煤气化反应动力学及渣中残碳反应活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤气化动力学作为煤气化技术的基础,其研究的深入与否,直接影响到煤的洁净转化和利用,掌握各种因素对煤气化反应的影响并建立准确的动力学模型,对解决煤气化技术面临的一些问题具有重要意义。因此,研究煤气化动力学具有重要的意义。本论文研究的目的在于掌握中国典型煤种及气化渣中残碳在高温高压条件下热解及气化反应过程中的物理和化学结构变化,探讨煤焦在复杂气氛下的反应规律及机理,建立适应于高温高压不同反应气氛的气化反应动力学模型,为开发适合中国煤种的大规模高效气化技术提供理论依据和基础数据支持。
     本文以中国典型煤种(神府煤、北宿煤、淮南煤和贵州煤)及其气化残渣为研究对象,研究高温高压条件下煤焦与CO2、水蒸汽的气化反应规律、影响煤焦气化反应活性的因素,探寻煤焦的气化反应活性与煤种之间的定量关系,建立煤焦气化反应的动力学模型;探讨气化渣中残碳的气化反应特性、及渣/灰的熔融对煤焦气化反应的影响。主要研究内容可分为如下几点:
     (1)考察了热解温度、热解速率及灰的熔融对煤焦孔隙结构的影响。根据四种典型煤种及其煤焦的N2吸附/脱附等温线的类型可知:原煤颗粒以层状孔为主,快速热解煤焦以筒状孔为主,而慢速热解煤焦以瓶状孔为主。灰的熔融特性显著影响慢焦的孔隙结构,堵塞煤焦的部分孔隙,降低煤焦的比表面积,而快焦的孔隙结构受挥发分的影响更为显著。通过CO2吸附分析得到的原煤及煤焦的微孔比表面积远大于由N2吸附分析得到的大中孔比表面积。煤焦孔隙结构特点是:0-1nm的微孔为主,2-200 nm的大中孔为辅。运用分形维数描述了煤焦的孔隙及表面特性。
     (2)建立了煤焦气化反应的正态分布模型,能较好地描述煤焦的气化反应速率随时间的变化关系。研究了高温高压下神府、贵州和淮南煤焦与CO2、水蒸汽的气化反应;考察了不同分压下CO和H2对煤焦气化反应的抑制作用;通过L-H模型和幂函数模型对煤焦的气化反应动力学数据拟合,得到了煤焦气化反应的L-H模型和幂函数模型参数。
     (3)定量分析了煤焦的气化反应活性与原煤中固定碳、挥发分、灰分及灰分组成之间的关系,煤焦-CO2和煤焦-水蒸汽气化反应与原煤组成的关系存在一致性。将煤焦的气化反应性与煤种组成相关联,定义了反应特性常数Rc=(Vm)/(FC)·B·100,建立了煤焦的气化反应活性和煤种之间的定量关系,可由式R0.5=A·RcD表示。为判别煤种气化反应活性的优劣,提供了一个简单而实用的准则。
     (4)考察了粒度对煤焦气化反应的影响,并采用缩芯反应模型对煤焦-CO2和煤焦-水蒸汽的气化反应过程进行了分析。在850-1000℃,四个粒度范围(20-40目、60-80目、100-120目和大于325目)的煤焦与C02、水蒸汽气化反应均为化学反应控制。在低温化学反应控制区,得到了煤焦-C02和煤焦-水蒸汽气化反应的表观活化能,分别为148-171 kJ/mol和149-190 kJ/mol;在高温扩散控制区,分析了粒度对煤焦气化反应的影响。
     (5)研究了碱金属Na和K对煤焦的气化催化作用;在热解阶段,碱金属的存在导致更加无序的碳微晶结构的形成,生成煤焦的气化反应活性更好。定量地表示了碱金属在热解和气化阶段对煤焦气化催化作用的贡献。将煤焦的催化气化反应定义为催化反应和非催化反应的共同作用,建立了煤焦的催化气化反应模型,模型能较好地描述煤焦的催化气化反应过程;通过气化动力学参数△rcg,0,可判定气化催化作用的大小
     (6)以多组气流床煤气化的粗渣和细渣为对象,着重研究干粉煤气化生成的粗、细渣残碳的气化反应活性,并与由滴管炉快速热解制得的煤焦的气化反应活性进行了比较;结合SEM和XRD/EDX,深入研究了影响渣中残碳气化反应活性的主要因素,如渣的表面孔隙结构及渣中残碳的石墨化程度、矿物质晶体存在形式等。粗渣含有的具有催化作用的金属元素Al、Ca、Fe和Mg较细渣丰富,以及碳的石墨化程度较细渣低是粗渣残碳的气化反应活性高于细渣的主要原因。
     (7)将原煤与气化渣和煤灰以不同比例混合,在渣/灰的熔融温度范围(950-1380℃),考察了渣/灰熔融特性对煤焦气化反应的影响。渣/灰熔融会堵塞煤焦的部分微孔,显著降低煤焦的比表面积,阻碍气化剂与煤焦颗粒的接触,抑制煤焦气化反应的进行。
The study of coal gasification kinetics is the essential for the development of coal gasification technology. Gasification processes have been widely applied for coal utilization. Understanding the factors affecting the coal gasification and establishing proper kinetics model will be essential for designing an efficient gasifier and resolving the practical problems. The main purposes of this paper are investigating the changes of chemical and physical characteristics of coals during pyrolysis and gasification, studying the mechanism of coal char gasification under different reactive agents, establishing proper kinetics model and supplying valuable data for the development of coal gasification technology.
