金属多氧酸盐离子化合物的设计合成和催化应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
烯烃的环氧化反应是合成环氧化物的重要途径,而环氧化合物是重要的化工合成中间体,因此研究烯烃的环氧化反应具有很重要的理论和实践意义。由于室温离子液体具有特殊的物化性质,被认为是继水和超临界二氧化碳之后又一大类在现代有机催化合成中具有良好应用前景的反应介质和新型绿色溶剂系列。而金属多氧酸盐由于具有结构确定、溶于极性溶剂、可参与均相或者非均相反应、同时具有酸性和氧化性等一系列优点,广泛应用在烯烃的环氧化反应中。
     首先,为了深入了解离子液体的物化性质,主要通过核磁共振技术(NMR)、红外光谱(FT-IR)以及紫外光谱(UV-vis)三种方法表征了一系列1-丁基-3-甲基咪唑类离子液体,考察了不同的阴离子与咪唑环上两个氮原子之间的H2质子间氢键强度的区别,以期理解一系列离子液体分子内氢键的形成规律和作用强度。同时,利用离子液体“可设计”的特殊性质,将钨酸根阴离子引入烷基咪唑类离子液体的结构中。首次合成得到了钨酸根阴离子功能化的新颖离子液体,通过IR、NMR和元素分析对其结构进行了表征确认,并对其在不同温度下的电导率和粘度的变化,以及室温下的电化学性质进行了详细的表征。主要探讨了分子内静电相互作用、氢键、分子间范德华力以及阴阳离子的结构对于离子液体物化性质的影响,从而得到离子液体的结构与性质间的关系。
     其次,设计并合成了基于同多阴离子的质子化咪唑离子液体,将其应用于烯烃的环氧化反应,发现质子化十二烷基咪唑的过氧钨酸盐可以作为一种反应控制的相分离催化剂催化环氧化反应。利用催化剂在反应过程中溶解,反应结束后析出的特点,实现反应后催化剂的自分离,一定程度上解决了均相催化剂难分离的缺陷。
     然后,利用磁分离具有简单易分离的特性以及均相催化反应始终存在着催化剂不易分离和循环效果不好的缺点。合成了磁性纳米颗粒负载的过氧酸盐催化剂,通过活性物种分子中的硅羟基与载体表面硅羟基间的氢键作用固定活性过氧钨酸根,得到的催化剂在进行了详细的结构表征后,用于催化环氧化反应。并且与传统的共价键负载方式得到的催化剂进行了活性和稳定性的比较。
     同时,基于磺酸基与硅羟基间可以形成氢键的特性,我们将杂多阴离子(PW110397-)通过磺酸内盐与硅羟基间的氢键作用固定到二氧化硅包覆的四氧化三铁磁性载体表面合成了另一类磁性催化剂。同样将该磁性催化剂用于烯烃的催化环氧化反应,对该催化剂在无溶剂及有机溶剂中的反应过程进行了深入的研究。总的来说,两类不同类型的磁性催化剂结合了均相催化剂高活性的优点以及非均相催化剂易分离的特性。
     在对基于磺酸基的负载型催化剂进行活性测试的过程中,我们发现:即使在冰浴反应的条件下,非负载的离子液体内盐-缺位多氧酸盐(Na7PW11O39)的复合物(DSPIM-POM)表现出优异的环氧化活性。于是对复合物DSPIM-POM在冰浴条件下催化的环氧化反应进行了详细的研究,从复合物中两组分的摩尔比、反应物与催化剂的投料比以及不同的反应温度等多个角度对该体系进行了详细的探讨。
Olefin epoxidation is an important approach to the synthesis of epoxide, which is remarkable chimical synthesis intermediate and thus plays an important role in scientific and potential applications. Due to the wonderful physicochemical properties, Ionic Liquid (IL) was considerd as one of the most promising reaction medium and green solvent series besides water and supercritical carbon dioxide. Meanwhile, polyoxometalate was applied in olefin epoxidation extensively because of its good properties as well-defined structure, good solubility in polar solvents, tunable acidity and redox.
     First, to know more about ILs'physicochemical properties, NMR, FT-IR and UV-vis were used to characterize a series of1-butyl-3-methylimidazolium ILs. The hydrogen-bonding interaction between imidazolium cations and different anions has been investigated to understand the hydrogen-bonding formation and strength in imidazolium IL molecules. At the same time, novel tungstate-based room temperature ILs were obtained as ILs were "designable" in both cations and anions. And then the physicochemical properties of these ILs, including the temperature dependency of the dynamic ionic conductivity, viscosity and the electrochemical stability were determined and analyzed according to the nature of the cations and/or anions in detail, which were also compared with those of the conventional ILs. This part mainly discussed the electrostatic interaction, the hydrogen bonding, and van der Waals interactions in these ILs and attempted to identify the structure-property relationships, including the effect of both cations and anions.
     Second, protic alkylimidazolium polyoxometalates were synthesized and characterized by the methods of NMR, IR and TGA etc. Then, these salts were employed as catalysts for the epoxidation of cyclooctene in different media. The novel protic N-dodecylimidazolium peroxotungstate [HDIm]2[{W=O(O2)2}2(μ-O)] was found to be a room temperature liquid molten salt (IL) and the most effective catalyst for the epoxidation of cyclooctene. On the basis of experimental observation, an efficient reaction-induced phase-separation catalyst system has been developed:the reaction system can switch from tri-phase to emulsion and then to biphase and finally to all the catalyst self-precipitating at the end of the reaction, which made the recovery and reuse of the present catalyst very convenient.
     Then, to overcome the disadvantages of hard separation and poor recyclability of homogeneous catalysis as well as the obvious advantages of magnetic separation compared to conventional separation methods. Magnetically separable catalyst has been prepared and the catalytically active IL-type peroxotungstate is expected to be immobilized by hydrogen-bonding. It was also employed for the epoxidation of olefins with hydrogen peroxide. The activity of both activity and stability of hydrogen-bonding catalyst were also compard with the conventional covalent-bonding catalyst.
     Since there definitely exist hydrogen-bonding interactions between the silanol groups of the support and the sulfonate groups, lacunary-type anion (PW11O397-) was successfully immobilized by hydrogen bonding between the sulfonate anion and silanol group on the surface of the core-shell Fe3O4/SiO2MNPs. And the catalytic potential was evaluated in the epoxidation of a variety of olefins as well as allylic alcohols. The catalytic epoxidation was investigated under the condition of no solvent and in organic solvent, respectively. After all, we expect that both magnetically separable catalysts would combine the advantages of high activity of homogeneous catalysts and easy separation of heterogeneous catalysts.
