二氧化硫气氛下含铈氧化物催化剂氧化碳烟的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
催化燃烧技术是碳烟去除的一个解决途径,也面临着挑战。其一,柴油车排气中含有一定浓度的SO_2;其二,柴油车排气温度常常低于300-400℃;其三,碳烟的催化燃烧是固-固-气反应,碳烟与催化剂需要良好接触。故催化剂的耐硫中毒性能、低温活性及氧传递能力对碳烟氧化十分重要。论文选用MOx-CeO_2体系(M-Ce-O,M=Fe、Cu、Zn、Co、Ni和Mn)重点是CuO-CeO_2,在程序升温氧化(TPO)反应气氛中引入SO_2,考察SO_2存在下催化剂作用机理。使用XRD、BET、FTIR、H2-TPR、O_2-TPD、NH3-IR以及XPS等表征方法,研究活性影响因素。主要是研究催化剂表面积累硫物种及其对催化剂的表面特性如氧物种、氧化还原对等的作用,以及这种作用对催化活性的影响。主要研究结果与结论如下:
     (I)对MOx-CeO_2重点是CuO-CeO_2氧化碳烟的活性因子的研究。CeO_2中加入过渡金属氧化物TMO(transient metal oxides)后,由于TM如Cu与Ce之间相互作用形成固溶体,如CeO_2中添加Cu可形成Cu_z~(2+)Ce_(1-z)4+O_(2-z)~2-□z;且一般会伴随着比表面积稍微升高,平均晶粒尺寸减少;固溶体形成意味着更多氧空位(储氧容量OSC)、活性物种如氧物种与氧化还原对Ce4+-O_2--Cu+以及固体表面酸的产生。这些对提高催化剂的活性都有利,本文统称之为活性因子。如共沉淀法(CP)制备的MOx-CeO_2活性顺序为Ni2O3-CeO_2>MnO_2-CeO_2> CuO-CeO_2>Fe2O3-CeO_2>CeO_2>CoO-CeO_2>ZnO-CeO_2,归因于Ni、Mn、Cu及Fe可与Ce作用形成M-Ce-O固溶体,产生更多氧空位和氧物种(可由H2消耗量THC反映)。另如共沉淀法制备的CuO-CeO_2相比于单一的CuO或CeO_2具有更高的活性,也是这些活性因子的作用。再如柠檬酸络合燃烧法(CA)制备的CuO-CeO_2活性排序为Cu0.05Ce0.95>Cu0.2Ce0.8> Cu0.6Ce0.4≈Cu0.8Ce0.2>Cu0.4Ce0.6>CuO,以及Cu0.05Ce0.95-CA活性优于Cu0.05Ce0.95-CP,仍然是归因于上述活性因子的缘故。
     (II)对SO_2-活性因子-催化剂活性关系的研究。反应气氛中引入SO_2后,其浓度达到一定程度时,会在催化剂表面积累硫物种包括SO_2及其衍生物硫酸盐SO42-、亚硫酸盐SO32-等;可能改变上述包括Ce4+-O_2--Mx+如Ce4+-O_2--Cu+对子以及固体酸在内的活性因子,进而影响活性。如0.03%的SO_2使共沉淀法制备的Fe-Ce-O、Ni-Ce-O和Mn-Ce-O的活性下降,却促进Cu-Ce-O和Co-Ce-O活性,对Zn-Ce-O和CeO_2活性影响不大。另如在0-0.1%浓度范围内,FTIR、BET、NH3-IR以及XPS共同揭示低于0.03%的SO_2在Cu50Ce50(CP)表面生成的SO32-和SO42-累积量低,催化剂Br?nsted酸度提高,净结果是催化活性增强;当SO_2浓度超过0.03%后,SO32-和SO42-累积增加,阻塞了催化剂表面的活性位,活性才降低。再如较低浓度SO_2(0.02%)气氛中Cu_(0.05)Ce_(0.95)(CA)活性得到促进,原因是催化剂表面Ce4+增加,超氧O_2-增加,即Ce-O-Cu(Ce~(4+)-O_2~--Cu~+)增加。在较高浓度SO_2(0.03%)条件下,Cu_(0.05)Ce_(0.95)(CA)晶格氧O_2-和超氧O_2-可能共同转化为O-,后者很可能是硫酸盐。还有,引入0%-0.04%SO_2后,Cu_(0.05)Ce_(0.95)-CP/CA活性改变的转折点分别为0.03%与0.02%SO_2,相应FTIR谱图中都在~1385 cm-1处出峰,对应着固溶体表面存在Ce~(4+)-O_2~--Cu~+氧化还原对,即催化氧化碳烟的活性位,故对应最佳活性。高浓度(0.04%)SO_2引入后,Cu_(0.05)Ce_(0.95)-CA/CP表面都发现硫酸盐在内的硫物种,故活性下降。
     综上,(i)相比于单一的CeO_2,M’Ox-CeO_2(M’=Ni, Mn,Cu, Fe)如CuO-CeO_2活性更高,主要是因为形成了固溶体,如CuO复合CeO_2生成的Cu_z~(2+)Ce_(1-z)~(4+)O_(2-z)~(2-)□_z;固溶体有利于生成更多氧空位、活性氧物种以及氧化还原对等活性因子。(ii)引入的SO_2通过改变上述活性因子,进而影响活性。一方面可能通过增强催化剂表面固体酸性而促进活性;更重要的是,随着SO_2浓度的升高,在催化剂表面可能积累越来越多包括硫酸盐在内的硫物种,以及减少了表面活性物种如活性氧物种和氧化还原对的含量,抑制了催化剂氧的迁移能力,从而降低了催化剂的活性。总之,催化剂活性受SO_2影响取决于活性因子与硫物种累积量的综合作用。(iii)超氧O_2~-在Cu_(0.05)Ce_(0.95)-CP/CA氧化碳烟中的作用是重要的;但用Ce~(4+)/Ce~(3+)比率比活性氧物种O*(O_2~-、O~-和O~(2-))能更好的解释催化剂的氧化还原性能。
The catalytic combustion technology is a solution for soot abatement and it also presents challenges. Firstly, SO_2 emission from fuel is still a problem for diesel engine; Secondly, the exhaust temperature is always below 300-400℃; Thirdly, the solid-solid-gas reaction type of soot combustion via catalyst, requires a good contact between soot and catalyst. Therefore, the sulfur tolerance, activity at lower temperatures, and oxygen mobility of catalysts play important roles in soot oxidation. As promosing catalysts system, MOx-CeO_2 (M-Ce-O, M=Fe, Cu, Zn, Co, Ni and Mn), with the emphasis of CuO-CeO_2, were selected to study the mechanism of soot oxidation with the presence of SO_2 in TPO atmosphere. The characterization techniques including XRD, BET, FTIR, H2-TPR, O_2-TPD, NH3-IR and XPS, were applied to explore the activity-affecting factors. For example, the sulfur species deposited on catalyst surface, especially its effect on surface properties including oxygen species, redox couple, thus affecting activity, were investigated. The results and conclusions are as follows:
     (I)The study on the activity factors for MOx-CeO_2 emphasically for CuO-CeO_2 towards soot oxidation. It was found that the addition of TMO(transient metal oxides) into CeO_2 could cause the formation of solid solution due to the interaction of TMO and ceria, such as Cuz~(2+)Ce1-z4+O_2-z2-□z in the case of copper incorporated into ceria; A slight increase of specific surface area(SSA) and decrease of the average crystalline size were observed; The presence of solid solution could lead to the generation of more oxygen vacancies(oxygen storage capacity, OSC), active species such as oxygen species and Ce4+-O_2--Cu+ redox couple, as well as solid surface acid. The improvement of catalytic activity could benefit from all of those parameters, generally called as activity factors. The activity sequence of MOx-CeO_2 prepared with coprecipitation method(CP) was Ni2O3-CeO_2>MnO_2-CeO_2>CuO-CeO_2>Fe2O3-CeO_2>CeO_2> CoO-CeO_2>ZnO-CeO_2.The addition of Ni, Mn, Cu and Fe could cause the formation of solid solution of M-Ce-O, thus more oxygen vacancies and oxygen species(according to the total hydrogen consumption, THC) are generated. Another example is the superiority at activity for CuO-CeO_2(CP) compared with CuO-only or CeO_2–only catalyst, due to the effect of those above activity factors. Additional examples are CuO-CeO_2(CA) with the activity order of Cu0.05Ce0.95>Cu0.2Ce0.8>Cu0.6Ce0.4≈Cu0.8Ce0.2>Cu0.4Ce0.6>CuO, and the superiroty of the activity of Cu0.05Ce0.95-CA compared with that of Cu0.05Ce0.95-CP. These differences were also resulted from those above activity factors.