     Four types of Chinese coals and gasifier slag were chosen as experimental samples. The behavior of char-CO2 and char-H2O gasification and the factors affecting the char gasification reactivities were studied. The normal distribution model was established basing on the relationship between the gasification rate and residence time. Factors affecting the gasification of unburned carbon in gasifier slag have been investigated. Influences of melting slag/ash on char gasification were also studied. The main contents and results were summarized as follows:
     (1) Effects of pyrolysis on the pore structure of four Chinese coals were studied. Pyrolysis not only influences the specific surface area of chars, but also changes the shape of pores in coal particles. Adsorption/desorption isotherm indicated the possibility of existing slit pores, as the dominant forms of the pore structure for the original coal. The pore type was mainly composed of open cylindrical pore with one dead end for chars FP and bottle-shaped pores were dominating in chars SP. The melting ash very probably inhibited the development of inner porosities and surface morphology when coal particle was pyrolyzed in the slow heating rate at the range of AFT, while volatile matter plays more important roles on the formation of pore structure and surface morphology when pyrolyzed in rapid heating rate. Fractal theory was suitable to describe the pore structure and surface morphology of chars. Fractal dimension not only relates to pyrolysis temperature and heating rate, but also connects to the parent coal.
     (2) A normal distribution model was proposed to fit the kinetics data. Compared with the random pore model, results show that the normal distribution model can be used to describe the gasification rate changing with reaction time at different temperatures and pressures. The effects of CO, H2 and N2 on char-CO2 and char-H2O gasification reaction were investigated by TGA. nth model and Langmiur-Hinshelwood (L-H) model have been used to fit the reactivity data and kinetics parameters were obtained.
     (3) The reactivities of 15 coal chars of varying rank with CO2 and H2O have been determined to examine the effects of fixed carbon, ash and volatile matters on the gasification rate of coal chars. A universal correlation between the gasification reactivity of coal particles and coal types was presented. A general index,Rc=(Vm)/(FC)·B·100, which is used to indicate the gasification reactivity of coals with CO2 and H2O was present. Rc depends only on the proximate analysis and ash composition of coal and reflects the gasification behavior in a combined way, so that Rc is called the gasification index of coal.
     (4) The shrinking unreacted model is applicable for describing Shenfu char gasification. Influences of particle size on char gasification were investigated. At temperature 850-1000℃, the char-CO2 and char-H2O gasification are both controlled by chemical reaction. The apparent activation energies of char-CO2 and char-H2O gasification are 150-170 kJ/mol and 150-190 kJ/mol, respectively. The effects of pore diffusion on char gasification were analyzed at higher temperature range.
     (5) The catalysis of AM on coal gasification happened not only in gasification phase but also in pyrolysis phase. AM inhibited the progress of graphitization of the base carbon making the crystalline carbon structure more disorder and thus resulting in more reactive char. The kinetic model of catalytic gasification was established, which is suitable to describe the gasification rate changes in the char conversion for catalytic gasification of char.
     (6) CO2-gasification reactivity of unburned carbon in both coarse and fine slags was studied in a pressurized thermogravimetric analyzer (TGA) and compared with a char obtained from a drop tube furnace (DTF) at 1400℃from the same original coal. Unburned carbon in coarse slag has the highest gasification rate which is always higher than that of corresponding fine slag. The existence of minerals has catalysis on the CO2-gasification of unburned carbon in coarse slag, but inhibits CO2-gasification in fine slag. DTF char has the lowest reactivity, compared to unburned carbon in both coarse and fine slags. Higher ordering of carbon layers and lower content of catalytic mineral components may be the main reasons for the lower reactivity of the unburned carbon in fine slag than that of in coarse slag.
     (7) The gasification of the mixture of raw coal with corresponding ash/slag from entrained-flow gasifier was investigated in the range of ash/slag melting temperature (950-1380℃). The influences of coal ash and slag on coal gasification were investigated. It was found that gasification rate have more to do with the ash/slag melting characters of coal when gasified at relative higher temperatures.
