Na0.5NbO3-AgSbO3lead-free ceramics. J. Appl. Phys.,2009,106(3):034102.
    [44] R. Z. Zuo, X. S. Fang, et al. Phase structures and electrical properties of newlead-free (Na0.5K0.5)NbO3-(Bi0.5Na0.5)TiO3ceramics. Appl. Phys. Lett.2007,90(9):092904-092907.
    [45] R. Z. Zuo, X. S. Fang, et al. Phase transitional behavior and piezoelectric propertiesof lead-free (Na0.5K0.5)NbO3-(Bi0.5K0.5)TiO3ceramics. J. Am. Ceram. Soc.,2007,90(8):2424-2428.
    [46] R. Z. Zuo and C. Ye, Structures and piezoelectric properties of(Na,K,Li)1-x(Bi,Na,Ba)xNb1-xTixO3lead-free ceramics. Appl. Phys. Lett.,2007,91(6):062916-062919.
    [47] Y. Guo, K. Kakimoto, et al. Dielectric and piezoelectric properties of lead-free(Na0.5K0.5)NbO3-SrTiO3ceramics, Solid State Commun.,2004,129(5):279-284.
    [48] Y. Guo, K. Kakimoto, et al. Structure and electrical properties of lead-free(Na0.5K0.5)NbO3-BaTiO3ceramics, Jpn. J. Appl. Phys.,2004,43(9B):6662-6666.
    [49] Y. Guo, K. Kakimoto, et al. Phase transitional behavior and piezoelectric propertiesof (Na0.5K0.5)NbO3-LiNbO3ceramics. Appl. Phys. Lett.,2004,85(18):4121-4123.
    [50] Y. Guo, K. Kakimoto, et al.(Na0.5K0.5)NbO3-LiTaO3lead-free piezoelectric ceramics.Mater. Lett.,2005,59(2-3):241-244.
    [51] Y. Saito, H. Takao, et al. Lead-free piezoceramics. Nature,2004,432(7013):84-87.
    [52] Takao, H., Y. Saito, et al. Microstructural evolution of crystalline-oriented(K0.5Na0.5)NbO3piezoelectric ceramics with a sintering aid of CuO. J. Am. Ceram.Soc.,2006,89(6):1951-1956.
    [53] M. Matsubara, K. Kikuta, et al. Piezoelectric properties of(K0.5Na0.5)(Nb1-xTax)O3-K5.4CuTa10O29ceramics. J. Appl. Phys.,2005,97(11):114105-1141012.
    [54] M. Matsubara, T. Yamaguchi, et al. Processing and piezoelectric properties oflead-free (K,Na)(Nb,Ta)O3ceramics. J. Am. Ceram. Soc.,2005,88(5):1190-1196.
    [55] M. Matsubara, T. Yamaguchi, et al. Sinterability and piezoelectric properties of(K,Na)NbO3ceramics with novel sintering aid. Jpn. J. Appl. Phys. Part1-RegularPapers Short Notes&Review Papers.,2004,43(10):7159-7163.
    [56] M. Matsubara, T. Yamaguchi, et al. Sintering and piezoelectric properties ofpotassium sodium niobate ceramics with newly developed sintering aid. Jpn. J. Appl.Phys. Part1-Regular Papers Short Notes&Review Papers.,2005,44(1A):258-263.
    [57] R. E. Jeager, and L. Egerton, Hot pressing of potassium–sodium niobate. J. Am.Ceram. Soc.,1962,45(5):209–213.
    [58] J. F. LI, K. Wang, et al. Ferroelectric and piezoelectric properties of fine-grainedNa0.5K0.5NbO3lead-free piezoelectric ceramics prepared by spark plasma sintering.J.Am. Ceram. Soc.,2006,89(2):706–709.
    [59] Rao, K. S. and K. Y. Yoon, Review of electrooptic and ferroelectric properties ofbarium sodium niobate single crystals. J. Mater. Sci.,2003,38(3):391-400.
    [60] S. Bigotta, G. Gorini, et al. Optical spectra of Er3+in Ba2NaNb5O15single crystals.Opt. Mater.,2006,28(4):395-400.