     (II)The study on the correlation of SO_2-activity factors-catalytic activity for soot oxidation. It was found that the concentration of SO_2 in TPO atmosphere increasing to some level could resulted in the deposition of sulfur species on catalyst surface, SO_2, SO42- and SO32-, included; accompanied by the variation of the activity factors, such as Ce~(4+)-O_2~--M~(x+) especially Ce~(4+)-O_2~--Cu~+ redox couple, and solid acidity; thus affecting the activity. For example, 0.03%SO_2 could deactivate coprecipitation synthesized Fe-Ce-O, Ni-Ce-O and Mn-Ce-O, however it could enhance the activity of Cu-Ce-O and Co-Ce-O, and no significant effect of SO_2 on Zn-Ce-O or CeO_2 was observed. As another example, FTIR, BET, NH3-IR and XPS reveal that the low amount of SO_4~(2-)/SO_3~(2-) on the surface of Cu50Ce50(CP), with the increase of Br?nsted acidity, result in the accelerated catalytic activity; >0.03%SO_2 could lead to the growth of the amount of SO_4~(2-)/SO_3~(2-), causing the contamination of the active sites and deactivate the catalyst. An additional example was that the activity of Cu0.05Ce0.95(CA) was promoted with the presence of lower concentration of SO_2(0.02%). This activity enhancement was ascribed to the increase of the amount of surface Ce4+ and superoxide(O_2-), or due to the enrichment of Ce-O-Cu(Ce4+-O_2--Cu+) from these two kinds of species. In the case of higher concentration of SO_2(0.03%), lattice oxygen(O_2-) and O_2- transformed to O-, the latter was probably presence in sulfates. Moreover, in the range of 0%-0.04%SO_2, the turning points of activity for Cu0.05Ce0.95-CP and Cu0.05Ce0.95-CA were 0.03% and 0.02%SO_2, respectively. The signals for both two Cu0.05Ce0.95 catalysts at ~1385 cm-1 in FTIR, were assigned as Ce4+-O_2--Cu+ redox couples on the surface of solid, responsible for the active sites of these two catalysts, corresponding to the highest activities. In the case of higher concentration of SO_2(0.04%), sulfur species including sulfates were found on the surface of Cu0.05Ce0.95-CP and Cu0.05Ce0.95-CA, followed with the inhibition of catalytic activity.
     As mentioned above, (i)the formation of solid solution in M’Ox-CeO_2(M’=Ni, Mn,Cu, Fe), such as Cuy~(2+)Ce1-y4+O_2-y2-□y in the case of CeO_2 corporated with CuO, caused their higher catalytic activities towards soot oxidation when compared to CeO_2-only. The formation of solid solution could favor the generation of more activity factors including oxygen vacancies, acitive oxygen species, and redox couple. (ii) The above activity factors varied due to the introduction of SO_2, thus affecting the activity. On one hand, the activity could be promoted resulting from the surface solid acid due to the presence of SO_2. The more important is that more sulfur species including sulfates are deposited with the increase of SO_2, followed with the decrease of the amount of surface species such as active oxygen species and redox couple,thus inhibited the oxygen mobility of catalyst and deactivated the catalytic activity. Generally, the effect of SO_2 on the activity of catalysts is determined by the combined action of the so-called active factors and the deposited sulfur species observed in this paper.(iii) In the case of the study of Cu_(0.05)Ce_(0.95)-CP/CA, superoxide O_2~- was found to play an important role in soot oxidation, moreover, for the description and interpretation of the redox properties of these two catalysts, the ratio of Ce4+/Ce3+ could be more reliable than active oxygen species O*( O_2~-、O~- and O_~(2-)).