引文
[1]唐宏青.现代煤化工新技术[M].北京:化学工业出版社.2009
    [2]王洋,房依天,黄戒介等.煤气化技术的发展—煤气化过程的分析和选择[J].东莞理工学院学报.2006,13(4):93-100
    [3]黄戒介,房倚天,王洋.现代煤气化技术的开发与进展[J].燃料化学学报.2002,30(5):385-391
    [4]雍永枯.展望2000年我国煤化工技术[J].煤化工.1996,77(4):3-18
    [5]许世森,张东亮,任永强.大规模煤气化技术[M].北京:化学工业出版社.2006
    [6]成玉琪,杜铭华,余洁.中国洁净煤技术发展评述[J].洁净煤技术.1999,5(1):5-12
    [7]贺永德.现代煤化工技术手册[M].北京:化学工业出版社.2003
    [8]谢克昌.煤的结构与反应性[M].北京:科学出版社.2002
    [9]周志杰.煤热解过程及气化反应动力学研究[D].上海:华东理工大学.2006
    [10]张双全.煤化学[M].徐州:中国矿业大学.2004
    [11]Cakal Go, Yucel H, Guruz AGPhysical and chemical properties of selected Turkish lignites by themogravimetric analysis. Journal of analytical and applied pyrolysis[J].2007,80(2):262-268
    [12]Molina A, Mondragon F.Reactivity of coal gasification with steam and CO2[J]. Fuel.1998,77(15):1831-1839
    [13]沙兴中,杨南星.煤的气化与应用[M].上海:华东理工大学出版社.1995
    [14]Lahaye J, Ehrburger P. Fundamental issues in control of carbon gasification reactivity[M].NATO ASI series, Serie E:Applied Science, Dordrecht:Kluwer Academic Publishers.1991
    [15]Moulijn JA, Kapteijn F. Towards a united theory of reactions of carbon with oxygen-containing molecules [J].Carbon.1995,33(8):1155-1165
    [16]Ergun SB.Kinetics of the Reaction of carbon dioxide with carbon[J].J. Phys. Chem.1956,60(2):480-485
    [17]Gadsby J, Long FL, Sleightholm P, Sykes KW.The inhibition of CO on char gasification[J].Proc. Roy. Soc.1948, A193:357-365
    [18]Muhien HJ, Van Heek KH, Juntgen H. Kinetic studies of steam gasification of char in the presence of H2, CO2 and CO[J].Fuel.1985(7),64:944-949
    [19]Huttinger KJ.Mechenism of water vapor gasification at high hydrogen levels [J].Carbon.1988,26(1):79-87
    [20]Weeda M, Abcouwer HH, Kapteijin F, Moulijin JA. Steam gasification kinetics and burn-off behaviour for a bituminous coal derived char in the presence of H2[J].Fuel processing technology.1993,36(1):235-241
    [21]Radovic LR et al.Importance of carbon active sites in the gasification of coal chars[J].Fuel.1983,62(1):81-84
    [22]Van Heek KH.Design and scale-up of the Fischer-Tropsch bubble column slurry reactor[J].Fuel.1985,64(1):73-105
    [23]Miura K, Hashimoto K, Silveston P. Factors affecting the reactivity of coal chars during gasification and indices repeating reactivity[J].Fuel.1989,68(11):1461-1475
    [24]Kasaoka S, Sakata Y, Kayano S, Masuoka Y.Sulfur tolerance of various catalysts for the gasification of coal char[J].Intern Chem Eng.1984,25(1):160-165
    [25]Osafune K and Marsh H.Gasification kinetics of coal chars in carbon dioxide [J]. Fuel.1988,67(3):384-388
    [26]Liu GS, Tate AG, Bryant GW et al. Mathematical modeling of coal char reactivity with CO2 at high pressures and temperatures[J].Fuel.2000,79(10):1145-1154
    [27]Beamish BB, Shaw KJ, Rodgers KA, Newman J. Thermogravimetric determination of the carbon dioxide reactivity of char from some New Zealand coals and its association with the inorganic geochemistry of the parent coal [J].Fuel Processing Technology. 1998,53(3):243-253
    [28]Ana Arenillas, Fernando Rubiera, Jose B. Parra, etc.Influence of char structure on reactivity and nitric oxide emissions[J].Fuel Processing Technology.2002,77-78 (1):103-109
    [29]肖新颜,李淑芬,柳作良.煤焦与水蒸气加压气化反应活性研究[J].煤化工.1998,11(4):53-56
    [30]Hashimoto K, Miura K and Ueda T.Correlation of gasification rates of various coals measured by a rapid heating method in a steam atmosphere at relatively low temperatures[J]. Fuel.1986,65(11):1516-1523
    [31]Takayuki T, Yasukatsu T, Akira T.Reactivities of 34 coals under steam gasification[J].Fuel.1985,64(10):1438-1442
    [32]杨帆,范晓雷,周志杰,等.随机孔模型应用于煤焦与CO2气化的动力学研究[J].燃料化学学报.2006,33(6):671-676
    [33]Sekine Y, Ishikawa K, Kikuchi E, Matsukata M.New evaluation method of carbonaceous structure on coal steam gasification [J]. Energy and Fuels.2005,19(1): 326-327
    [34]白进,李文,Li Chun-zhu,等.高温下煤中矿物质对气化反应的影响[J].2009,37(2):134-138
    [35]杨景标,蔡宁生,李振山.几种金属催化褐煤焦水蒸气气化的实验研究[J].中国电机工程学报.2007,27(26):7-12
    [36]Hippo EJ,Jenkins RG, Wakler PL.Enhancement of lignite char reactivity to steam by cation addition[J].Fuel.1979,58(5):338-344
    [37]Hengel TD and Walker PL.Catalysis of lignite char gasification by exchangeable calcium and magnesium[J].Fuel.1984,63(9):1214-1220
    [38]楚希杰,李文,白宗庆,等.神华煤直接液化残渣水蒸汽和CO2气化反应性研究[J].燃料化学学报:2010,38(1):1-5