     Last but not the least, we found another extremely efficient catalyst:sulfate zwittion-POM (Na7PW11O39) composite. The catalytic epoxidation by this novel hybrid material in ice bath was investigated in detail. It was found that the molar ratio of sulfate zwittion to POM (Na7PW11O39) influenced the activity significantly, and reaction conditions like the molar ratios among substrate, oxygen source and catalyst, reaction temperatures have also been optimized to obtain high yield toward epoxides.
引文
[1]H. Olivier-Bourbigou, L. Magna, D. Morvan. Ionic liquids and catalysis:Recent progress from knowledge to applications. Appl. Catal.,A 2010,373(1-2):1-56.
    [2]J. P. Hallett, T. Welton. Room-Temperature Ionic Liquids:Solvents for Synthesis and Catalysis.2. Chem. Rev.2011,111:3508-3576.
    [3]P. G. Jessop. Searching for green solvents. Green Chem.2011,13(6):1391-1398.
    [4]V. I. Parvulescu, C. Hardacre. Catalysis in Ionic Liquids. Chem. Rev.2007,107(6): 2615-2665.
    [5]J. Dupont, J. Spencer. On the Noninnocent Nature of 1,3-Dialkylimidazolium Ionic Liquids. Angew. Chem., Int. Ed.2004,43(40):5296-5297.
    [6]R. Giernoth, D. Bankmann, N. Schlorer. High performance NMR in ionic liquids. Green Chem.2005,7(5):279-282.
    [7]A. G. Avent, P. A. Chaloner, M. P. Day, K. R. Seddon, T. Wetlton. Evidence for hydrogen bonding in solutions of 1-ethyl-3-methylimidazolium halides, and its implications for room-temperature halogenoaluminate(III) ionic liquids. J. Chem. Soc., Dalton Trans.1994, 1994(23):3405-3413.
    [8]M. Shukla, N. Srivastava, S. Saha. Theoretical and spectroscopic studies of 1-butyl-3-methylimidazolium iodide room temperature ionic liquid:Its differences with chloride and bromide derivatives. J. Mol. Struct.2010,975(1-3):349-356.
    [9]C. Reichardt. Polarity of ionic liquids determined empirically by means of solvatochromic pyridinium N-phenolate betaine dyes. Green Chem.2005,7(5):339-351.
    [10]B. Gorodetsky. T. Ramnial, N. R. Branda, J. A. C. Clyburne. Electrochemical reduction of an imidazolium cation:a convenient preparation of imidazol-2-ylidenes and their observation in an ionic liquid. Chem. Commun.2004,17:1972-1973.
    [11]R. A. Olofson, W. R. Thompson, J. S. Michelman. Heterocyclic Nitrogen Ylides. J. Am. Chem. Soc.1964,86(9):1865-1866.
    [12]S. T. Lin, M. F. Ding, C. W. Chang, S. S. Lue. Nuclear magnetic resonance spectroscopic study on ionic liquids of 1-alkyl-3-methylimidazolium salts. Tetrahedron,2004, 60(42):9441-9446.
    [13]R. Giernoth, D. Bankmann. Transition-metal free ring deuteration of imidazolium ionic liquid cations. Tetrahedron Lett.2006,47(25):4293-4296.
    [14]A. Durazo, M. M. Abu-Omar. Deuterium NMR spectroscopy is a versatile and economical tool for monitoring reaction kinetics in ionic liquids. Chem. Commun.2002,1: 66-67.
    [15]A. D. Headley, N. M. Jackson. The effect of the anion on the chemical shifts of the aromatic hydrogen atoms of liquid 1-butyl-3-methylimidazolium salts. J. Phys. Org. Chem. 2002,15:52-55.
    [16]S. T. Handy, M. Okello. The 2-Position of Imidazolium Ionic Liquids:Substitution and Exchange. J. Org. Chem.2005,70(5):1915-1918.
    [17]C. Hardacre, J. D. Holbrey, S. E. J. McMath. A highly efficient synthetic procedure for deuteriating imidazoles and imidazolium salts. Chem. Commun.2001,4:367-368.
    [18]L. Cammarata, S. G. Kazarian, P. A. Salter, T. Welton. Molecular states of water in room temperature ionic liquids. Phys. Chem. Chem. Phys.2001,3:5192-5200.
    [19]C. Betti, D. Landini, A. Maia. Reactivity of anionic nucleophiles in ionic liquids and molecular solvents. Tetrahedron,2008,64(8):1689-1695.
    [20]R. Lungwitz, S. Spange. A hydrogen bond accepting (HBA) scale for anions, including room temperature ionic liquids. New J. Chem.2008,32(3):392-394.
    [21]K. M. Dieter, C. J. Dymek, N. E. Heimer, J. W. Rovang, J. S. Wilkes. Ionic structure and interactions in 1-methyl-3-ethylimidazolium chloride-AlCl3 molten salts. J. Am. Chem. Soc. 1988,110(9):2722-2726.
    [22]K. Fumino, A. Wulf, R. Ludwig. The potential role of hydrogen bonding in aprotic and protic ionic liquids. Phys. Chem. Chem. Phys.2009,11(39):8790-8794.
    [23]A. Wulf, K. Fumino, R. Ludwig. Spectroscopic Evidence for an Enhanced Anion-Cation Interaction from Hydrogen Bonding in Pure Imidazolium Ionic Liquids. Angew. Chem., Int. Ed.2010,49(2):449-453.
    [24]N. R. Dhumal, H. J. Kim, J. Kiefer. Molecular Interactions in 1-Ethyl-3-methylimidazolium Acetate Ion Pair:A Density Functional Study. J. Phys. Chem. A 2009,113(38):10397-10404.
    [25]S. Tsuzuki, A. A. Arai, K. Nishikawa. Conformational Analysis of 1-Butyl-3-methylimidazolium by CCSD(T) Level Ab Initio Calculations:Effects of Neighboring Anions. J. Phys. Chem. B 2008,112(26):7739-77'47.
    [26]P. B. Hitchcock, K. R. Seddon, T. Welton. Hydrogen-bond acceptor abilities of tetrachlorometalate(II) complexes in ionic liquids. J. Chem. Soc., Dalton Trans.1993,17: 2639-2643.
    [27]P. A. Z. Suarez, S. Einloft, J. E. L. Dullius, R. F. de Souza, J. Dupont. Synthesis and physical-chemical properties of ionic liquids based on 1-n-butyl-3-methylimidazolium cation. J. Chim. Phys.1998,95:1626-1639.