引文
[1] J. Schneider, N. Hock, S. Weimer, et, al., Nucleation Particles in Diesel Exhaust: Composition Inferred from In Situ Mass Spectrometric Analysis [J], Environ.Sci. & Technol., 2005, 39(16):6153-6161
    [2] X. Wu, F. Lin, D. Weng, et, al., Effect of SO_2 Treatment at High Temperature on Soot Oxidation Activity of Cu–Ce–Al Mixed Oxides [J], Catal. Lett., 2009, 131(3-4): 463-468
    [3] M.A.Peralta, V.G.Milt, L.M.Cornaglia, et, al., Stability of Ba, K/CeO_2 catalyst during diesel soot combustion: Effect of temperature, water and sulfur dioxide [J], J. Catal., 2006, 242(1): 118-130
    [4] K.Tikhomirov, O. Krocher, M.Elsener, et, al., Manganese based materials for diesel exhaust SO_2 traps [J], Appl. Catal. B, 2006, 67(3-4): 160-167
    [5] T.Luo, J. M.Vohs, R. J.Gorte, An examination of sulfur poisoning on Pd/ceria catalysts [J], J. Cataly., 2002, 210(2):397-404
    [6] R.Flouty, E.Abi-Aad, S.Siffert, et, al., Role of molybdenum against ceria sulphur poisoning in the combustion of soot particles and the oxidation of propene [J], Appl. Catal. B, 2003, 46(1): 145-153
    [7] J. F. Lamonier, S. P. Kulyova, E. A. Zhilinskaya, et, al., Combustion of Carbon Black Catalyzed by Transition Metal-Promoted Y2O3–CeO_2–ZrO_2 Solid Solutions[J], Kinet. & Catal., 2004, 45(3):429-435
    [8]梁红,李树华,钟志剑等,柴油车排气颗粒物净化催化剂抗S中毒性能研究[J],广州大学学报(自然科学版),2006,5(5):30-32
    [9] C. Badini, G. Saracco,V. Serra, et, al., Suitability of some promising soot combustion catalysts for application in diesel exhaust treatment[J], Appl. Catal. B, 1998, 18 (1-2):137-150
    [10]J. Oi-Uchisawa, A. Obuchi, S. Wang, et, al., Catalytic performance of Pt/MOX loaded over SiC-DPF for soot oxidation[J], Appl. Catal. B, 2003, 43 (2):117-129
    [11] F. Ouyang, R. Zhu, K. Sato, et, al., Promotion of surface SOx on the selective catalytic reduction of NO by hydrocarbons over Ag[J], Appl. Surf. Sci., 2006, 252 (18):6390-6393
    [12] Shin’ichi Matsumoto, Yasuo Ikeda, Hiromasa Suzuki, et, al., NOx storage-reduction catalyst for automotive exhaust with improved tolerance against sulfur poisoning[J], Appl. Catal. B, 2000, 25 (2-3):115-124
    [14] V.G.Milt,M.A.Peralta,M.A.Ulla, et, al., Soot oxidation on a catalytic NOx trap:Beneficial effect of the Ba-K interaction on the sulfated Ba,K/CeO_2 catalyst[J], Cataly. Commun., 2007, 8(5):765-769
    [15] P. Palmisano, N. Russo, P. Fino, et, al., High catalytic activity of SCS-synthesized ceria towards diesel soot combustion[J], Appl. Catal. B, 2006, 69 (1-2):86-93
    [16] D. Weng, J. Li, X. Wu, et, al., Promotional effect of potassium on soot oxidation activity and SO_2-poisoning resistance of Cu/CeO_2 catalyst[J], Cataly. Commun., 2008, 9 (9): 1898-1901
    [17] V. Easterling, Y. Ji, M. Crocker, et, al., Effect of ceria on the desulfation characteristics of model lean NOx trap catalysts[J], Cataly. Today, 2010,151(3-4): 338-346
    [18]钱松,世界原油质量趋势及我国面临的挑战[J],中国石油和化工,2005,(5):45-50
    [19]程晓明,王治红,诸林,汽柴油深度脱硫方法及发展现状[J],炼油与化工,2009,20(1):1-4
    [20]郭太勤,刘双红,王昆等,低硫柴油润滑添加剂[J],合成润滑材料,2006,33(1):25-28
    [21] H.J. Chang, G.L. Cho, Y.D. Kim, The economic impact of strengthening fuel quality regulation—reducing sulfur content in diesel fuel[J], Energy Policy, 2006, 34(16):2572-2585
    [22] 2002年新燃料标准费用可能超过预期值,http://www.oilchina.com/
    [23] http://www.dieselnet.com/standards/eu/fuel.php
    [24] GB 19147-2009车用柴油,全国石油产品和润滑剂标准化技术委员会
    [25] S. D. Shah, D. R. Cocker, K. C. Johnson, et, al., Reduction of Particulate Matter Emissions from Diesel Backup Generators Equipped with Four Different Exhaust Aftertreatment Devices[J], Environ. Sci. & Technol., 2007, 41(14):5070-5076
    [26] G. Corro, Sulfur impact on diesel emission control[J], React.Kinet.Catal. Lett., 2002, 75(1):89-106
    [27] S. Mosconi, I. D.Lick, A. Carrascull, et, al., Catalytic combustion of diesel soot: Deactivationi by SO_2 of copper and potassium nitrate catalysts supported on alumina[J],Cataly. Commun., 2007, 8 (11):1755-1758
    [28] J. Oi-Uchisawa, S. Wang , T. Nanba,et, al., Improvement of Pt catalyst for soot oxidation using mixed oxide as a support[J], Appl. Catal. B, 2003, 44 (3):207-215
    [29] S.Verdier, V.Harle, A. Huang, et, al., Doped Zirconia with High Thermal Stability, for High Sulfur Resistance Diesel Oxidation Catalysts[J], SAE2006-01-0031
    [30] C.A.Querini, L.M.Cornaglia, M.A.Ulla, et, al., Catalytic combustion of diesel soot on Co,K/MgO catalysts. Effect of the potassium loading on activity and stability[J], Appl. Catal. B, 1999, 20(3):165-177
    [31] N.M.Deraz. Characterization and catalytic performance of pure and Li2O-dopedCuO/CeO_2 Catalysts. Appl.Surf.Sci., 2009, 255(6): 3884-3890
    [32] J. Luo, M. Meng, J. Yao, et, al., One-step synthesis of nanostructured Pd-doped mixed oxides MOx-CeO_2(M = Mn, Fe, Co, Ni, Cu) for efficient CO and C3H8 total oxidation [J], Appl. Catal. B, 2009, 87 (1):92-103
    [33] A.Trovarelli. Catalytic Properties of Ceria and CeO_2-Containing Materials[J], Cataly. Rev., 1996, 38 (4):439-520
    [34] J. A. C. Ruiza, F. B. Passosb, J. M. C. Buenoc, et, al., Autothermal Reforming of Methane under low Steam/Carbon ratio on supported Pt Catalysts[A],F. B. Noronha, M. Schmal, E. F. Sousa-Aguiar(Editors), Natural gas conversion VIII, Stud. Surf. Sci. Catal.[C]. Amsterdam, The Netherlands:Elsevier B.V., 2007:249-254
    [35] R.Cousin, S.Capelle, E.Abi-Aad, et, al., Copper-vanadium-cerium oxide catalysts for carbon black oxidation [J], Appl. Catal. B, 2007, 70(1):247-253