    [39]Sekine Y. Ishikawa K, Kikuchi E, Matsukata M, Akimoto A. Reactivity and structure change of coal char during steam gasification[J].Fuel.2006,85(1):122-126
    [40]Sakawa M, Sakurai Y, Hara Y.Influence of coal characteristics on CO2 gasification[J].Fuel.1982,61(8):717-720
    [41]Alonso MGJ, A.G. Borrego, D. Alvarez, etc.A reactivity study of chars obtained at different temperatures in relation to their petrographic characteristics[J].Fuel Processing Technology,2001,69(3):257-272
    [42]Franciszek C, Halina K.Reactivity and susceptibility to porosity development of coal maceral chars on steam and carbon dioxide gasification[J].Fuel Processing Technology.1991,29(1-2):57-72
    [43]Sun QL, Li W, Chen HK, Li BQ.The CO2-gasification and kinetics of Shenmu maceral chars with and without catalyst[J].Fuel.2004,83(13):1787-1793
    [44]朱子彬,马智华,林石英,等.高温下煤焦气化反应特性Ⅱ:细孔构造对煤焦气化反应的影响[J].化工学报.1994,45(2):155-161
    [45]Feng B, Bhatia SK.Variation of the pore structure of coal chars during gasification[J].Carbon.2003,41(3):507-523
    [46]Wen CY. Non-catalytic heterogeneous solid-fluid reaction models[J].Industrial and Engeering Chemistry Rearch.1968,60(9):34-56
    [47]Kasaoka S, SakataY.Sulfur tolerance of various catalysts for the gasification of coal char[J].International Chemical Engineering.1986,26(4):705-715
    [48]Liu H, Luo CH, Toyota M, Uemiya S, Kojima T.Kinetics of CO2/char gasification at elevated temperatures. Part Ⅱ:Clarification of mechanism through modeling and char characterization[J].Fuel processing technology.2006,87(9):769-774
    [49]范晓雷,杨帆,周志杰,等.热解过程中煤焦微晶结构变化及其对煤焦气化反应活性的影响[J].燃料化学学报.2006,34(4):396-399
    [50]Van Heek KH,Muhlen HJ, Lahaye J, Ehrburger P, editors.Fundamental issues in control of carbon gsification reactivity [M].Dordrecht:Kluwer Academic Publishers,1991
    [51]Koichi M.The physical character of coal char formed during rapid pyrolysis at high pressure[J].Fuel.2005,84(1):63-69
    [52]唐黎华,胡思飞,倪燕慧,等.制焦温度对煤焦特性的影响[J].华东理工大学学报.2007,33(2):149-153
    [53]Liu H, Luo CH, Toyota M, Uemiya S, Kojima T et al. Kinetics of CO2/Char gasification at elevated temperatures Part I:Experimental results[J].Fuel processing technology.2006,87(9):775-781
    [54]徐秀峰,顾永达,陈诵英.焦炭的比表面积与CO2气化反应性的关系[J].燃料与化工.1996,27(3):122-124
    [55]范晓雷.神府煤热解及气化动力学研究[D].华东理工大学.2006
    [56]范晓雷,张薇,周志杰,等.热解压力及气氛对神府煤焦气化反应活性的影响[J]. 燃料化学学报.2005,33(5):530-53
    [57]Lee CW, Jenkins RG, Schobert HH.Structure and reactivity of char from elevated pressure pyrolysis of Illinois No.6 bituminous coal[J].Energy & Fuels.1992,6(1):40-47
    [58]Roberts DG, Harris DJ, Wall TF.On the Effects of High Pressure and Heating Rate during Coal Pyrolysis on Char Gasification Reactivity[J].Energy & Fuels.2003,17 (4): 887-89
    [59]Gadiou R, Bouzidi Y, Prado G.The devolatilisation of millimetre sized coal particles at high heating rate:the influence of pressure on the structure and reactivity of the char[J].Fuel.2002,81(16):2121-2130
    [61]Terry FW, Liu GS, Wu HW, Roberts DG, Kathy E et al.The effects of pressure on coal reactions during pulverized coal combustion and gasification[J].Progress in Energy and Combustion Science.2002,28:405-433
    [62]Ma ZH, Zhu ZB, Zhang CF.Flash hydropyrolysis of Zalannoer lignite[J].Fuel Processing Technology.1994,38(2):99-109
    [63]胡英.物理化学[M].北京:高等教育出版社.2002
    [64]许贺卿.气固反应工程[M].北京:原子能出版社.1993
    [65]Roberts DG, Harris DJ.Char gasification with O2, CO2, and H2O:effects of pressure on intrinsic reaction kinetics [J].Energy & Fuels.2000,14(2):483-489
    [66]Ollero P, Serrera A, Arjona R, Alcantarilla S.Diffusional effects in TGA gasification experiments for kinetic determination[J].Fuel.2002,81(15):1989-2000
    [67]Everson RC, Neomagus HWJP, Kasaini H, Njapha D.Reaction kinetics of pulverized coal-chars derived from inertinite-rich coal discards:Gasification with carbon dioxide and steam[J]. Fuel.2006,85(7-8):1076-1082
    [68]Kajitani S, Hara S, Matsuda H.Gasification rate analysis of coal char with a pressurized drop tube furnace[J].Fuel.2002,81:539-54
    [69]王同华,林器.褐煤快速热解半焦的孔结构特性.燃料化学学报[J].1987,15(1):73-78
    [70]Koba K, Ida S.Gasification reactivities of metallurgical cokes with carbon dioxide, steam and their mixtures[J].Fuel.1980,59(1):59-63
    [71]张林仙.中国典型无烟煤焦气化特性研究[D].中国科学院山西煤炭化学研究所.2008