    [28]J. S. Wilkes, M. J. Zaworotko. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J. Chem. Soc, Chem. Commun.1992, (13):965-967.
    [29]J. Fuller, R. T. Carlin, H. C. De Long, D. Haworth. Structure of 1-ethyl-3-methylimidazoliurn hexafluorophosphate:model for room temperature molten salts. J. Chem. Soc, Chem. Commun.1994, (3):299-300.
    [30]H. S. Schrekker, D.0. Silva, M. A. Gelesky, M. P. Stracke, C. M. L. Schrekker, R. S. Goncalves, J. Dupont. Preparation, cation-anion interactions and physicochemical properties of ether-functionalized imidazolium ionic liquids. J. Braz. Chem. Soc.2008,19(3):426-433.
    [31]A. Elaiwi, P. B. Hitchcock, K. R. Seddon, N. Srinivasan, Y. M. Tan, T. Welton, J. A. Zora. Hydrogen bonding in imidazolium salts and its implications for ambient-temperature halogenoaluminate(III) ionic liquids. J. Chem. Soc., Dalton Trans.1995, (21):3467-3472.
    [32]P. Walden. Uber die Molekulargrosse und elektrische Leitfahigkeit einiger geschmolzener Salze. Izv. Imp. Akad. Nauk (Bull. Acad. Imp. Sci. St. Petersburg) 1914,8, 405-422; Chemisches Zentralblatt,1914,1800-1802.
    [33]L. L. Liu, C. C. Chen, X. F. Hu, T. Mohamood, W. H. Ma, J. Lin, J. C. Zhao. A role of ionic liquid as an activator for efficient olefin epoxidation catalyzed by polyoxometalate. New J. Chem.2008,32(2):283-289.
    [34]C. Chiappe, D. Pieraccini. Ionic liquids:solvent properties and organic reactivity. J. Phys. Org. Chem.2005,18(4):275-297.
    [35]T. Welton. Ionic liquids in catalysis. Coord. Chem. Rev.2004,248(21-24):2459-2477.
    [36]S.-g. Lee. Functionalized imidazolium salts for task-specific ionic liquids and their applications. Chem. Commun.2006,42(10):1049-1063.
    [37]R. Sebesta, I. Kmentova, S. Toma. Catalysts with ionic tag and their use in ionic liquids. Green Chem.2008,10(5):484-496.
    [38]D. R. MacFarlane, J. M. Pringle, K. M. Johansson, S. A. Forsyth, M. Forsyth. Lewis base ionic liquids. Chem. Commun.2006,42(18):1905-1917.
    [39]Y. Hu, Y. Y. Yu, Z. S. Hou, H. Li, X. G. Zhao, B. Feng. Biphasic hydrogenation of olefins by functionalized ionic liquid-stabilized palladium nanoparticles. Adv. Synth. Catal. 2008,350(13):2077-2085.
    [40]Y. Leng, J. Wang, D. R. Zhu, X. Q. Ren, H. Q. Ge, L. Shen. Heteropolyanion-based ionic liquids:reaction-induced self-separation catalysts for esterification. Angew. Chem., Int. Ed.2008,48(1):168-171.
    [41]A. C. Cole, J. L. Jensen, I. Ntai, K. L. T Tran, K. J. Weaver, D. C. Forbes, J. H. Davis. Novel br(?)nsted acidic ionic liquids and their use as dual solvent-catalysts. J. Am. Chem. Soc. 2002,124(21):5962-5963.
    [42]A. Riisager, R. Fehrmann, S. Flicker, R. van Hal, M. Haumann, P. Wasserscheid. Very Stable and Highly Regioselective Supported Ionic-Liquid-Phase (SILP) Catalysis: Continuous-Flow Fixed-Bed Hydroformylation of Propene. Angew. Chem., Int. Ed.2005, 44(5):815-819.
    [43]H. Hagiwara, N. Okunaka, T. Hoshi, T. Suzuki. Immobilization of Grubbs Catalyst as Supported Ionic Liquid Catalyst (Ru-SILC). Synlett 2008, (12):1813-1816.
    [44]H. Hagiwara, Y. Sugawara, K. Isobe, T. Hoshi, T. Suzuki. Immobilization of Pd(OAc)2 in Ionic Liquid on Silica:Application to Sustainable Mizoroki-Heck Reaction. Org. Lett.2004, 6(4):2325-2328.
    [45]S. Breitenlechner, M. Fleck, T. E. Muller, A. Suppan. Solid catalysts on the basis of supported ionic liquids and their use in hydroamination reactions. J. Mol. Catal. A:Chem. 2004,214(1):175-179.
    [46]S. Werner, N. Szesni, R. W. Fischer, M. Haumann, P. Wasserscheid. Homogeneous ruthenium-based water-gas shift catalysts via supported ionic liquid phase (SILP) technology at low temperature and ambient pressure. Phys. Chem. Chem. Phys.2009,11(46): 10817-10819.
    [47]B.-H. Jun, J.-H. Kim, J. Park, H. Kang, S.-H. Lee, Y. S. Lee. Dihydroxylation of Olefins Catalyzed by Polystyrene-sg-imidazolium Resin-Supported Osmium Complex. Synlett 2008, (15):2313-2316.
    [48]M. Ruta, I. Yuranov, P. J. Dyson, G.Laurenczy, L. Kiwi-Minsker. Structured fiber supports for ionic liquid-phase catalysis used in gas-phase continuous hydrogenation. J. Catal. 2007,247(2):269-276.
    [49]S. Shylesh, V. Schunemann, W. R. Thiel. Magnetically Separable Nanocatalysts:Bridges between Homogeneous and Heterogeneous Catalysis. Angew. Chem., Int. Ed.2010,49(20): 3428-3459.
    [50]R. M. Martin-Aranda, J. Cejka. Recent Advances in Catalysis Over Mesoporous Molecular Sieves. Top. Catal.2010,53(3):141-153.
    [51]C. D. Huo, T. H. Chan. A novel liquid-phase strategy for organic synthesis using organic ions as soluble supports. Chem. Soc. Rev.2010,39(18):2977-3006.
    [52]M. J. Park, S.-g. Lee. Palladium Catalysts Supported onto the Ionic Liquid-Functionalized Carbon Nanotubes for Carbon-Carbon Coupling. Bull. Korean Chem Soc.2007,28(11):1925-1926.