    [61] Y. Bai, X. L. Zhu, et al. Dielectric and ferroelectric characteristics ofBa5NdFe1.5Nb8.5O30tungsten bronze ceramics. J. Am. Ceram. Soc.,2010,93(11):3573-3576.
    [62] A. Watazu, H. Masumoto, et al. Optical properties of c-axis oriented Ba2NaNb5O15thin films formed by electron cyclotron resonance plasma sputtering. J. Ceram. Soc.Jpn.,1997,105(8):687-689.
    [63] S. E. Park, R. S. Thomas, Ultrahigh strain and piezoelectric behavior in relaxor basedferroelectric single crystals. J. Appl. Phys.,1997,82(4):1804–1811.
    [64] T. Takenaka, Grain orientation effects on electrical properties of bismuthlayer-structured ferroelectric ceramics, J. Ceram. Soc. Jpn.,2002,110(4):215-224.
    [65] T. Takeuchi, T. Tani, et al. Piezoelectric properties of bismuth layer structuredferroelectric ceramics with a preferred orientation processed by the reactivetemplated grain growth method, Jpn. J. Appl. Phys.,1999,38(9B):5553-5556.
    [66] T. Takeuchi, T. Tani, et al. Unidirectionally textured CaBi4Ti4O15ceramics by thereactive templated grain growth with an extrusion., Jpn. J. Appl. Phys. Part1-Regular Papers Short Notes&Review Papers.2000,39(9B):5577-5580.
    [67] S. H. Hong, S. Trolier-McKinstry, et al. Dielectric and electromechanical propertiesof textured niobium-doped bismuth titanate ceramics., J. Am. Ceram. Soc.,2000,83(1):113-118.
    [68] C. Duran, S. Trolier-McKinstry, et al. Dielectric and piezoelectric properties oftextured Sr0.53Ba0.47Nb2O6ceramics prepared by templated grain growth. J. Mater.Res.,2002,17(9):2399-2409.
    [69] H. Yilmaz, G. L. Messing, et al.(Reactive) templated grain growth of texturedsodium bismuth titanate (Na1/2Bi1/2TiO3-BaTiO3) ceramics–II dielectric andpiezoelectric properties, J. Electroceram.,2003,11(3):217-226.
    [70] K. Okazaki, and S. Narushima, Electrical properties of the hot-pressed SbSIpolycrystals, J. Ceram. Soc. Jpn.,1968,76:19-25.
    [71] T. Kimura, T. Yoshimoto, et al. Mechanism of grain-orientation during hot-pressingof bismuth titante, J. Am. Ceram. Soc.,1989,72(1):85-89.
    [72] T. Takenaka, and K. Sakata, Grain-orientation and electrical-properties of hot-forgedBi4Ti3O12ceramics, Jpn. J. Appl. Phys.,1980,19(1):31-39.
    [73] M. V. Gelfuso, D. Thomazini, et al. Synthesis and structural, ferroelectric andpiezoelectric properties of SrBi4Ti4O15ceramics, J. Am. Ceram. Soc.,1999,82(9):2368-2372.
    [74] M. Kimura, K. Shiratsuyu, Layer structure of textured CaBi4Ti4O15ceramicsfabricated by slip casting in high magnetic field, J. Am. Ceram. Soc.,2007,90(5):1463-1469.
    [75] W. W. Chen, Y. Kinemuchi, et al. Preperation of grain-oriented Sr0.5Ba0.5Nb2O6ferroelectric ceramics by magnetic alignment, J. Mater. Sci.,2006,89(1):381-387.
    [76] S. W. Sun, X. M. Pan, et al. Fabrication and electrical properties of grain-oriented0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3ceramics, Appl. Phys. Lett.,2004,84(4):574-7.
    [77] G. L. Messing, S. Trolier-Mckinstry, et al. Templated grain growth of texturedpiezoelectric ceramics, Crit. Rev. Solid State,2004,29(2):45-96.
    [78] T. Kimura, Y. Sakuma, et al. Texture development in piezoelectric ceramics bytemplated grain growth using heterotemplates, J. Eur. Ceram. Soc.,2005,25(12):2227-2230.