    [72]张林仙,黄戒介,房倚天,等.中国无烟煤焦气化活性的研究-水蒸气与二氧化碳气化活性的比较[J].燃料化学学报.2006,34(3):265-269
    [74]Xu SQ, Zhou ZJ, Yu GS, Wang FC. The gasification reactivity of unburned carbon present in gasification slag from entrained-flow gasifier.Fuel Processing Technology.2009,90(9):1062-1070
    [75]朱子彬,马智华,林石英,等.高温下煤焦气化反应特性Ⅰ.灰分熔融对煤焦气化反应的影响[J].化工学报.1994,45(2):147-153
    [76]朱子彬,马智华,林石英,等.高温下煤焦气化反应特性Ⅱ.细孔构造对煤焦气化 反应的影响[J].化工学报.1994,45(2):155-161
    [77]Kasaoka S, Sakata Y. Tong CLJ.Kinetic evaluation of reactivity in carbon dioxide gasification of various coal chars and comparison with steam gasification[J].Fuel Jpn.1983,62(2):335-348
    [78]唐黎华,王建中,吴勇强,等.低温熔点煤的高温气化反应性能[J].华东理工大学学报.2003,29(4):341-345
    [79]吴诗勇,顾菁,李莉,等.高温下灰熔融对神府煤焦反应性的影响[J].煤炭转化.2006,29(4):41-45
    [80]杨建国,邓芙蓉,赵虹,等.煤灰熔融过程中的矿物演变及其对灰熔点的影响[J].中国电机工程学报.2006,26(17):122-126
    [81]Dutta S, Wen CY; Belt RJ.Reactivity of coal and char [J].Industrial & Engineering Chemistry, Process Design and Development.1977,16(1):20-30
    [82]向银花,王洋,张建民,等.煤气化动力学模型研究[J].燃料化学学报.2002,30(1):21-26
    [83]Miura K, Aimi M, Naito J,Hashimoto K.Steam gasification of carbon-effect of several metals on the rate of gasification and the rates of CO and CO2 formation[J].Fuel.1986,65(3):407-411
    [84]邹建辉,周志杰,代正华,等.三种工业肥料对石油焦C02气化动力学的影响[J].燃料化学学报.2008,36(3):279-285
    [85]李淑芬,刘厚斌.未反应芯收缩模型用于煤焦与CO2加压气化反应的研究[J].煤气与热力.1993,13(5):3-9
    [86]Schnial M, Lulz J, Monteiro F et al.Kinetics of coal gasification[J].Ind Eng Chem Process Des Dev1982,21(2):256-266
    [87]Szekely J, Evans JW, Sohn HY. Gas-solid reactions[M].Academic press London, England.1976
    [88]Bhatia SK and Perlmutter DD.A random pore model for fluid-solid reaction:Ⅰ. Isothermal, kinetic control[J].AICHE.1980.26(3):379-385
    [89]Peterson EE. Reaction of porous solids[J].AICHE J.1957,3:442-448
    [90]Struis RPWJ, von Scala C, Stucki S, Prins R. Gasification reactivity of charcoal with CO2. Part Ⅱ:Metal catalysis as a function of conversion[J].Chemical Engineering Science.2002,57(17):3593-3602
    [91]Zhang Y, Hara S, Kajitani S, Ashizawa M.Modeling of catalytic gasification kinetics of coal char and carbon[J].Fuel.2010,89(1):152-157
    [92]Blackwood JD, Ingeme AJ. Aust J Chem.The reaction of carbon with carbon dioxide at high pressure[J].Aust J Chem,1960,13(1):194-196
    [93]Dutte S, Wen CY, Belt RJ.Reactivity of Coal and Char 1 In. carbon dioxide Atmosphere[J].Ind.Eng. Chem:Process Des. Dev.1977,16(1):31-37
    [94]Goyal A, Zabransky RF, Rehmat A.Gasification kinetics of Western Kentucky Bituminous coal char[J]. Ind. Eng. Chem. Res.1989,28:1767-1778
    [95]Adschiri T, Shiraha T, Kojjma T.Prediction of CO2 gasification rate of char in fluidized bed gasifier[J].Fuel.1986,65(12):1688-1693
    [96]Lee WJ, Kim SD.Catalytic activity of alkali and transition metal salt mixtures for steam-char gasification[J].Fuel.1995,74(9):1387-1393
    [97]Yang Y, Watkinson AP.Gasification reactivity of some Western Canadian Coals[J]. Fuel.1994,73(11):1786-1791
    [98]Kasaoka S, Sakata Y, Tong C.Kinetic evaluation of the reactivity of various coal chars for gasification with carbon dioxide in comparison with steam[J]. Int. Chem. Eng.1985, 25(1):160-166
    [99]葛庆仁.气固反应动力学[M].北京:原子能出版社.1991
    [100]Banin VE, Moors JHJ, Veefkind A.Kinetic Study of Pulverized Coal Combustion at High Pressure[J].Combust and Flame.1997,108(1):1-8
    [101]Banin V, Moors R, Veefkind B.Kinetic study of high-pressure pulverized coal char combustion:experiments and modeling[J].Fuel.1997,76(10):945-949
    [102]Bateman KJ, Germane GJ, Smoot LD, Blackham AU et al.Effect of pressure on oxidation rate of millimetere-sized char particle[J].Fuel.1995,74(10):1466-1474
    [103]Huttinger KJ, Nattermann C. Correlations between coal reactivity and inorganic matter content for pressure gasification with steam and carbon dioxide [J]. Fuel.1994,73(10):1682-1688
    [104]Koichi M, Hiroyuki A.The physical character of coal char formed during rapid pyrolysis at high pressure[J].Fuel.2005,84(1):63-69
    [105]Kuhl H, Kashani-Motlagh MM, Muhlen HJ, van Heek KH.Controlled gasification of different carbon materials and development of pore structure[J]. Fuel.1992,71(8):879-886
    [106]Li S, Xiao X. Gasification reactivity of three Chinese coal chars with steam at elevated pressure [J].Fuel,1993,72(9):1351-1358