    [53]V. Sans, F. Gelat, N. Karbass, M. I. Burguete, E. Garcia-Verdugo, S. V. Luis. Polymer Cocktail:A Multitask Supported Ionic Liquid-Like Species to Facilitate Multiple and Consecutive C-C Coupling Reactions. Adv. Synth. Catal.2010,352(17):3013-3021.
    [54]K. Yamaguchi, C. Yoshida, S. Uchida, N. Mizuno. Peroxotungstate immobilized on ionic liquid-modified silica as a heterogeneous epoxidation catalyst with hydrogen peroxide. J. Am. Chem. Soc.2005,127(2):530-531.
    [55]M. T. Pope, A. Muller. Polyoxometalate Chemistry:From Topology via Self-Assembly to Applications. Kluwer:Dordrecht,2001.
    [56]T. Yamase, M. T. Pope. Polyoxometalate Chemistry for Nano-Composite Design. Kluwer:Dordrecht,2002.
    [57]C. L. Hill, C. M. Prosser-McCartha. Homogeneous catalysis by transition metal oxygen anion clusters. Coord. Chem. Rev.1995,143:407-455.
    [58]J. Hu, R. C. Burns. Homogeneous-phase catalytic H2O2 oxidation of isobutyraldehyde using Keggin, Dawson and transition metalsubstituted lacunary heteropolyanions. J. Mol. Catal. A:Chem.2002,184(1-2):451-464.
    [59]N. Mizuno, K. Yamaguchi, K. Kamata. Epoxidation of olefins with hydrogen peroxide catalyzed by polyoxometalates. Coord. Chem. Rev.2005,249(17-18):1944-1956.
    [60]M. T. Pope, A. Muller. Polyoxometalate chemistry:An old field with new dimensions in several disciplines. Angew. Chem., Int. Ed.1991,30(1):34-48.
    [61]I. V. Kozhevnikov. Catalysis by Polyoxometalates. John Wiley & Sons LTD:England, 2002.
    [62]B. Dawson. The structure of the 9(18)-heteropoly anion in potassium 9(18)-tungstophosphate, K6(P2W18O62)14H2O. Acta Cryst.1953,6(2):113-126.
    [63]I. V. Kozhevnikov. Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions. Chem. Rev.1998,98(1):171-198.
    [64]P. Y. Gayraud, I. H. Stewart, S. B. D.-A. Hamid, N. Essayem, E. G. Derouane, J. C. Vedrine. Performance of potassium 12-tungstophosphoric salts as catalysts for isobutane/butene alkylation in subcritical and supercritical phases. Catal. Today 2000,63(2-4): 223-228.
    [65]T. Blasco, A. Corma, A. Martinez, P. Martinez-Escolano. Supported heteropolyacid (HPW) catalysts for the continuous alkylation of isobutane with 2-butene:the benefit of using MCM-41 with larger pore diameters. J. Catal.1998,177(2):306-313.
    [66]A. Corma, A. Martinez, C. Martinez. Acidic Cs+, NH4+, and K+ salts of 12-tungstophosphoric acid as solid catalysts for isobutane/2-butene alkylation. J. Catal.1996, 164(2):422-432.
    [67]K. Na, T. Okuhara, M. Misono. Catalysis by heteropoly compounds. J. Catal.1997, 170(1):96-107.
    [68]Y. Liu, K. Na, M. Misono. Skeletal isomerization of n-pentane over Pt-promoted cesium hydrogen salts of 12-tungstophosphoric acid. J. Mol. Catal. A:Chem.1999,141(1-3): 145-153.
    [69]C. Travers, N. Essayem, M. Delage, S. Quelen. Heteropolyanions based catalysts for paraffins isomerization. Catal. Today 2001,65(2-4):355-361.
    [70]M. Misono, N. Nojiri. Recent progress in catalytic technology in japan. Appl. Catal. 1990,64:1-30.
    [71]R. D. Hetterley, E. F. Kozhevnikova, I. V. Kozhevnikov. Multifunctional atalysis by Pd-polyoxometalate:one-step conversion of acetone to methyl isobutyl ketone. Chem. Commun.2006,42(7):782-784.
    [72]C. De Castro, J. Primo, A. Corma. Heteropolyacids and large-pore zeolites as catalysts in acylation reactions using α,β-unsaturated organic acids as acylating agents. J. Mol. Catal. A: Chem.1998,134(1-3):215-222.
    [73]Y. Izumi, K. Matsuo, K. Urabe. Efficient homogeneous acid catalysis of heteropoly acid and its characterization through ether cleavage reactions. J. Mol. Catal.1983,18:299-314.
    [74]Y. Kamiya, T. Okuhara, M. Misono, A. Miyaji, K. Tsuji, T. Nakajo. Catalytic chemistry of supported heteropolyacids and their applications as solid acids to industrial processes. Catal. Surv. Asia.2008,12(2):101-113.
    [75]Y. Kikukawa, S. Yamaguchi, Y. Nakagawa, K. Uehara, S. Uchida, K. Yamaguchi, N. Mizuno. Synthesis of a dialuminum-substituted silicotungstate and the diastereoselective cyclization of citronellal derivatives. J. Am. Chem. Soc.2008,130(47):15872-15878.
    [76]B. Smarsly, H. Kaper. Liquid inorganic-organic nanocomposites:novel electrolytes and ferrofluids. Angew. Chem., Int. Ed.2005,44(25):3809-3811.
    [77]A. B. Bourlinos, R. Herrera, N. Chalkias, D. D. Jiang, Q. Zhang, L. A. Archer, E. P. Giannelis. Surface-functionalized nanoparticles with liquid-like behavior. Adv. Mater.2005, 17(2):234-237.
    [78]P. G. Rickert, M. R. Antonio, M. A. Firestone, K.-A. Kubatko, T. Szreder, J. F. Wishart, M. L. Dietz. Tetraalkylphosphonium polyoxometalates:electroactive, "task-specific" ionic liquids. Dalton Trans.2007,36(5):529-531.
    [79]C. Aubry, G. Chottard, N. Platzer, J.-M. Bregeault, R. Thouvenot, F. Chauveau, C. Huet, H. Ledon. Reinvestigation of epoxidation using tungsten-based precursors and hydrogen peroxide in a biphase medium. Inorg. Chem.1991,30:4409-4415.
    [80]L. Salles, C. Aubry, R. Thouvenot, F. Robert, C. Doremieux-Morin, G. Chottard, H. Ledon, Y. Jeannin, J.-M. Bregeault.31P and 183W NMR spectroscopic evidence for novel peroxo species in the "H3[PW12O40]·yH2O/H2O2" system. Synthesis and X-ray structure of tetrabutylammonium (μ-Hydrogen phosphato) bis(μ-peroxo) bis(oxoperoxotungstate) (2-):a catalyst of olefin epoxidation in a biphase medium. Inorg. Chem.1994,33:871-878.