    [36] K. Krishna, A. Bueno-Lopez, M. Makkee,et, al., Potential rare-earth modified CeO_2 catalysts for soot oxidation Part III. Effect of dopant loading and calcination temperature on catalytic activity with O_2 and NO + O_2[J], Appl. Catal. B, 2007, 75 (3):210-220
    [37] K.Tikhomirov, O.Kr?cher, M.Elsener, et, al., MnOX-CeO_2 mixed oxides for the low-temperature oxidation of diesel soot[J], Appl. Catal. B, 2006, 64(1-2):72-78
    [38] E. Aneggi, C. de Leitenburg, G. Dolcetti, et, al., Promotional effect of rare earths and transition metals in the combustion of diesel soot over CeO_2 and CeO_2–ZrO_2[J], Catal. Today, 2006, 114 (1):40-47
    [39] T. Tabakova, V. Idakiev, J. Papavasiliou, et, al., Effect of additives on the WGS activity of combustion synthesized CuO/CeO_2 catalysts[J], Catal. Commun., 2007, 8(1):101-106
    [40] T. Masui, K. Minami, K. Koyabu, et, al., Synthesis and characterization of new promoters based on CeO_2–ZrO_2–Bi2O3 for automotive exhaust catalysts[J], Catal. Today, 2006, 117 (1):187-192
    [41] R. Wang, P. A. Crozier, R.Sharma, et, al., Nanoscale Heterogeneity in Ceria Zirconia with Low-Temperature Redox Properties[J],J. Phys. Chem. B, 2006, 110(37):18278-18285
    [42] P. Fang, J. Lu, X. Xiao, et, al., Catalytic combustion study of soot on Ce0.7Zr0.3O_2 solid solution[J], J. Rare Earth, 2008, 26 (2):250-253
    [43] C.R. Jung, J. Han, S.W. Nam, et, al., Selective oxidation of CO over CuO-CeO_2 catalyst:effect of calcination temperature[J], Catal. Today, 2004, 93-95:183-190
    [44] X.D.Wu, Q. Liang, D. Weng, et, al.,Synthesis of CeO_2–MnOx mixed oxides and catalytic performance under oxygen-rich condition Catal. Today, 2007, 126 (3):430-435
    [45] A.Bueno-López, K.Krishna, M.Makkee,et, al., Enhanced soot oxidation by lattice oxygen via La3+ doped CeO_2[J], J. Catal., 2005, 230 (1):237-248
    [46] I. Atribak, A. Bueno-López, A. García-García. Combined removal of diesel soot particulates and NOx over CeO_2-ZrO_2 mixed oxides[J],J.Catal., 2008, 259(1):123-132
    [47] J. Liu, Z. Zhao, J. Wang, et, al.,The highly active catalysts of nanometric CeO_2-supported cobalt oxides for soot combustion[J], Appl. Catal. B, 2008, 84(1):185-195
    [48] S. Yabe, T. Sato. Cerium oxide for sunscreen cosmetics[J], J.Solid.State.Chem., 2003, 171 (1-2):7-11
    [49] A.Martinez Arias, Jose C. Conesa1, Marcos Fernandez-Garcia,et, al., Supported Metals in Vehicle Emission Control[A],James A Anderson,Marcos Fernandez Garcia(Editors). Supported Metals in Catalysis[C],London:Imperial College Press,2005:283-325
    [50] Cerium: A Guide to its Role in Chemical Technology[M], Mountain Pass,CA, USA: Molycorp, Inc.. 1992: 27, 35
    [51] P. P. Silva, F. de A. Silva, A. G. Lobo,et, al.,Synthesis gas production by partial oxidation of methane on Pt/Al2O3, Pt/Ce-ZrO_2 and Pt/Ce-ZrO_2/Al2O3 catalysts,Xinhe Bao,Yide Xu(Editors),Natural Gas Conversion VII. Stud. Surf. Sci. Catal.[C], Amsterdam, The Netherlands:Elsevier B.V., 2004:157-162
    [52] A.Bueno-Lopez, K.Krishna, M.Makkee, et, al., Active oxygen from CeO_2 and its role in catalysed soot oxidation[J], Catal. Lett., 2005, 99(3-4):203-205
    [53] K. Z. Li, H. Wang, Y. G. Wei. Selective Oxidation of Carbon Using Iron-Modified Cerium Oxide[J], J. Phys. Chem. C, 2009, 113(34):15288-15297
    [54] G. Balducci, M. S. Islam, J. Kaspar, et, al.,Bulk Reduction and Oxygen Migration in the Ceria-Based Oxides [J], Chem. Mater., 2000, 12(3):677-681
    [55] W. Mista, M. A. Ma?ecka, L. Kepinski. Redox behavior of nanocrystalline Ce1-xLuxO_2-x/2 mixed oxide obtained by microemulsion method[J], Appl. Catal. A, 2009, 368(1):71-78
    [56] H. Vidal, J. Ka?par, M. Pijolat, et, al., Redox behavior of CeO_2–ZrO_2 mixed oxides I. Influence of redox treatments on high surface area catalysts[J], Appl. Catal. B, 2000, 27 (1):49–63
    [57] T. B. Nguyen, J.P. Deloume, V. Perrichon,Study of the redox behaviour of high surface area CeO_2–SnO_2 solid solutions[J], Appl. Catal. A, 2003, 249 (2):273-284
    [58] XD Wu, J. Fan, R. Ran, et, al.,Effect of preparation methods on the structure and redox behavior of platinum–ceria–zirconia catalysts[J], Chem. Eng. J. 2005,109 (1) 133-139
    [59] P. Fang, MF Luo, JQ Lu, et, al.,Studies on the oxidation properties of nanopowderCeO_2-based solid solution catalysts for model soot combustion[J],Thermochimica Acta, 2008,478 (1):45-50
    [60] H. He, H.X. Dai, C.T. Au, Defective structure, oxygen mobility, oxygen storage capacity, and redox properties of RE-based (RE=Ce, Pr) solid solutions[J], Catal. Today, 2004, 90(3):245-254
    [61] K.Krishna, A.Bueno-López, M.Makkee, et, al., Potential rare earth modified CeO_2 catalysts for soot oxidation I. Characterisation and catalytic activity with O_2[J], Appl. Catal. B, 2007,75(3):189-200
    [62] Q. Liang. Xiaodong Wu, D. Weng, et, al., Oxygen activation on Cu/Mn-Ce mixed oxides and the role in diesel soot oxidation[J], Catal. Today, 2008,139(1):113-118.
    [63] R. Di Monte, P. Fornasiero, M. Graziani, et, al., Oxygen storage and catalytic NO removal promoted by CeO_2-containing mixed oxides[J],J. Alloys.Comp., 1998, 275-277(1):877-885
    [64] C. Larese, F. C. Galisteo, M. López Granados, et, al., Effects of the CePO4 on the oxygen storage and release properties of CeO_2 and Ce0.8Zr0.2O_2 solid solution[J],J. Catal., 2004, 226(2):443-456.