    [107]Li S, Sun R. Kinetic studies of a lignite char pressurized gasification with CO2, H2 and steam[J].Fuel.1994,73(3):413-418
    [108]Lim J-Y, Chatzakis IN, Megarities AM, Cai H-Y, Dugwell DR, Kandiyoti R. Gasification and char.combustion reactivities of Daw M,Ⅱ coal,n wire-mesh and "hot-rod" reactors[J].Fuel.1997,76(13):1327-1335
    [109]Lin S-Y, Suzuki Y, Hatano H, Tsuchiya K.Pressure effect on char combustion in different rate control zones[J].Chem Engng Sci.2000,55(1):43-48
    [110]Ma ZH, Zhang CF et al.A study on the intrinsic kinetics of steam gasification of Jincheng coal char [J].Fuel Processing Technology,1992,31(1):69-76
    [111]Mallet C, Rouan JP, Richard JR.First meeting of the Greek section of the Combustion Institute[C],1997
    [112]Megaritis A, Messenbock RC, Collot A-G, Zhuo Y, Dugwell DR, Kandiyoti R. Effect of pyrolysis conditions on char reactivities under high-pressure CO2[J].Fuel.1998,77(13):1411-1417
    [113]Reinhard C. Messenbock, Denis R. Coal gasification in CO2 and steam:Development of a steam injection facility for High-Pressure Wir-Mesh Reactors[J]. Energy&Fuels.1999,13(2):122-129
    [114]Moilanen A, Mu'hlen HJ.In situ impregnated iron-based catalysts for direct coal liquefaction[J].Fuel.1996,75(1):51-57
    [115]Monson CR, Germane GJ, Blackham AJ,Smoot LD.Predicting the Devolatilization Behavior of any coal from its ultimate analysis[J]. Combustion and Flame.1995,100(3):384-394
    [116]Nozaki T, Adschiri T, Fujimoto K. Catalytic purification of tarry fuel gas with carbonate rocks and ferrous materials[J].Fuel.1992,71(2):211-218
    [117]Ranish JM, Walker PL.High pressure studies of the carbon-oxygen reaction[J]. Carbon.1993,31(1):135-142
    [118]Richard JR, Majthoub MA, Aho MJ, Pirkonen PM. Separate effects of pressure and some other variables on char combustion under fixed bed conditions[J].Fuel.1994,73(4):485-49
    [119]Muhlen HJ, van Heek KH, Juntgen H.Reduction alkylation of aromatic hydrocarbons[J].Fuel.1986,65(2):144-145
    [120]Sha XZ, Chen YG, Cao J, Yang YM, Ren DQ.Solubility studies on a paraffin wax in base oils[J].Fuel.1990,69(3):293-300
    [121]Zou JH, Zhou ZJ Wang FC et al.Modeling reaction kinetics of petroleum coke gasification with CO2[J].Chemical Engineering and Processing.2007,46(5):630-636
    [122]Turnbull E, Kossakowski ER, Davidson JF, Hopes RB, Blackshaw HW, Goodyer PTY. Chem Eng Res Des 1984; 62:1217-1223
    [123]Liming Lu, Chunhua Kong, Veena Sahajwalla.Char structure ordering during pyrolysis and combustion and its influence[J].Fuel.2002,81(9):1215-1225
    [124]Roberts DG, Harris DJ.Char gasification in mixtures of CO2 and H2O:Competition and inhibition[J].Fuel.2007,86(17-18):2672-2678
    [125]Pohorely M, Vosechy M, Hejdova P, Puncochar M et al. Gasification of coal and PET in fluidized bed reactor[J]. Fuel.2006,85:2458(17-18)-2468
    [126]Ollero P, Serrera A, Arjona R, Alcantarilla S.The CO2 gasication kinetics of olive residue[J].Biomass & Bioenergy.2003,24(2):151-161
    [127]He R, Xu XC, Chen CH.Evolution of pore fractal dimensions for burning porous chars[J].Fuel.1998.77(12),1291-1295
    [128]Wang XL, He R, Chen YL.Evolution of porous fractal properties during coal devolatilization[J].Fuel.2008,87(6):878-884
    [129]Shim H, Hurt R.Thermal annealing of chars from diverse organic precursors under combustion-like conditions[J].Energy Fuels.2000,14(2):340-348
    [130]Russell NV, Gibbins JR, Williamson J.Structure ordering in high temperature coal chars and the effect on reactivity[J].Fuel.1999,78(7):803-807
    [131]Lee GJ, Pyun S.The effect of pore structures on fractal characteristics of meso/macroporous carbons synthesized using silica template[J].Carbon.2005,43(8):17 78-1814
    [132]Pyun S, Chang KR.An investigation of fractal characteristics of mesoporous carbon electrodes with various pore structures[J].Electrochimica Acta.2004,49:4171-4180
    [133]Xu LJ, Zhang DJ, Xian XF.Fractal dimensions of coals and cokes[J].Journal of colloid and interface science.1997,190:357-359
    [134]胡松,孙学信,向军,等.淮南煤焦颗粒内部孔隙结构在燃烧过程中的变化[J].化工学报.2003,54(1):107-111
    [135]程军,陈训刚,刘建忠,等,岑可法.煤粉孔隙分形结构对水煤浆性质的影响规律[J].中国电机工程学报.2008,28(23):60-64