    [81]D. C. Duncan, R. C. Chambers, E. Hecht, C. L. Hill. Mechanism and dynamics in the H3[PW1204o]-catalyzed selective epoxidation of terminal olefins by H2O2. Formation, reactivity, and stability of{PO4[WO(O2)2]4}3-. J. Am. Chem. Soc.1995,117:681-691.
    [82]Y. Ding, Q. Gao, G. X. Li, H. P. Zhang, J. M. Wang, L. Yan, J. S. Suo. Selective epoxidation of cyclohexene to cyclohexene oxide catalyzed by Keggin-type heteropoly compounds using anhydrous urea-hydrogen peroxide as oxidizing reagent and acetonitrile as the solvent. J. Mol. Catal. A:Chem.2004,218(2):161-170.
    [83]M. Hashimoto, K. Itoh, K. Y. Lee, M. Misono. A 31P-NMR study of peroxo species formed during oxidation of cyclohexene with hydrogen peroxide in tri-n-butylphosphate catalyzed by heteropolyacids. Top. Catal.2001,15(2-4):265-271.
    [84]S. J. Zhang, G. D. Zhao, S. Gao, Z. W. Xi, J. Xu. Secondary alcohols oxidation with hydrogen peroxide catalyzed by [n-C16H33N(CH3)3]3PW12040:Transform-and-retransform process between catalytic precursor and catalytic activity species. J. Mol. Catal. A. Chem. 2008,289(1-2):22-27.
    [85]C. Venturello, E. Alneri, M. Ricci. A new, effective catalytic system for epoxidation of olefins by hydrogen peroxide under phase-transfer conditions. J. Org. Chem.1983,48(21): 3831-3833.
    [86]C. Venturello, R. D'Aloisio, Quaternary ammonium tetrakis(diperoxotungsto)phosphates(3-) as a new class of catalysts for efficient alkene epoxidation with hydrogen peroxide. J. Org. Chem.1988,53(7):1553-1560.
    [87]Y. Ishii, K. Yamawaki, T. Ura, H. Yamada, T. Yoshida, M. Ogawa. Hydrogen peroxide oxidation catalyzed by heteropoly acids combined with cetylpyridinium chloride:epoxidation of olefins and allylic alcohols, ketonization of alcohols and diols, and oxidative cleavage of 1,2-diols and olefins. J. Org. Chem.1988,53(15):3587-3593.
    [88]Y. Ishii, K. Yamawaki, T. Yoshida, T. Ura, M. Ogawa. Oxidation of olefins and alcohols by peroxo-molybdenum complex derived from tris(cetylpyridinium) 12-molybdophosphate and hydrogen peroxide. J. Org. Chem.1987,52(9):1868-1870.
    [89]S. Sakaguchi, Y. Nishiyama, Y. Ishii. Selective oxidation of monoterpenes with hydrogen peroxide catalyzed by peroxotungstophosphate (PCWP). J. Org. Chem.1996, 61(16):5307-5311.
    [90]T. Oguchi, Y. Sakata, N. Takeuchi, K. Kaneda, Y. Ishii, M. Ogawa. Epoxidation of α,β-unsaturated carboxylic-acids with hydrogen-peroxide by heteropoly acids. Chem. Lett. 1989,18(11):2053-2056.
    [91]S. Sakaue, Y. Sakata, Y. Nishiyama, Y. Ishii. Oxidation of aliphatic-amines and aromatic-amines with hydrogen-peroxide catalyzed by peroxoheteropoly oxometalates. Chem. Lett.1992,21(2):289-292.
    [92]Y. Ishii, Y. Sakata. A novel oxidation of internal alkynes with hydrogen peroxide catalyzed by peroxotungsten compounds. J. Org. Chem.1990,55(21):5545-5547.
    [93]Y. Sakata, Y. Katayama, Y. Ishii. Direct catalytic transformation of olefins into alpha-hydroxy ketones with hydrogen-peroxide catalyzed by peroxotungstophosphate. Chem. Lett.1992,21(4):671-674.
    [94]T. Iwahama, S. Sakaguchi, Y. Nishiyama, Y. Ishii. A direct conversion of vic-diols into 1,2-diketones with aqueous hydrogen peroxide catalyzed by peroxotungstophosphate (PCWP). Tetrahedron Lett.1995,36(9):1523-1526.
    [95]C. Venturello, R. D'Aloisio, J. C. J. Bart, M. Ricci. A new peroxotungsten heteropoly anion with special oxidizing properties:synthesis and structure of tetrahexylammonium tetra(diperoxotungsto)phosphate(3-). J. Mol. Catal.1985,32:107-110.
    [96]T. Sakamoto, C. Pac. Selective epoxidation of olefins by hydrogen peroxide in water using a polyoxometalate catalyst supported on chemically modified hydrophobic mesoporous silica gel. Tetrahedron Lett.2000,41:10009-10012.
    [97]R. Neumann, M. Cohen. Solvent-anchored supported liquid phase catalysis: polyoxometalate-catalyzed oxidation. Angew. Chem., Int. Ed.1997,36(16):1738-1740.
    [98]N. M. Gresley, W. P. Griffith, A. C. Laemmel, H. I. S. Noqueira, B. C. Parkin. Studies on polyoxo and polyperoxo-metalates part 5:Peroxide-catalysed oxidations with heteropolyperoxo-tungstates and -molybdates. J. Mol. Catal. A:Chem.1997,117(1-3): 185-198.
    [99]L. Salles, J.-Y. Piquemal, R. Thouvenot, C. Minot, J.-M. Bregeault. Catalytic epoxidation by heteropolyoxoperoxo complexes:from novel precursors or catalysts to a mechanistic approach. J. Mol. Catal. A:Chem.1997,117:375-387.
    [100]H. Li, Z. S. Hou, Y. X. Qiao, B. Feng, Y. Hu, X. R. Wang, X. G. Zhao. Peroxopolyoxometalate-based room temperature ionic liquid as a self-separation catalyst for epoxidation of olefins. Catal. Commun.2010,11(5):470-475.
    [101]S. S. Wang, W. Liu, Q. X. Wan, Y. Liu. Homogeneous epoxidation of lipophilic alkenes by aqueous hydrogen peroxide:catalysis of a Keggin-type phosphotungstate-functionalized ionic liquid in amphipathic ionic liquid solution. Green Chem.,2009,11(10):1589-1594.