    [79] J. A. Horn, S. Z. Zhang, et al. Templated grain growth of textured bismuth titanate, J.Am. Ceram. Soc.,1999,82(4):921-926.
    [80] H. Yilmaz, G. L. Messing, et al.(Reactive) templated grain growth of texturedsodium bismuth titanate (Na1/2Bi1/2TiO3-BaTiO3) ceramics–I processing, J.Electroceram.,2003,11(3):207-215.
    [81] T. Tani, Crystalline-oriented piezoelectric bulk ceramics with a perovskite-typestructure, J. Korean Phys. Soc.,1998,32: S1217-S1220.
    [82] J. T. Zeng, Y. X. Li, et al. Grain oriented CaBi4Ti4O15piezoceramics prepared by thescreen-printing reactive templated grain growth technique. J. Eur. Ceram. Soc.,2005,25(12):2727–2730
    [83] M. J. Wu, Y. X. Li, et al. Grain oriented (Na0.5Bi0.5)0.94Ba0.06TiO3piezoceramicsprepared by the screen-printing reactive templated grain growth technique. J.Electroceram.2009,22(1-3):131-135.
    [84]曾江涛,铋层状结构压电陶瓷的掺杂改性及晶粒定向研究,中国科学院上海硅酸盐研究所博士学位论文,2005.
    [85] F. K. Lotgering, Topotactical reactions with ferrimagnetic oxides havinghexagonal crystal structures. J. Inorg. Nucl. Chem.,1959,9(2):113-123.
    [86] J. L. Jones, S. C Vogel., et al. Quantifying texture in ferroelectric bismuth titanateceramics, Script. Mater.,2004,51(12):1123-1127.
    [87] K. H. Brosnan, G. L. Messing, et al. Texture measurements in <001> fiber-orientedPMN-PT. J. Am. Ceram. Soc.,2006,89(6):1965-1971
    [1] D. H. Lee, J. Choi, H. Chae, Single-layer organic-light-emitting devices fabricated byscreen printing method. Korean J. Chem. Eng.,2008,25(1):176-180.
    [2] B. Y. Lee, C. Cheon, and J. Kim, Low temperature firing of PZT thick filmsprepared by screen printing method, Mater. Lett.,2002,56:518–521.
    [3] D. M. Xie, S. J. Feng, Y. Lin, et al. Preparation of porous nanocrystalline TiO2electrode by screen-printing technique. Chin. Sci. Bull.,2007,52(18):2481-2485.
    [4] M. S. Park, S. H. Hyun, S. C. Nam, Characterization of a LiCoO2thick film byscreen-printing for a lithium ion micro-battery. J. Power Sources.,2006,159(2):1416-1421.
    [5] D. M. Xie, S. J. Feng, Y. Lin, et al. Preparation of porous nanocrystalline TiO2electrode by screen-printing technique. Chin. Sci. Bull.,2007,52(18):2481-2485.
    [6] E. Ramasamy, W. J. Lee, D. Y. Lee, et al. Portable, parallel grid dye-sensitized solarcell module prepared by screen printing. J. Power Sources.,2007,165(1):446-449.
    [7]郑德海,郑军明,沈青,丝网印刷工艺,北京:印刷工业出版社出版社,1994.
    [8]伍萌佳,钛酸铋钠基无铅压电陶瓷的晶粒定向与掺杂改性研究,2009,中国科学院上海硅酸盐研究所博士论文.
    [1] E. Suvaci, and G. L. Messing, Critical factors in the templated grain growth oftextured reaction-bonded alumina. J. Am. Ceram. Soc.,2000,83(8):2041-2048.
    [2] G. L. Messing, S. Trolier-Mckinstry, E. M. Sabolsky, et al. Templated grain growthof textured piezoelectric ceramics, Crit. Rev. Solid State,2004,29(2):45-96.
    [3] K. H.Yoon, Y. S. Cho, D. H. Kang, Molten salt synthesis of lead-based relaxors. J.Mater. Sci.,1998,33(12):2977-2984.
    [4] J. H. Park, D. H. Lee, H. S. Shin, et al. Transition of the particle-growth mechanismwith temperature variation in the molten-salt method. J. Am. Ceram. Soc.,1996,79(4):1130-1132.