    [136]Sastry, PU, Sen D, Mazumder S. Chandrasekaran KS.Structural variations in lignite coal:a small angle X-ray scattering investigation[J].Solid State Communications 2000,114:329-333
    [137]Karacan, CO, Okandan E.Adsorption and gas transport in coal microstructure: investigation and evaluation by quantitative X-ray CT imaging[J]. Fuel.2001,80(4):509-520
    [138]Nakagawa T, Komaki I, Sakawa M, Nishikawa K.Small angle X-ray scattering study on change of fractal property of witbank coal with heat treatment[J].Fuel.2000, 79(11):1341-1346
    [139]Nasrin R, Khalili, MP, Giselle S.Determination of fractal dimensions of solid carbons from gas and liquid phase adsorption isotherms[J].Carbon.1998,38(4):573-588
    [140]Song WJ, Tang LH, Zhu XD, Wu YQ et al. Fusibility and flow properties of coal ash and slag[J].Fuel.2009,88(3):297-304
    [141]De Boer J H. The structure and properties of porous materials[M].London: Butterworths.1958, pp105-210
    [142]近藤精一.吸附科学[M].北京:化学工业出版社.2006
    [143]Pyun SI, Rhee CK.An investigation of fractal characteristics of mesoporous carbon electrodes with various pore structures[J].Electrochimica Acta.2004,49:4171-4180
    [144]Qi, H, M J, Wong, PZ.Adsorption isotherms of fractal surfaces[J].A:Physico-chemeical and Engineering Aspects.2002,206:401-407
    [145]黄艳芳,马正飞,姚虎卿.活性炭吸附C02与其微孔体积的关系[J].燃料化学学报.2008,36(3):343-34
    [146]付志新,郭占成.焦化过程半焦孔隙结构时空变化规律的实验研究—孔结构的分形特征及其变化[J].燃料化学学报.2007,35(4):385-390
    [147]辛厚文.分形理论及其应用[M].合肥:中国科学技术大学.1993
    [148]Yao YB, Liu DM, Tang DZ, Tang SH.Fractal characterization of adsorption-pores of coals from North China:An investigation on CH4 adsorption capacity of coals[J]. Coal Geology.2008,73(1):27-42
    [149]Pfeifer P, Avnir D. Chemistry nonintegral dimensions between two and three[J]. Journal of Physical Chemistry.1983,79:3369-3558
    [150]Pfeifer P, Wu YJ, Cole MW, Krim, J.Multilayer adsorption on a fractally rough surface[J].Physcial Review Letters.1989,62:1997-2000
    [151]Oberlin A. Carbonization and graphitization.Carbonization and graphitization[J]. Carbon.1984,22(6):521-541
    [152]Van Dyk JC, Benson SA, Laumb ML, Waanders B. Coal and coal ash characteristics of understand mineral transformations and slag formation[J].Fuel.2009, 88(6):1057-1063
    [153]Gupta JS, Bhatia SK. A modified discrete random pore model allowing for different initial surface reactivity[J].Carbon.2000,38(1):47-58
    [154]乌晓江,张忠孝,朴桂林.高灰熔点煤高温下煤焦C02/水蒸汽气化反应特性的实验研究[J].中国电机工程学报.2007,32(1):24-28.
    [155]Bhatia SK, Vartak BJ.Reaction of microporous solid:The discrete random pore model.Carbon.1996,34(1):1383-1391
    [156]Boyd RK, Benyon P, Nguyen Q, Tran H, Lowe A. Final report, Australian coal Association research Program (ACARP), project C3095[C]. Australia Pacific Power. 1998
    [157]Adanez J, Miranda JL, Gavilan JM.Kinetics of a lignite-char gasification by CO2[J].Fuel.1985,64(6):801-804
    [158]Walker PL, Austin LG. Advances in Catalysis[M]. Academic Press NY,1959, pp 133-221
    [159]Hippo EJ, Jenkins RG, Walker PL.Enhancement of lignite char reactivity to steam by cation addition[J].Fuel.1979,58(5):338
    [160]Hengel TD, Walker PL.Catalysis of lignite char gasification by exchangeable calcium and magnesium[J].Fuel.1984,63(9):1214-1220
    [161]Hippo E and Waler PL.Reactivity of heat-treated coals in carbon dioxide at 900℃[J]. Fuel.1975,54(4):245
    [162]Linares Solano A, Mahajan OP, Walker PL.Reactivity of heat-treated coals in steam [J].Fuel.1979,58(5):327-332[163]
    [163]Hippo E and Waler PL.Reactivity of heat-treated coals in carbon dioxide at 900℃. Fuel.1975,54(4):24-28
    [164]杨帆.煤焦在不同反应气氛下气化反应特性、机理及动力学研究[D].华东理工大学.2008
    [165]Thiele EW.Relation between catalytic activity and size of particle. Ind. End Chem. 1939,31:916-920
    [166]Hong JH, Hecker WC, Fletcher TH.Improvirig the Accuracy of Predicting Effectiveness Factors for mth order and Langmuir Rate Equations in Spherical Coordinates[J].Energy&Fuels.2000,14:663-670
    [167]Terry FW, Liu GS, Wu HW, Roberts DG, Benfell KE et al.The effects of pressure on coal reactions during pulverized coal combustion and gasificaton[J]. Progress in energy and combustion science.2002,28:405-43
    [168]Li CZ, Sathe C, Kershaw JR, Pang Y.Fates and roles of alkali and alkaline earth metals during the pyrolysis of a Victorian brown coal[J].Fuel.2000,79(3-4):427-438