    [102]Z. Xi, N. Zhou, Y. Sun, K. Li. Reaction-Controlled Phase-Transfer Catalysis for Propylene Epoxidation to Propylene Oxide. Science 2001,292:1139-1141.
    [103]Y. Chen, J. Zhuang, X. Liu, J. Gao, X. Han, X. Bao, N. Zhou, S. Gao, Z. Xi. On the nature of reaction-controlled phase transfer catalysts for epoxidation of olefin:a 31P NMR investigation. Catal. Lett.2004,93:41-46.
    [104]J. Gao, Y. Chen, B. Han, Z. Feng, C. Li, N. Zhou, S. Gao, Z. Xi. A spectroscopic study on the reaction-controlled phase transfer catalyst in the epoxidation of cyclohexene. J. Mol. Catal. A. Chem.2004,210:197-204.
    [105]S. Gao, M. Li, Y. Lv, N. Zhou, Z. Xi. Epoxidation of propylene with aqueous hydrogen peroxide on a reaction-controlled phasetransfer catalyst. Org. Process Res. Dev.2004,8: 131-132.
    [106]Y. Lv, M. Li, R. Zhang, Z. Xi, S. Gao. A new quaternary ammonium heteropolyoxotungstate catalyst for propylene epoxidation to propylene oxide. Chin. Chem. Lett.2004,15:1491-1493.
    [107]J. Li, S. Gao, M. Li, R. Zhang, Z. Xi. Influence of composition of heteropolyphosphatotungstate catalyst on epoxidation of propylene. J. Mol. Catal. A. Chem. 2004,218:247-252.
    [108]X. Yang, S. Gao, Z. Xi. Reaction-controlled phase transfer catalysis for styrene epoxidation to styrene oxide with aqueous hydrogen peroxide. Org. Process Res. Dev.2005,9: 294-296.
    [109]X. Yang, S. Zhang, M. Li, Z. Xi, S. Gao. Influence of preparation conditions on catalytic activity of heteropolyphosphatotungstate catalyst. Chin. J. Catal.2006,27:50-54.
    [110]Z. Xi, H. Wang, Y. Sun, N. Zhou, G. Cao, M. Li. Direct epoxidation of olefins catalyzed by heteropolyoxometalates with molecular oxygen and recyclable reductant. J. Mol. Catal. A. Chem.2001,168:299-301.
    [111]Y. Sun, Z. W. Xi, G. Cao. Epoxidation of olefins catalyzed by [π-C5H5NC16H33]3[PW4O16] with molecular oxygen and a recyclable reductant. J. Mol. Catal. A:Chem.2001,166:219-224.
    [112]S. Zhang, S. Gao, Z. Xi, J. Xu. Solvent-free oxidation of alcohols catalyzed by an efficient and reusable heteropolyphosphatotungstate. Catal. Commun.2007,8:531-534.
    [113]J. Li, G. Zhao, S. Gao, Y. Lv, J. Li, Z. Xi, Epoxidation of allyl chloride to epichlorohydrin by a reversible supported catalyst with H2O2 under solvent-free conditions. Org. Process Res. Dev.2006,10:876-880.
    [114]Y. Ding, W. Zhao, H. Hua, B. Ma, [π-C5H5N(CH2)15CH3]3[PW4O32]/H2O2/ethyl acetate/alkenes:a recyclable and environmentally benign alkenes epoxidation catalytic system. Green Chem.2008,10:910-913.
    [115]W. Zhao, B. Ma, H. Hua, Y. Zhang, Y. Ding. Environmentally friendly and highly efficient alkenes epoxidation system consisting of [π-C5H5N(CH2)11CH3]3PW4O32/H2O2/ethy! acetate/olefin. Catal. Commun.2008,9:2455-2459.
    [116]F. W. B. Einstein, B. R. Penfold. The crystal structure of hydrated potassium tetraperoxyditungstate(VI), K2W2O11·4H2O. Acta Crystallogr.1964,17:1127-1133.
    [117]K. Kamata, S. Kuzuya, K. Uehara, S. Yamaguchi, N. Mizuno, [μ-η1:η1-peroxo-bridged dinuclear peroxotungstate catalytically active for epoxidation of olefins. Inorg. Chem.2007, 46:3768-3774.
    [118]K. Kamata, K. Yamaguchi, S. Hikichi, N. Mizuno. [{W(=O)(O2)2(H20)}2(μ-O)]2--Catalyzed epoxidation of allylic alcohols in water with high selectivity and utilization of hydrogen peroxide. Adv. Synth. Catal.2003,345:1193-1196.
    [119]K. Kamata, K. Yamaguchi, N. Mizuno, Highly selective, recyclable epoxidation of allylic alcohols with hydrogen peroxide in water catalyzed by dinuclear peroxotungstate. Chem. Eur. J.2004,10:4728-4734.
    [120]N. Mizuno, S. Hikichi, K. Yamaguchi, S. Uchida, Y. Nakagawa, K. Uehara, K. Kamata. Molecular design of selective oxidation catalyst with polyoxometalate. Catal. Today.2006, 117:32-36.
    [121]N. Mizuno, K. Yamaguchi. Polyoxometalate catalysts:toward the development of green H2O2-based epoxidation systems. Chem. Rec.2006,6:12-22.
    [122]A. J. Bailey, W. P. Griffith, B. C. Parkin. Heteropolyperoxo- and isopolyperoxo-tungstates and -molybdates as catalysts for the oxidation of tertiary amines, alkenes and alcohols. J. Chem. Soc, Dalton Trans.1995,3:1833-1837.
    [123]I. C. M. S. Santos, F. A. A. Paz, M. M. Q. Simoes, M. G. P. M. S. Neves, J. A. S. Cavaleiro, J. Klinowski, A. M. V. Cavaleiro. Catalytic homogeneous oxyfunctionalization with hydrogen peroxide in the presence of a peroxotungstate. Appl. Catal., A 2008,351: 166-173.
    [124]W. P. Griffith, R. G. H. Moreea, H. I. S. Nogueira. Lanthanide complexes as oxidation catalysts for alcohols and alkenes. Polyhedron 1996,15:3493-3500.
    [125]B. Tamamia, H. Yeganeh. Preparation and applications of a polymer supported peroxotungstate complex as a novel polymeric oxidizing agent. React. Funct. Polym.2002,50: 101-106.