    [5] J. Xu, L. H. Zhu, Q. W. Huang, et al. Comparison of formation behavior ofBa2NaNb5O15in air and molten NaCl salt. J. Mater. Sci.2004,39(10):3443-3445.
    [6] Y. F. Liu, Y. N. Lu, M. Xu, et al. Formation mechanisms of platelet Sr3Ti2O7crystalssynthesized by the molten salt synthesis method. J. Am. Ceram. Soc.,2007,90(6):1774-1779.
    [7] Q. W. Huang, J. Xu, L. H. Zhu, et al. Molten salt synthesis of acicular Ba2NaNb5O15seed crystals. J. Am. Ceram. Soc.,2005,88(2):447-449.
    [8] L. L. Zhao, F. Gao, C. S. Zhang, et al. Molten salt synthesis of anisometricKSr2Nb5O15particles. J. Cryst. Growth.2005,276(3-4):446-452.
    [9] Z. Y. Li, X. Y. Zhang, J. F. Hou, et al. Molten salt synthesis of anisometric Sr3Ti2O7particles. J. Cryst. Growth.,2007,305(1):265-270.
    [10]张克立,孙聚堂,袁良杰等.无机合成化学.武汉:武汉大学出版社,2004,134-139.
    [11] Y. Saito, H. Takao, T. Tani, et al. Lead-free piezoceramics. Nature,2004,432(7013):84-87.
    [12] Y. Saito, and H. Takao, Synthesis of platelike {100} SrTiO3particles bytopochemical microcrystal conversion and fabrication of grain-oriented ceramics,Jap. J. Appl. Phy.,2006,45(9B):7377-7381.
    [13] D. Liu, Y. K. Yan, and H. P. Zhou, Synthesis of micron-scale platelet BaTiO3, J. Am.Ceram. Soc.,2007,90(4):1323-1326.
    [14] Y. Saito, H. Takao, and K. Wada, Synthesis of platelike CaTiO3particles by atopochemical microcrystal conversion method and fabrication of textured microwavedielectric ceramics, Ceram. Int.,2008,34:745-751.
    [15] Gao F., Liu X.C., Zhang C.S., Synthesis of polycrystalline platelike KNbO3particlesby the topochemical micro-crystal conversion method and fabrication ofgrain-oriented (K0.5Na0.5)NbO3ceramics. Ceram. Int.,2008,34:403-8.
    [16] L. H. Li, J. Chen, J. X. Deng, et al. Topochemical synthesis of micron-platelet(Na0.5K0.5)NbO3particles, Eur. J. Inorg. Chem.,2008,2008(13):2186-2190.
    [17] Yan, Y., D. Liu, Zhao, W. et al. Topochemical synthesis of a high-aspect-ratio plateletNaNbO3template. J. Am. Ceram. Soc.2007,90(8):2399-2403.
    [18] C. Sun, X. R. Xing, J. Chen, et al. Hydrothermal synthesis of single crystalline(K,Na)NbO3powders. Eur. J. Inorg. Chem.,2007,2007(13):1884-1888.
    [19] J. T. Zeng, K. W. Kwok, H. L. W. Chan, KxNa1-xNbO3powder synthesized bymolten-salt process. Mater. Lett.2007,61(2):409-411.
    [20] M. A. Bizeto, F. P. Christino, et al. Structural aspects related to the ion exchangeprocess in layered niobate K4Nb6O17. Quimica. Nova.2006,29(6):1215-1220.
    [21] K. Teshima, K. Horita, T. Suzuki, et al. Flux growth and characterization of layeredK4Nb6O17crystals. Chem. Mater.2006,18(16):3693-3697.
    [22] R. R. Neurgaonkar, W. K. Cory, J. R. Oliver, et al. Growth and optical properties offerroelectric tungsten bronze crystals. Ferroelectrics,1993,142(1):167-188
    [23] V. S. Filip'ev, R. U. Devlikanova, V. G. Kryshtop, et al. Solid-Solutions in Systems ofOxides with a Tetragonal Potassium-Tungsten Bronze Structure. Inorg. Mater.1983,19(8):1241-1244
    [24] C. C. Li, C. C. Chiu, S. B. Desu, et al. Formation of lead niobates in molten-saltsystems. J. Am. Ceram. Soc.1991,74(1):42-47.