    [65] J. McGregor. Solid-State NMR of Oxidation Catalysts[A],S. David Jackson, J. S. J. Hargreaves(Editors).Metal Oxide Catalysis[C],Weinheim:Wiley -VCH Verlag GmbH & Co. KGaA, 2009:195-242
    [66] P. Bera, K. R. Priolkar, P. R. Sarode, et, al.,Structural Investigation of Combustion Synthesized Cu/CeO_2 Catalysts by EXAFS and Other Physical Techniques: Formation of a Ce1-xCuxO_2-δSolid Solution[J], Chem. Mater., 2002, 14(8):3591-3601
    [67] L. Zhu, J.Yu, X. Wang,Oxidation treatment of diesel soot particulate on CexZr1-xO_2[J], J. Hazard. Mater., 2007,140(1):205-210
    [68] C.R Theocharis, G. Kyriacou, M Christophidou,Preparation and Characterization of Nanoporous Ceria Containing Heteroatoms,With and Without a Matrix[J], Adsorption, 2005, 11(Supplement 1):763-767
    [69] Nor Aishah Saidina Amin, Istadi, Selective Conversion of Methane to C2 Hydrocarbons using Carbon Dioxide as an Oxidant over CaO-MnO/CeO_2 Catalyst[A],Hyun-Ku Rhee, In-Sik Nam,Jong Moon Park(Editors.),New Developments and Application in Chemical Reaction Engineering.Stud. Surf. Sci. Catal.159[C],Amsterdam, The Netherlands:Elsevier B.V., 2006:213-216
    [70] H. Kaneko, T. Miura, H. Ishihara, et, al., Reactive ceramics of CeO_2-MOx (M=Mn, Fe,Ni, Cu) for H_2 generation by two-step water splitting using concentrated solar thermal energy[J], Energy, 2007, 32 (5):656-663
    [71] B. Delmon,M. Devillers,Solid-State Reactions[A],G.Ertl, H.Knozinger, F.shuth, et, al(Editors),Handbook of Heterogeneous Catalysis(Second Edition)(M),Weinheim:Wiley-VCH Verlag GmbH & Co. KGaA, 2008:295-318
    [72] C.Louis.Gold Nanoparticles: Recent Advances in CO Oxidation[A],Didier Astruc(Editor),Nanoparticles and Catalysis[M],Weinheim:WILEY-VCH Verlag GmbH, 2008:475-503
    [73] G. R. Rao, P. Fornasiero, J.Kaspar, et, al., NO Decomposition over Partially Reduced Metallized CeO_2 Containing Catalysts [A],A. Frennet,J.-M. Bastin(Editors),Catalysis and Automotive Pollution Control III .Stud. Surf. Sci. Catal.(SSSC-96)[C],Amsterdam, The Netherlands:Elsevier B.V., 1995:631-643
    [74] R. Di Monte, P.Fornasiero, J.Kaspar, et, al.,NO Reduction by CO over Pd/CeO_2-Zr O_2-Al_2O_3 Catalysts[A],N Kruse, A. Frennet, J.M Bastin(Editors), Catalysis and Automotive Pollution Control IV. Stud. Surf. Sci. Catal. (SSSC-116)[C],Amsterdam, The Netherlands:Elsevier B.V., 1998:559-569
    [75] C. Descorme, Y. Madier, D. Duprez, et, al., Surface Mobility of Oxygen Species on Mixed-Oxides Supported Metals[A],A. Corma, F.V. Melo, S. Mendioroz, et, al(Editors),12th International Congress on Catalysis. Stud. Surf. Sci. Catal. (SSSC-130A)[C],Amsterdam, The Netherlands:Elsevier B.V., 2000:347-352
    [76] K. Ito, K. Kishikawa, A. Watajima, et, al., Soot combustion activity of NOx-sorbing Cs-MnOx-CeO_2 catalysts[J],Cataly. Commun., 2007, 8 (12):2176-2180
    [77] Y. G. Wang, Y. Q. Wang, Y. Guo,et, al., Mesoporous metal oxides and mixed oxides nanocasted from mesoporous vinylsilica and their applications in catalysis [A], D.Y. Zhao,S.L. Qiu,Y. Tang, et, al., (Editors), Recent Progress in Mesostructured Materials. Stud. Surf. Sci. Catal. (SSSC-165)[C], Amsterdam, The Netherlands:Elsevier B.V., 2006:361-364
    [78] X. Courtois, N. Bion, P. Marécot, et, al., The Role of Cerium-Based Oxides Used as Oxygen Storage Materials in DeNOx Catalysis [A],P. Granger,V.I. Parvulescu. (Editors),Past and Present in DeNOx Catalysis. Stud. Surf. Sci. Catal. (SSSC-171) [C], Amsterdam, The Netherlands:Elsevier B.V., 2007:235-259
    [79] T. G. Kuznetsova, V. A. Sadykov, E. M. Moroz,et, al., Preparation of Ce-Zr-O composites by a polymerized complex method[A],E. Gaigneaux, D.E. De Vos, P. Grange,et, al., (Editors),Scientific bases for the preparation of hetero catalysts,Stud. Surf. Sci. Catal. (SSSC-143) [C],Amsterdam, The Netherlands:Elsevier B.V., 2002:659-667
    [80] M. Machida, Y. Murata, K. Kishikawa, et, al., On the Reasons for High Activity of CeO_2 Catalyst for Soot[J], Chem Mater., 2008, 20(3):4489-4494
    [81] Paul J. Gellings, Henny J.M. Bouwmeester,Solid state aspects of oxidation catalysis[J], Catal. Today, 2000,58 (1):1-53
    [82] Chen H., Sayari A., Adnot A., et, al., Composition–activity effects of Mn-Ce-O composites on phenol catalytic wet oxidation [J], Appl. Catal. B, 2001, 32(3):195-204
    [83] I.Atribak, A.Bueno-López, A.García-García,Thermally stable ceria–zirconia catalysts for soot oxidation by O_2[J], Cataly. Commun., 2008, 9(2):250-255
    [84] A. Trovarelli, C. de Leitenburg, M. Boaro, et, al.,The utilization of ceria in industrial catalysis[J], Catal. Today, 1999, 50 (2):353-367
    [85] I. Atribak, B Azambre, A Bueno-Lopez, et, al., NOx Adsorption/Desorption Processes Over Ce0.76Zr0.24O_2 and Their Influence on DeSoot Activity: Effect of the Catalyst Calcination Temperature[J], Top. Catal., 2009, 52(13-20):2092-2096
    [86] Oxygen on Oxides. [A], H.H.Kung(Editor), Transition Metal Oxides: Surface Chemistry and Catalysis.Stud. Surf. Sci. Catal. (SSSC-45)[C], Amsterdam, The Netherlands:Elsevier B.V., 1989:110-120