    [126]P. Hazarika, D. Kalita, S. Sarmah, R. Borah, N. S. Islam. New oxo-bridged dinuclear peroxotungsten(VI) complexes:Synthesis, stability and activity in bromoperoxidation. Polyhedron.2006,25:3501-3508.
    [127]W. Zhu, H. Li, X. He, Q. Zhang, H. Shu, Y. Yan. Synthesis of adipic acid catalyzed by surfactant-type peroxotungstates and peroxomolybdates. Catal. Commun.2008,9:551-555.
    [128]K. Kamata, K. Yonehara, Y. Sumida, K. Yamaguchi, S. Hikichi, N. Mizuno. Efficient epoxidation of olefins with>99% selectivity and use of hydrogen peroxide. Science 2003, 300:964-966.
    [129]A. Teze, G. Herve. α,β and y-dodecatungstosilicic acids:isomers and related lacunary compounds. Inorg. Synth.1990,27:85-96.
    [130]K. Kamata, Y. Nakagawa, K. Yamaguchi, N. Mizuno, Efficient, regioselective epoxidation of dienes with hydrogen peroxide catalyzed by [γ-SiW10O34(H2O)2]4-. J. Catal. 2004,224:224-228.
    [131]A. Yoshida, M. Yoshimura, K. Uehara, S. Hikichi, N. Mizuno. Formation of s-shaped disilicoicosatungstate and efficient baeyervilliger oxidation with hydrogen peroxide. Angew. Chem., Int. Ed.2006,45:1956-1960.
    [132]K. Kamata, M. Kotani, K. Yamaguchi, S. Hikichi, N. Mizuno. Olefin epoxidation with hydrogen peroxide catalyzed by lacunary polyoxometalate [γ-SiW10O34(H20)2]4-. Chem. Eur. J.2007,13:639-648.
    [133]C. M. Tourne, G. F. Tourne, F. Zonnevijlle. Chiral polytungstometalates [WM3(H2O)2(XW9O34)2]12-(X= M= Zn or CoⅡ) and their M-substituted derivatives, syntheses, chemical, structural and spectroscopic study of some D,L sodium and potassium salts. J. Chem. Soc., Dalton Trans.1991,143-155.
    [134]R. Neumann, M. Gara. The manganese-containing polyoxometalate, [WZnMnⅡ2(ZnW9O34)2]12-, as a remarkably effective catalyst for hydrogen peroxide mediated oxidations. J. Am. Chem. Soc.1995,117:5066-5074.
    [135]R. Neumann, M. Gara. Highly active manganese-containing polyoxometalate as catalyst for epoxidation of alkenes with hydrogen peroxide. J. Am. Chem. Soc.1994,116:5509-5510.
    [136]A. Kishida, A. Taguchi, N. Mizuno. Remarkable effect of manganese center on catalytic activity for decomposition of hydrogen peroxide. Chem. Lett.2000,12:1374-1375.
    [137]M. Bosing, A. Noh, I. Loose, B. Krebs. Highly efficient catalysts in directed oxygen-transfer processes:synthesis, structures of novel manganese-containing heteropolyanions, and applications in regioselective epoxidation of dienes with hydrogen peroxide. J. Am. Chem. Soc.1998,120:7252-7259.
    [138]N. K. Kala Raj, V. G. Puranik, C. Gopinathan, A. V. Ramaswamy. Selective oxidation of limonene over sodium salt of cobalt containing sandwich-type polyoxotungstate [WCo3(H20)2{W9Co034}2]10-. Appl. Catal. A 2003,256:265-273.
    [139]S. Tangestaninejad, B. Yadollahi. Oxidation of hydrocarbons with hydrogen peroxide catalyzed by zinc containing polyoxometalate. Chem. Lett.1998,511-512.
    [140]R. G. Finke, B. Rapko, T. J. R. Weakley. Polyoxoanions derived from A-(3-SiW9O3410-: synthesis and crystallographic and 183W NMR characterization of [Si2W18Zr3O71H3]11-cluding its organic solvent soluble Bu4N+Salt. Inorg. Chem.,1989,28:1573-1579.
    [141]S. Yamaguchi, Y. Kikukawa, K. Tsuchida, Y. Nakagawa, K. Uehara, K. Yamaguchi, N. Mizuno. Synthesis and structural characterization of a γ-keggin-type dimeric silicotungstate with a bis(μ-hydroxo) dizirconium core [(γ-SiW10O36)2Zr2(μ-OH)2]10-. Inorg. Chem.2007,46: 8502-8504.
    [142]F. Gao, T. Yamase, H. Suzuki. H2O2-based epoxidation of bridged cyclic alkenes with [P{Ti(O2)}2W10O38]/- in monophasic systems:active site and kinetics. J. Mol. Catal. A. Chem. 2002,180:97-108.
    [143]O. A. Kholdeeva, T. A. Trubitsina, R. I. Maksimovskaya, A. V. Golovin, W. A. Neiwert, B. A. Kolesov, X. Lopez, J. M. Poblet. First isolated active titanium peroxo complex: characterization and theoretical study. Inorg. Chem.2004,43:2284-2292.
    [144]C. N. Kato, S. Negishi, K. Yoshida, K. Hayashi, K. Nomiya. The strong influence of structures around titanium centers in dimeric mono-, di-, and tri-titanium(IV)-substituted Keggin polyoxotungstates on the catalytic epoxidation of alkenes with H2O2. Appl. Catal., A 2005,292:97-104.
    [145]F. Hussain, B. S. Bassil, L.-H. Bi, M. Reicke, U. Kortz. Structural control on the nanomolecular scale:self-assembly of the polyoxotungstate wheel [{γ-Ti2SiW10O39]24-. Angew. Chem., Int. Ed.2004,43:3485-3488.
    [146]Y. Goto, K. Kamata, K. Yamaguchi, K. Uehara, S. Hikichi, N. Mizuno. Synthesis, structural characterization, and catalytic performance of dititanium-substituted γ-keggin silicotungstate. Inorg. Chem.2006,45:2347-2356.
    [147]U. Kortz, Y. P. Jeannin, A. Teze, G. Herve, S. Isber. A novel dimeric Ni-substituted γ-keggin silicotungstate:structure and magnetic properties of Ki2[{γ-SiNi2W10O36(OH)2(H2O)}2]·20H2O. Inorg. Chem.1999,38:3670-3675.
    [148]J.-D. Compain, P. Mialane, A. Dolbecq, M. Mbomekalle, J. Marrot, F. Secheresse, E. Riviere, G. Rogez, W. Wernsdorfer. Iron polyoxometalate single-molecule magnets. Angew. Chem., Int. Ed.2009,48:3077-3081.