    [25] G. Picard and P. Bocage, The niobium chemistry in molten LiCl+KCI eutectic. Mater.Sci. Forum.,1991,73-75:505-12
    [26] J. T. Zeng, Y. H. Zhang, L.Y. Zheng, et al. Enhanced ferroelectric properties ofpotassium sodium niobate ceramics modified by small amount of K3Li2Nb5O15.J. Am.Ceram. Soc.,2009,92(3):752-754
    [27]徐家跃,孙仁英,林雅芳等,铌酸钾锂晶体的生长研究.无机材料学报,1998,13(4):589-592.
    [28]万尤宝,吴宇容,陈静等,铌酸钾锂晶体的生长和缺陷.人工晶体学报,2002,31(1):5-9
    [29] R. R. Neurgaonkar, W. K. Cory, J. R. Oliver, et al. Growth and properties of tungstenbronze K3Li2Nb5O15single-crystals. Mater. Res. Bull.1989,24(8):1025-1030.
    [30] V. I. Chani, K. Nagata, and T. Fukuda, Growth of K3Li2Nb5O15and KNbO3ferroelectric fiber crystals by pulling-down technique. Ferroelectrics,1998,218(1-4):363-372.
    [1] H. Birol, D. Damjanovic, N. Setter, Preparation and characterization of(K0.5Na0.5)NbO3ceramics. J. Euro. Ceram. Soc.,2006,26(6):861-866.
    [2] M. Kosec, D. Kolar, On activated sintering and electrical properties of NaKNbO3.Mat. Res. Bull.,1975,10(5):335-340.
    [3] B. P. Zhang, J. F. Li, K..Wang, et al. Compositional dependence of piezoelectricproperties in NaxK1-xNbO3lead-free ceramics prepared by spark plasma sintering. J.Am. Ceram. Soc.,2006,89(5):1605-1609.
    [4] P. Zhao, B. P. Zhang, and J. F. Li, High piezoelectric d33coefficient in Li-modifiedlead-free (Na,K)NbO3ceramics sintered at optimal temperature, Appl. Phys. Lett.,2007,90(24):242909-242911.
    [5] B. Q. Ming, J. F. Wang, P. Qi, and G. Z. Zang, Piezoelectric properties of (Li, Sb, Ta)modified (Na, K)NbO3lead-free ceramics, J. Appl. Phys.,2007,101(5):054103-054106.
    [6] J. Liu, Z. J. Shen, H. X. Yan, et al. Dielectric, piezoelectric, and ferroelectricproperties of grain-orientated Bi3.25La0.75Ti3O12ceramics. J. Appl. Phys.,2007,102(10):104107-104110.
    [7] W. Zhao, H. P. Zhou, Y. K. Yan, Preparation and characterization of texturedBi0.5(Na0.8K0.2)0.5TiO3ceramics by reactive templated grain growth, Mater. Lett.,2008,62(8-9):1219-1222.
    [8] W. K. Tam, K. W. Kwok, J. T. Zeng, et al. Fabrication of textured BNKLT ceramicsby reactive templated grain growth using NBT templates, J. Phys. D: Appl. Phys.,2008,41(4):045402-0454025.
    [9] C. Duran, S. Trolier-McKinstry, G. L. Messing, Dielectric and piezoelectricproperties of textured Sr0.53Ba0.47Nb2O6ceramics prepared by templated grain growth.J. Mater. Res.2002,17(9):2399-2409
    [10] Y. F. Chang, S. Poterala, Z. P. Yang, et al. Enhanced electromechanical propertiesand temperature stability of textured (K0.5Na0.5)NbO3-based piezoelectric ceramics."J. Am. Ceram. Soc.,2011,94(8):2494-2498.
    [11] H. Yilmaz, G. L. Messing, and S. Trolier-McKinstry,(Reactive) templated graingrowth of textured sodium bismuth titanate (Na1/2Bi1/2TiO3-BaTiO3) ceramics–IIdielectric and piezoelectric properties. J. Electroceram.,2003,11(3):217-226.