    [87] Q. Liang, X. Wu, D. Weng, et, al., Selective oxidation of soot over Cu doped ceria ceria–zirconia catalysts, Catal. Commun., 2008, 9 (2):202-206
    [88] S.Liu, A.Obuchi, J.Uchisawa, et, al., An exploratory study of diesel soot oxidation with NO_2 and O_2 on supported metal oxide catalysts[J], Appl. Catal. B, 2002, 37 (4):309-319
    [89] X.D. Wu, D.X. Liu,K. Li,et, al., Role of CeO_2–ZrO_2 in diesel soot oxidation and thermal stability of potassium catalyst[J],Cataly. Communication., 2007, 8(8):1274-1278
    [90] W. Shan, N. Ma, J. Yang, et, al.,Catalytic oxidation of soot particulates over MnOx-CeO_2 oxides prepared by complexation-combustion method[J],J. Natural Gas Chem., 2010, 19(1):86-90
    [91] Z.Q. Zou, M. Meng, N. Tsubaki, et, al., Influence of Co or Ce addition on the NOx storage and sulfur-resistance performance of the lean-burn NOx trap catalyst Pt/K/TiO_2-ZrO_2[J], J. Hazard. Mater., 2009,170 (1):118-126
    [92] E. Aneggi, C. de Leitenburg, G. Dolcetti, et, al., Diesel soot combustion activity of ceria promoted with alkali metals[J], Catal. Today, 2008, 136(1): 3-10
    [93] A. Setiabudi, J.L. Chen, G. Mul, et, al., CeO_2 catalysed soot oxidation The role of active oxygen to accelerate the oxidation conversion[J], Appl. Catal. B, 2004, 51(1):9-19
    [94] M. Dhakad, T. Mitshuhashi, S. Rayalu, et, al., Co3O4–CeO_2 mixed oxide-based catalytic materials for diesel soot oxidation[J], Catal. Today, 2008, 132(1-4):188-193
    [95] S. H. Overbury,D. R. Mullins, D. R. Huntley, et, al., Chemisorption and Reaction of Sulfur Dioxide with Oxidized and Reduced Ceria Surfaces[J],J. Phys. Chem. B, 1999, 103(51):11308-11317
    [96] D. Fino, V.Specchia,Open issues in oxidative catalysis for diesel particulate abatement[J], Powder Technol., 2008, 180(1-2):64-73
    [97] J.P.A.Neeft, O.P.V.Pruissen, M.Makkee, et, al., Catalysts for the oxidation of soot from diesel exhaust gases.Ⅱ. Contact between soot and catalyst under practical conditions [J], Appl. Catal. B, 1997, 12(1):21-31
    [98] G.Mul, J.P.A.Neeft, F.Kapteijn, et, al., Soot oxidation catalyzed by a Cu/K/Mo/Cl catalyst: Evaluation of the chemistry and performance of the catalyst[J], Appl. Catal. B, 1995, 6(4):339-352
    [99] J. P. A .Neeft, M.Makkee, J. A.Moulijn. Catalysts for the oxidation of soot from diesel exhaust gases[J], I. An exploratory study. Appl. Catal. B, 1996, 8(1): 57-78
    [100] V. Serra, G.Saracco, C.Badini, et, al., Combustion of carbonaceous materials by Cu-K-V based catalysts:Ⅱ. Reaction mechanism[J], Appl. Catal. B, 1997, 11(3-4): 329-346
    [101] G. Mul, F. Kapteijn, C. Doornkamp, et, al., Transition metal oxide catalyzed carbon black oxidation: a study with 18O_2[J], J. Catal., 1998, 179 (1):258-266
    [102] X. Wu, X. Wu, Q. Liang, et, al., Structure and oxygen storage capacity of Pr/Nd doped CeO_2-ZrO_2 mixed oxides[J], Solid State Sci., 2007, 9(7): 636-643
    [103] P.G.Harrison, I.K.Ball, W.Daniell, et, al., Cobalt catalysts for the oxidation of diesel soot particulate[J], Chem. Eng. J., 2003, 95(1-3): 47-55
    [104] Q. Li, M. Meng, Z. Zou, et, al., Simultaneous soot combustion and nitrogen oxides storage on potassium-promoted hydrotalcite-based CoMgAlO catalysts[J], J. Hazard. Mater., 2009, 161(1): 366–372
    [105] D. Fino, N. Russo, G. Saracco, et, al., The role of suprafacial oxygen in some perovskites for the catalytic combustion of soot[J], J. Catal., 2003, 217(2):367-375
    [106] W. Li, S. Zhao, B. Qi, et, al., Fast catalytic degradation of organic dye with air and MoO3:Ce nanofibers under room condition[J], Appl. Catal. B, 2009, 92(3-4):333-340
    [107] E. Aneggi, J. Llorca, C. de Leitenburg, et, al.,Soot combustion over silver-supported catalysts[J], Appl. Catal. B, 2009, 91(1):489-498
    [108] Z.Q. Zou, M. Meng, Y.Q. Zha, The effect of dopant Cu, Fe, Ni or La on the structures and properties of mesoporous Co-Ce-O compound catalysts[J], J. Alloys Comp., 2009, 470 (1-2):96-106
    [109] C. Descorme, Y. Madier, D. Duprez, Infrared Study of Oxygen Adsorption andActivation on Cerium–Zirconium Mixed Oxides[J],J. Catal. 2000,196 (1):167-173
    [110] A. Z. Abdullah, H. Abdullah, S. Bhatia, Improvement of loose contact diesel soot oxidation by synergic effects between metal oxides in K2O–V2O5/ZSM-5 catalysts[J], Catal. Commun., 2008, 9(6):1196-1220
    [111] J.Andersson, M.Antonsson, L.Eurenius,et, al., Deactivation of diesel oxidation catalysts: Vehicle- and synthetic aging correlations[J], Appl. Catal., B, 2007, 72(1-2): 71-81
    [112] V. E. Genc, F. E. Altay, D.Uner, Testing molten metal oxide catalysts over structured ceramic substrates for diesel soot oxidation[J], Catal. Today, 2005, 105(3-4):537-543
    [113] S. Ifrah, A. Kaddouri, P. Gelin,et, al., On the effect of La–Cr–O– phase composition on diesel soot catalytic combustion. Catal. Commun., 2007, 8(12): 2257-2262