    [169]Tyler RJ, Schafer HNS.Flash pyrolysis of coals:influence of cations on the devolatilization behaviour of brown coals[J].Fuel.1980,59(7):487-494
    [170]Chirag S, Pang YY, Li CZ. Effects of Heating Rate and Ion-Exchange Cations on the pyrolsis yields from a Victorian brown coal.Energy & Fuels.1999,13:748-755
    [171]Li XJ, Li CZ.Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part Ⅲ. Catalysis and changes in char structure during gasification in steam[J]. Fuel.2006,85(10-11):1518-1525
    [172]Li CZ.Some recent advances in the understanding of the pyrolysis and gasification behaviour of Victorian brown coal[J].Fuel.2007,86(12-13):1664-1683
    [173]Quyn DM, Wu HW, Hayashi JI, Li CZ.Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part Ⅳ. Catalytic effects of NaCl and ion-exchang[J]. Fuel.2003,82(5):587-593
    [174]Wu HW, Hayashi JI, Chiba T, Takarada T, Li CZ.Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part Ⅴ. Combined effects of Na concentration and char structure on char reactivity[J].Fuel.2004,83(1):23-30
    [175]Garc'ia X, Radovi L.Gasification reactivity of Chilean coals[J].Fuel.1986,65(2):29 2-294
    [176]Ochoa J, Cassanello MC, Bonelli PR.CO2 gasification of Argentimean coal chars:a kinetic characterization[J].Fuel processing technology.2001,74(3):161-176
    [177]Atul S, Yeboah YD, Anuradha G, Xu Y, Agrawal PK.Catalytic gasification of coal using eutectic salts:identification of eutectics[J].Carbon.2003,41(2):203-214
    [178]Nishiyama Y.Catalytic gasification of coals Features and possibilities[J].Fuel Processing technology.1991,29(1):31-42
    [179]Manzoori AR, Agarwal PK. The fate of organically bound inorganic elements and sodium chloride during fluidized bed combustion of high sodium, high sulphur low rank coals[J].Fuel 1992,71(5):513-522
    [180]Bayarsaikhan B, Hayashi JI, Shimada T, Sathe C. Kinetics of steam gasification of nascent char from rapid pyrolysis of a Victorian brown coal[J].Fuel.2005,84(12-13): 1612-1621
    [181]Wu H, Quyn DM, Li CZ.Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part III. The importance of the interactions between volatiles and char at high temperature[J].Fuel.2002,81(8):1033-1039
    [182]Liu H, Kaneko M, Luo CH, Kato S, Kojima T.Effect of pyrolysis time on the gasification reactivity of char with CO2 at elevated temperatures[J].Fuel.2004, 83(7-8):1055-1061
    [183]Wagner NJ, Matjie RH, Slaghuis JH, van Heerden JHP.Characterization of unburned carbon present in coarse gasification ash[J].Fuel.2008,87(5):683-691
    [184]Hurt RH, Davis KA, Yang NYC, Headley TJ.Residual carbon from pulverized coal fired boiler,2:Morphology and physicochemical properties[J].Fuel.1995,74 (9):1297-1306
    [185]高旭霞.气流床煤气化条件下形成的渣和灰的特征研究[D].华东理工大学.2009
    [186]Valer MM, Taulbee DN, Hower J.Novel separation of the differing forms of unburned carbon present in fly ash using density gradient centrifugation[J].Energy & Fuels.1999,13(4):947-953
    [187]Wu T, Gong M, Lester E, Wang FC, Zhou ZJ, Yu ZH.Characterisation of residual carbon from entrained-flow coal water slurry gasifiers[J].Fuel.2007,86 (7):972-982
    [188]Matjie RH, Van Alphen C.Mineralogical features of size and density fraction in Sasol coal gasification ash, South Africa and potential by products[J].Fuel.2008,87 (10):1439-1445.
    [189]Tomeczek J, Palugniok H.Kinetics of mineral matter transformation during coal combustion[J].Fuel.2002,81(10):1251-1258
    [190]Shimizu T, Tominaga H.A model of char capture by molten slag surface under high-temperature gasification conditions[J].Fuel.2006,85(2):170-180
    [191]Montagnaro F, Salatino Piero.Analysis of Char-slag interaction and near-wall particle segregation in entrained-flow gasification of coal[J].Combustion and Flame.2010, 157(5):874-883
    [192]Li HX, Yoshikiko N, Dong ZB, et al.The mineral transformation of Huainan coal ashes in reducing atmospheres [J]. China univ. of mining and tech.2006,16(2):162-166
    [193]陈冬霞,唐黎华,周亚明,等.灰中焦对煤灰熔融特性的影响[J].燃料化学学报.2007,35(2):136-140
    [194]黄伯龄.矿物差热分析鉴定手册.北京:科学出版社.1987
    [195]Liu TF, Fang YT, Wang Y.An experimental investigation into the gasification reactivity of chars prepared at high temperatures[J].Fuel.2008,87(4-5):460-466

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700