    [12] Y. Saito, H. Takao, T. Tani, et al. Lead-free piezoceramics. Nature,2004,432(7013):84-87.
    [13] M.R. Winter, C. B. DiAntonio, P. Yang, et al. Screen Printing to Achieve HighlyTextured Bi4Ti3O12. J. Am. Ceram. Soc.,2010,93(7):1922-1926.
    [14] J. T. Zeng, Y. X. Li, Q. B. Yang, et al. Grain oriented CaBi4Ti4O15piezoceramicsprepared by the screen-printing multilayer grain growth technique. J. Eur. Ceram.Soc.2005,25(12):2727–2730
    [15] M. J. Wu, Y. X. Li, D. Wang, et al. Grain oriented (Na0.5Bi0.5)0.94Ba0.06TiO3piezoceramics prepared by the screen-printing multilayer grain growth technique. J.Electroceram.2009,22(1-3):131-135.
    [16] Y. X. Li, J. T. Zeng, X. Z. Jing, et al. A novel technique for preparation of grainoriented BLSF piezoelectric ceramics. J. Electroceram.2008,21(1-4):314-318
    [17] J. B. Lim, S. Zhang, J. H. Jeon, et al.(K,Na)NbO3-Based Ceramics for PiezoelectricHard‘‘Lead-Free Materials. J. Am. Ceram. Soc.,2010,93(5):1218-1220.
    [18] E. Fukuchi, T Kimura, T. Tani, et al., Effect of potassium concentration on the grainorientation in bismuth sodium potassium titanate, J. Am. Ceram. Soc.,2002,85(6):1461-1466.
    [19] T. Kimura, E. Fukuchi, and T. Tani, Fabrication of textured bismuth sodiumtitanateusing excess bismuth oxide, Jpn. J. Appl. Phys.,2005,44(11):8055-8061.
    [20] T. Kimura, T. Takahashi, T. Tani, et al. Crystallographic textured evelopment inbismuth sodium titanate prepared by reactive templated grain growth method, J. Am.Ceram. Soc.,2004,87(8):1424-1429.
    [21] H. Takao, Y. Saito, Y. Aoki, and K. Horibuchi, Microstructural evolution ofcrystalline-oriented (K0.5Na0.5)NbO3piezoelectric ceramics with a sintering aid ofCuO, J. Am. Ceram. Soc.,2006,89(6):1951-1956.
    [22] T. Motohashi, and T. Kimura, Development of texture in Bi0.5Na0.5TiO3prepared byreactive-templated grain growth process, J. Eur. Ceram. Soc.,2007,27(13-15):3633-3636.
    [23] X. Z. Jing, Y. X. Li, Q. B. Yang, J. T. Zeng, and Q. R. Yin, Influence of differenttemplates on the textured Bi0.5(Na1-xKx)0.5TiO3piezoelectric ceramics by the reactivetemplated grain growth process, Ceram. Int.,2004,30(7):1889-1893.
    [24] K. Fuse, and T. Kimura, Effect of particle sizes of starting materials onmicrostructure development in textured Bi0.5(Na0.5K0.5)0.5TiO3, J. Am. Ceram. Soc.,2006,89(6):1957-1964.
    [25] T. Kimura, Application of texture engineering to piezoelectric ceramics-A review, J.Ceram. Soc. Japan,2006,114(1):15-25.
    [26] H. Yilmaz, G. L. Messing, and S. Trolier-McKinstry,(Reactive) templated graingrowth of textured sodium bismuth titanate (Na1/2Bi1/2TiO3-BaTiO3) ceramics–Iprocessing, J. Electroceram.,2003,11(3):207-215.
    [27] T. Tani, and T. Kimura, Reactive-templated grain growth processing for lead freepiezoelectric ceramics, Adv. Appl. Ceram.,2006,105(1):55-63.
    [28] S. Zhang, J. B. Lim, H. J. Lee, et al. Characterization of Hard PiezoelectricLead-Free Ceramic. IEEE Trans. Ultrason. Ferroelectr. Freq. Control.,2009,56(8):1523-1527.