    [114] J. Liu, Z. Zhao, C. Xu, et, al., Simultaneous removal of NOx and diesel soot over nanometer Ln-Na-Cu-O perovskite-like complex oxide catalysts[J], Appl. Catal., B, 2008, 78(1):61-72
    [115] D. Fino, N. Russo, E. Cauda, et, al., La–Li–Cr perovskite catalysts for diesel particulate combustion, Catal. Today, 2006, 114(1):31-39
    [116] D. Fino, P. Fino, G. Saracco, et, al., Studies on kinetics and reactions mechanism of La_(2-x)K_xCu_(1-y)VyO_4 layered perovskites for the combined removal of diesel particulate and NOx, Appl. Catal., B, 2003, 43(3):243-259
    [117] B. Bia?obok, J. Trawczyński, T. Rzadki, et, al., Catalytic combustion of soot over alkali doped SrTiO_3[J], Catal. Today, 2007, 119(1-4):278-285
    [118] J. Liu, Z. Zhao, C. Xu, et, al., The structures of VOx/MOx and alkali-VOx/MOx catalysts and their catalytic performances for soot combustion[J], Catal. Today, 2006,118(3):315-322
    [119] F. A. C. Garcia, J. C. M. Silva, J. L. de Macedo, et, al., Synthesis and characterization of CuO/Nb2O5/MCM-41 for the catalytic oxidation of diesel soot[J], Microporous Mesoporous Mater., 2008, 113(1-3):562-574
    [120] X. Wu, Q. Liang, D. Weng, et, al., The catalytic activity of CuO–CeO_2 mixed oxides for diesel soot oxidation with a NO/O_2 mixture[J], Catal. Commun., 2007, 8(12):2110-2114
    [121] V. S. Braga, F. A. C. Garcia, J. A. Dias, et, al., Copper oxide and niobium pentoxide supported on silica-alumina: Synthesis, characterization, and application on diesel soot oxidation[J], J. Catal., 2007, 247(1):68-77
    [122] G. Mul, W. Zhu, F. Kapteijn, et, al., The effect of NOx and CO on the rate of transition metal oxide catalyzed carbon black oxidation:An exploratory study[J], Appl. Catal., B, 1998, 17(3):205-220
    [123] V. S. Escribano, E. F. López, J.M. Gallardo-Amores, et, al., A study of a ceria–zirconia- supported manganese oxide catalyst for combustion of Diesel soot particles[J], Combust. Flame, 2008, 153(1-2):97-104
    [124] R.López-Fonseca, U.Elizundia, I.Landa, et, al., Kinetic analysis of non-catalytic and Mn-catalysed combustion of diesel soot surrogates[J], Appl. Catal., B, 2005, 61(1-2):150-158
    [125] G. Saracco, N. Russo, M. Ambrogio, et, al., Diesel particulate abatement via catalytic traps[J], Catal. Today, 2000, 60(1-2):33-41
    [126] M. Luo, P. Fang, M. He, et,al., In situ XRD, Raman, and TPR studies of CuO/Al2O3 catalysts for CO oxidation. J. Mol. Catal. A, 2005, 239(1-2):243-248
    [127]王达健,柴希娟,段良和等,纳米锌铈氧化物的紫外光屏与催化性能[J],功能材料,2004,35(增刊):2809-2812
    [128] J. Luo, M. Meng, X. Li, et, al., Mesoporous Co3O4–CeO_2 and Pd/Co3O4–CeO_2 catalysts:Synthesis, characterization and mechanistic study of their catalytic properties for low-temperature CO oxidation[J], J. Catal., 2008, 254(2):310-324
    [129] C. Lamonier, A. Ponchel, A. DHuysser, et, al., Studies of the cerium-metal-oxygen- hydrogen system (metal=Cu, Ni)[J], Catal. Today, 1999,50(2):247-259
    [130] W. Mao, H. Ma, B. Wang, A clean method for solvent-free nitration of toluene over sulfated titania promoted by ceria catalysts[J], J. Hazard Mater., 2009,107(1-3):707-712
    [131] D Chu, IC Lee, RK Pati,. Army Res.2004-http://stinet. dtic.mil/dticrev/PDFs/ada 433548.pdf
    [132]甄开吉,催化作用基础[M],第三版,北京:科学出版社,2004:191-192
    [133] F. Rohr, U. G?bel, P. Kattwinkel, et, al., New insight into interaction of sulfur with diesel NOx storage catalysts[J], Appl. Catal. B, 2007, 70(1-4):189-197
    [134] T.Luo, R.J.Gorte,Characterization of SO_2–poisoned ceria–zirconia mixed oxides[J], Appl. Catal. B, 2004, 53(2):77-85
    [135]邓耀杰,付名利,叶代启等,含铜催化剂对柴油机排气颗粒物的氧化[J],华南理工大学学报(自然科学版),2004,32(12):25-29
    [136]何绪文,於俊杰,康守方等,复合氧化物催化材料上碳颗粒物的催化燃烧[J],环境科学,2005,26(1):28-31
    [137] P. Engstr?m, A. Amberntsson, M. Skoglundh, et, al., Sulphur dioxide interaction with NOx storage catalysts[J], Appl. Catal. B, 1999, 22(4):L241-L248
    [138] G.Corro, J.L.G.Fierro, F. B.Romero, Catalytic performance of Pt-Sn/γ-Al2O3 for diesel soot oxidation[J], Cataly. Commun., 2006, 7(11):867-874
    [139] D. Courcot, E. Abi-Aad, S. Capelle, et, al., Investigation of copper-cerium oxide catalysts in the combustion of diesel soot [A],N Kruse, A. Frennet, J.M Bastin(Editors).,Catalysis and Automotive Pollution Control IV. Stud. Surf. Sci. Catal. (SSSC-116)[C], Amsterdam, The Netherlands:Elsevier B.V., 1998:625-634
    [140]代振宇,李阳,贺振富等,SO_2对三效催化剂载体的毒化作用研究[J],石油学报,2006,22(4):1-5
    [141]楼莉萍,陈英旭,蒋晓原等. CuO负载在TiO_2和CeO_2–TiO_2上对NO+CO反应的催化作用[J],环境科学学报,2003,23(3):301-305
    [142] A. Trovarelli, M. Boaro, E. Rocchini, et, al., Some recent developments in the characterization of ceria-based catalysts[J], J. Alloys. Compoun., 2001, 323-324:584-591
    [143]王恩过,陈诵英,CuO-ZrO_2-CeO_2复合氧化物的催化性能研究[J],中国稀土学报,2001,19(1):17-20
    [144] J.L. Ayastuy, A. Gurbani, M.P. González-Marcos,et, al., Effect of copper loading on copper-ceria catalysts performance in CO selective oxidation for fuel cell applications[J],Inter. J.Hydrogen Energy,2010,35(3):1232-1244
    [145]萨仁图雅,胡瑞生,白雅琴,稀土A-Ce-O催化剂的合成及性能研究[J],中国稀土学报,2006,24(s1):58-61
    [146] L. F.Liotta, A.Macaluso, A.Longo, et, al., Effects of redox treatments on the structural composition of a ceria–zirconia oxide for application in the three-way catalysis[J], Appl. Catal. A, 2003, 240(1-2):295-307
    [147] W.Liu, M.Flytzani-Stephanopoulos, Transition metal-promoted oxidation catalysis by fluorite oxides: A study of CO oxidation over Cu-CeO_2 [J], Chem. Eng. J., 1996, 64(2):283-294
    [148]辛勤,梁长海,固体催化剂的研究方法(第八章)红外光谱法(中)[J],石油化工,2001,30(2):157-167
    [149] A.Hess, E. Kemnitz. Surface acidity and catalytic behavior of modified zirconium and titanium dioxides[J], Appl. Catal. A, 1997, 149(2):373-389
    [150] H.He, H.X.Dai, K.W.Wong, et, al., RE0.6Zr0.4-xYxO_2 (RE=Ce, Pr; x=0, 0.05) solid solutions: an investigation on defective structure, oxygen mobility, oxygen storage capacity, and redox properties[J], Appl. Catal. A, 2003, 251(1):61-74
    [151] L.Qiu, F.Liu, L.Z.Zhao, et, al., Comparative XPS study of surface reduction for nanocrystalline and microcrystalline ceria powder[J], Appl. Surf. Sci., 2006, 252(14):4931-4935
    [152] A. Pfau, K.D. Schierbaum, The electronic structure of stoichiometric and reduced CeO_2 surfaces: an XPS, UPS and HREELS study[J],Surf. Sci., 1994, 321(1-2):71-80
    [153] J.F. Xu, W. Ji, Z.X. Shen, et, al., Preparation and Characterization of CuO Nanocrystals[J],J. Solid State Chemistry, 1999, 147(2):516-519
    [154] E.J. Romano, K.H. Schulz. A XPS investigation of SO_2 adsorption on ceria-zirconia mixed-metal oxides[J], Appl. Surf. Sci., 2005, 246:262-270
    [155]朱永法,谭瑞琴,冯杰等,LaCoO3模型催化剂SO_2中毒机理的研究[J],高等学校化学学报,2000,21(11):1733-1737
    [156] A. J. Dyakonov, C. A. Little. Abatement of CO from relatively simple and complex mixtures III. Oxidation on Pd–CeO_2/C and CeO_2/C catalysts[J], Appl. Catal. B, 2006, 67(1-2):52-59
    [157] M.L. Pisarello, V. Milt, M.A. Peralta, et, al.,Simultaneous removal of soot and nitrogen oxides from diesel engine exhausts[J], Catal. Today, 2002, 75(1-4): 465-470
    [158] M. S. Gross, M. A. Ulla, C. A. Querini.Catalytic oxidation of diesel soot: New characterization and kinetic evidence related to the reaction mechanism on K/CeO_2 catalyst[J], Appl. Catal. A, 2009,360(1):81-88
    [159] X. L.Tang, B. C.Zhang, Y.Li, et, al., Carbon monoxide oxidation over CuO/CeO_2 catalysts [J], Catal. Today, 2004, 93-95 :191-198
    [160]张媛,李增喜,闻学兵等,柠檬酸络合法制备NiO-CeO_2-TiO_2复合氧化物及其在甲烷部分氧化反应中的应用[J],催化学报,2005,26(12):1059-1066
    [161]翟彦青,刘源,王丽,柠檬酸络合法制备铈锆氧化物固溶体及其表征[J],内蒙古工业大学学报(自然科学版),2001,20(3):161-165
    [162]乐向晖,张栖,付名利等,SO_2对La0.8K0.2Cu0.05Mn0.95O3钙钛矿催化剂氧化碳烟的影响.无机化学学报,2009,25 (7):1170-1176
    [163]李晓雷, La2NiO4系类钙钛矿薄膜的溶胶-凝胶法制备及氧敏特性的研究[D],天津:天津大学博士生学位论文,2002
    [164]蒋晓原,袁骏,CuO/CeO_2催化剂的催化氧化性能及其表征[J],中国稀土学报,2002,20:111-116
    [165] G. Adachi, N. Imanaka, The binary rare earth oxides[J], Chem. Review, 1998, 98:1479-1483
    [166] K. Krishna, A. Bueno-López, M. Makkee, et, al., Potential rare-earth modified CeO_24931-4935
    [152] A. Pfau, K.D. Schierbaum, The electronic structure of stoichiometric and reduced CeO_2 surfaces: an XPS, UPS and HREELS study[J],Surf. Sci., 1994, 321(1-2):71-80
    [153] J.F. Xu, W. Ji, Z.X. Shen, et, al., Preparation and Characterization of CuO Nanocrystals[J],J. Solid State Chemistry, 1999, 147(2):516-519
    [154] E.J. Romano, K.H. Schulz. A XPS investigation of SO_2 adsorption on ceria-zirconia mixed-metal oxides[J], Appl. Surf. Sci., 2005, 246:262-270
    [155]朱永法,谭瑞琴,冯杰等,LaCoO_3模型催化剂SO_2中毒机理的研究[J],高等学校化学学报,2000,21(11):1733-1737
    [156] A. J. Dyakonov, C. A. Little. Abatement of CO from relatively simple and complex mixtures III. Oxidation on Pd–CeO_2/C and CeO_2/C catalysts[J], Appl. Catal. B, 2006, 67(1-2):52-59
    [157] M.L. Pisarello, V. Milt, M.A. Peralta, et, al.,Simultaneous removal of soot and nitrogen oxides from diesel engine exhausts[J], Catal. Today, 2002, 75(1-4): 465-470
    [158] M. S. Gross, M. A. Ulla, C. A. Querini.Catalytic oxidation of diesel soot: New characterization and kinetic evidence related to the reaction mechanism on K/CeO_2 catalyst[J], Appl. Catal. A, 2009,360(1):81-88
    [159] X. L.Tang, B. C.Zhang, Y.Li, et, al., Carbon monoxide oxidation over CuO/CeO_2 catalysts [J], Catal. Today, 2004, 93-95 :191-198
    [160]张媛,李增喜,闻学兵等,柠檬酸络合法制备NiO-CeO_2-TiO_2复合氧化物及其在甲烷部分氧化反应中的应用[J],催化学报,2005,26(12):1059-1066
    [161]翟彦青,刘源,王丽,柠檬酸络合法制备铈锆氧化物固溶体及其表征[J],内蒙古工业大学学报(自然科学版),2001,20(3):161-165
    [162]乐向晖,张栖,付名利等,SO_2对La0.8K0.2Cu0.05Mn0.95O3钙钛矿催化剂氧化碳烟的影响.无机化学学报,2009,25 (7):1170-1176
    [163]李晓雷, La_2NiO_4系类钙钛矿薄膜的溶胶-凝胶法制备及氧敏特性的研究[D],天津:天津大学博士生学位论文,2002
    [164]蒋晓原,袁骏,CuO/CeO_2催化剂的催化氧化性能及其表征[J],中国稀土学报,2002,20:111-116
    [165] G. Adachi, N. Imanaka, The binary rare earth oxides[J], Chem. Review, 1998, 98:1479-1483
    [166] K. Krishna, A. Bueno-López, M. Makkee, et, al., Potential rare-earth modified CeO_2

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700