    [29] F. Gao, C. S. Zhang, X. C. Liu, et al. Microstructure and piezoelectric properties oftextured (Na0.84K0.16)0.5Bi0.5TiO3lead-free ceramics. J. Eur. Ceram. Soc.,2007,27(12):3453-3458.
    [30]黄清伟,晶种加入对-Sialon与SrxBa1-xNb2O6陶瓷显微结构与性能的影响,博士后研究工作报告,中国科学院上海硅酸盐研究所,2002年6月.
    [31] Y. F. Chang, S. F. Poterala, Z. P. Yang, et al.<001> textured(K0.5Na0.5)(Nb0.97Sb0.03)O3piezoelectric ceramics with high electromechanicalcoupling over a broad temperature range. Appl. Phys. Lett.,2009,95(23):232905-232907.
    [32] H. Y. Park, J. Y. Chio, M. K. Chio, et al. Effect of CuO on the sintering temperatureand piezoelectric properties of (K0.5Na0.5)NbO3leed-free piezoelectric ceramics, J.Am. Ceram. Soc.,2008,91(7):2374-2377.
    [33] D. Lin, K. W. Kwok, and H. L. W. Chan, Double hysteresis loop in Cu-doped(K0.5Na0.5)NbO3lead-free piezoelectric ceramics, Appl. Phys. Lett.,2007,90(23):232903-3.
    [34] M. Matsubara, K. Kikuta, S. Hirano, et al. Piezoelectric properties of(K0.5Na0.5)(Nb1-xTax)O3-K5.4CuTa10O29ceramics. J. Appl. Phys.2005,97(11):114105-1141012
    [35] M. Matsubara, T. Yamaguchi, W. Sakamoto, et al. Processing and piezoelectricproperties of lead-free (K,Na)(Nb,Ta)O3ceramics. J. Am. Ceram. Soc.2005,88(5):1190-1196.
    [36]艾云龙,刘书红,刘长虹等.陶瓷材料的微波烧结及研究进展.热处理技术与装备,2008,29(3):1-4.
    [37]李远,汪建华,熊礼威等,微波烧结陶瓷的研究进展.2011,32(2):7-11.
    [38] J. P. Cheng, D. Agrawal, Y. J. Zhang, et al. Microwave sintering of transparentalumina. Mater. Lett.,2002,56(4):587-592.
    [39] L.Wang, J. Zhou, G. Z. Liu, et al. Structure and properties of microwave sinteringZnO ceramics. Ferroelectrics.2007,356(1):477-480.
    [40] A. Goldstein, W. D. Kaplan, A. Singurindi, Liquid assisted sintering of SiC powdersby MW (2.45GHz) heating. J. Eur. Ceram. Soc.,2002,22(11):1891-1903.
    [41] O. I. Getman, V. V. Holoptsev, V. V. Panichkina, et al. Microwave sintering ofSi3N4-ceramics adding yttrium or ytterbium oxides. Euro Ceramics Vii, Pt1-32002,206(2):385-388.
    [42] Y. H. Cheng, C. N. Lin, S. L. Chung, Microwave sintering of AlN powdersynthesized by a SHS method. J. Eur. Ceram. Soc.,2007,27(1):343-347.
    [43] O. P. Thakur, C. Prakash, D. K. Agrawal, Microwave synthesis and sintering ofBa0.95Sr0.05TiO3, Mater. Lett.,2002,56(6):970-974.
    [44] D. Y. Jeong, S. H. Lee, et al. Hydrothermal synthesis and microwave sintering of(K0.5Na0.5)NbO3ceramics. J. Korean Phys. Soc.,2001,58(3):663-667.
    [45] W. C. Lee, K. S. Liu, I. N. Lin, Microwave sintering Pb(Zr0.52Ti0.48)O3piezoelectricceramics. Ferroelectrics2001,262(1-4):1267-1272.
    [1] Y. F. Yang, Y. Y. Liu, M. G. Jian, et al. Preparation, structure and dielectric propertiesof (Ba1xSrx)2NaNb5O15ceramics. J. Alloys Compd.2008,453(1-2):401-406
    [2] Y. Bai, X. L. Zhu, X. M. Chen, et al. Dielectric and Ferroelectric Characteristics ofBa5NdFe1.5Nb8.5O30Tungsten Bronze Ceramics. J. Am. Ceram. Soc.2010,93(11):3573-3576
    [3] Y. Takahashi, N. Fujie, M. Osada, et al. Crystallization of tungsten bronze-typeBa2NaNb5O15in high-Nb2O5-content glass: An inelastic light scattering study. J. Appl.Phys.2010,108(10):103519
    [4] S. Bigotta, G. Gorini, A. Toncelli, et al. Optical spectra of Er3+in Ba2NaNb5O15singlecrystals. Opt. Mater.2006,28(4):395-400
    [5] A. Watazu, H. Masumoto, Y. Masuda, et al. Optical properties of c-axis orientedBa2NaNb5O15thin films formed by electron cyclotron resonance plasma sputtering. J.Ceram. Soc. Jpn.1997,105(8):687-689
    [6] Q. X. Bao, L. H. Zhu, Q. W. Huang, et al. Preparation of textured Ba2NaNb5O15ceramics by templated grain growth. Ceram. Int.2006,32(7):745-749
    [7] R. R. Neurgaonkar, W. K. Cory, J. R. Oliver, et al. Growth and optical properties offerroelectric tungsten bronze crystals. Ferroelectrics,1993,142(1):167-188
    [8] T. Sugai and M. Wada, Crystal Growth and Dielectric Properties of PotassiumBismuth Niobate. Japan. J. Appl. Phys.1972,11(12):1863-1864
    [9] Y. Iwai and H. Takuchi, Synthesis and Electric Properties of M2BiNb5O15(M=Na, K)Tetragonal Tungsten Bronze Type Oxides. Trans. Mater. Res. Soc. Jpn.2004,29(4):1129-1130
    [10] V. S. Filip'ev, R. U. Devlikanova, V. G. Kryshtop, et al. Solid-Solutions in Systems ofOxides with a Tetragonal Potassium-Tungsten Bronze Structure. Inorg. Mater.1983,19(8):1241-1244
    [11] C. Duran, S. Trolier-McKinstry, G. L. Messing, Dielectric and piezoelectricproperties of textured Sr0.53Ba0.47Nb2O6ceramics prepared by templated grain growth.J. Mater. Res.2002,17(9):2399-2409
    [12] C. Duran, S. Trolier-McKinstry, G. L. Messing, Fabrication and electrical propertiesof textured Sr0.53Ba0.47Nb2O6ceramics by templated grain growth." J. Am. Ceram.Soc.2000,83(9):2203-2213
    [13] Y. Saito, H. Takao, T. Tani, et al. Lead-free piezoceramics. Nature,2004,432(7013):84-87
    [14] J. T. Zeng, Y. X. Li, Q. B. Yang, et al. Grain oriented CaBi4Ti4O15piezoceramicsprepared by the screen-printing multilayer grain growth technique. J. Eur. Ceram.Soc.2005,25(12):2727–2730
    [15] M. J. Wu, Y. X. Li, D. Wang, et al. Grain oriented (Na0.5Bi0.5)0.94Ba0.06TiO3piezoceramics prepared by the screen-printing multilayer grain growth technique. J.Electroceram.2009,22(1-3):131-135
    [16] Y. X. Li, J. T. Zeng, X. Z. Jing, et al. A novel technique for preparation of grainoriented BLSF piezoelectric ceramics. J. Electroceram.2008,21(1-4):314-318
    [17] M. J. Wu, Y. X. Li, D. Wang, et al. Highly textured (Na1/2Bi1/2)0.94Ba0.06TiO3ceramics prepared by the screen-printing multilayer grain growth technique.Ceramics Int.2008,34(4):753-756
    [18] F. K. Lotgering, Topotactical reactions with ferrimagnetic oxides havinghexagonal crystal structures. J. Inorg. Nucl. Chem.1959,9(2):113-123
    [19] M. Shimazu, Y. Tanokura and S. Tsutsumi, X-Ray diffraction and dielectric studieson the K2BiNb5O15-K2LaNb5O15system. Japan. J. Appl. Phys.1989,28(10):1877-1881.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700