    [149]R. H. Holm, P. Kennepohl, E. I. Solomon. Structural and functional aspects of metal sites in biology. Chem. Rev.1996,96:2239-2314.
    [150]F. Zonnevijille, C. M. Tourne, G. F. Tourne. Preparation and characterization of iron(Ⅲ)-and rhodium(Ⅲ)-containing heteropolytungstates. Identification of novel oxo-bridged iron(Ⅲ) dimmers. Inorg. Chem.1982,21:2751-2757.
    [151]J. Liu, F. Ortega, P. Sethuraman, D. E. Katsoulis, C. E. Costello, M. T. Pope. Trimetallo derivatives of lacunary 9-tungstosilicate heteropolyanions. Part 1. Synthesis and characterization. J. Chem. Soc., Dalton Trans 1992,1901-1906.
    [152]C. Nozaki, I. Kiyoto, Y. Minai, M. Misono, N. Mizuno. Synthesis and characterization of diiron(III)-substituted silicotungstate, [γ(1,2)-SiW10{Fe(OH2)}2O38]6-. Inorg. Chem.1999, 38:5724-5729.
    [153]N. Mizuno, C. Nozaki, I. Kiyoto, M. Misono, Highly efficient utilization of hydrogen peroxide for selective oxygenation of alkanes catalyzed by di iron-substituted polyoxometalate precursor. J. Am. Chem. Soc.1998,120:9267-9272.
    [154]N. Mizuno, I. Kiyoto, C. Nozaki, M. Misono. Remarkable structure dependence of intrinsic catalytic activity for selective oxidation of hydrocarbons with hydrogen peroxide catalyzed by ironsubstituted silicotungstates. J. Catal.1999,181:171-174.
    [155]N. Mizuno, Synthesis of di-iron-containing inorganic synzyme, [γ-SiW10{Fe(OH2)}2038]6-,and the liquid-phase oxidation catalysis. Catal. Surv. Jpn.2000, 4:149-154.
    [156]C. Nozaki, M. Misono, N. Mizuno. Oxidation of cyclohexane with molecular oxygen efficiently catalyzed by di-iron(III)-substituted silicotungstate, [γ-SiW10{Fe(OH2)}2O38]6-, including radical-chain mechanism. Chem. Lett.1998,12:1263-1264.
    [157]N. Mizuno, Y. Seki, Y. Nishiyama, I. Kiyoto, M. Misono. Aqueous phase oxidation of methane with hydrogen peroxide catalyzed by di-iron-substituted silicotungstate. J. Catal. 1999,184:550-552.
    [158]N. Mizuno, C. Nozaki, I. Kiyoto, M. Misono. Selective oxidation of alkenes Catalyzed by di-iron-substituted silicotungstate with highly efficient utilization of hydrogen peroxide. J. Catal.1999,182:285-288.
    [159]Y. Nishiyama, N. Mizuno. High turnover numbers for the catalytic selective epoxidation of alkenes with 1 atm of O2. Angew. Chem., Int. Ed.2001,40:3639-3641.
    [160]Y. Nishiyama, T. Hayashi, Y. Nakagawa, N. Mizuno. A green route to epoxides: Catalytic selective epoxidation of alkenes with 1 atm molecular oxygen with 10000 turnover number. Sci. Technol. Catal.2003,145:255-258.
    [161]P. T. Witte, P. L. Alsters, W. Jary, R. Mullner, P. Pochlauer, D. Sloboda-Rozner, R. Neumann. Self-assembled Na12[WZn3(ZnW9O34)2] as an industrially attractive multi-purpose catalyst for oxidations with aqueous hydrogen peroxide. Org. Process Res. Dev.2004,8: 524-531.
    [162]X. Zhang, Q. Chen, D. C. Duncan, C. F. Campana, C. L. Hill. Multiiron polyoxoanions. Syntheses, characterization, X-ray crystal structures, and catalysis of H2O2-based hydrocarbon oxidations by [FeⅢ4(H2O)2(P2W15O56)2]12-. Inorg. Chem.1997,36:4208-4215.
    [163]M. T. Pope. Heteropoly and Isopoly Oxometalates, Springer-Verlag:New York,1983.
    [164]Y. Nakagawa, K. Uehara, N. Mizuno. Sterically controlled esterification on bis(μ-hydroxo) dioxovanadium site in [y-H2SiV2W10040]4-.Inorg. Chem.2005,44:14-16.
    [165]Y. Nakagawa, K. Uehara, N. Mizuno. Reactivity of bis(μ-hydroxo) divanadium site in [γ-H2SiV2W10O40]4- with hydroxo compounds. Inorg. Chem.2005,44:9068-9075.
    [166]Y. Nakagawa, K.. Kamata, M. Kotani, K. Yamaguchi, N. Mizuno. Polyoxovanadometalate-catalyzed selective epoxidation of alkenes with hydrogen peroxide. Angew. Chem., Int. Ed.2005,44:5136-5141.
    [167]N. Mizuno, Y. Nakagawa, K. Yamaguchi. Bis(μ-hydroxo) bridged di-vanadium-catalyzed selective epoxidation of alkenes with H2O2. J. Mol. Catal. A. Chem. 2006,251:286-290.
    [168]Y. Nakagawa, N. Mizuno. Mechanism of [γ-H2SiV2W10040]4--catalyzed epoxidation of alkenes with hydrogen peroxide. Inorg. Chem.2007,46:1727-1736.
    [169]J. Kasai, Y. Nakagawa, S. Uchida, K. Yamaguchi, N. Mizuno. [γ-1,2-H2SiV2W10040] immobilized on surface-modified SiO2 as a heterogeneous catalyst for liquid-phase oxidation with H2O2. Chem. Eur. J.2006,12:4176-4184.
    [170]K. Kamata, S. Yamaguchi, M. Kotani, K. Yamaguchi, N. Mizuno. Efficient oxidative alkyne homocoupling catalyzed by a monomeric dicopper-substituted silicotungstate. Angew. Chem., Int. Ed.2008,47:2407-2410.
    [171]K. Yamaguchi, K. Kamata, S. Yamaguchi, M. Kotani, N. Mizuno. Synthesis and structural characterization of a monomeric dicopper-substituted silicotungstate [γ-H2SiW10O36Cu2(μ-1,1-N3)2]4- and the catalysis of oxidative homocoupling of alkynes. J. Catal.2008,258:121-130.
    [172]K. Kamata, Y. Nakagawa, K. Yamaguchi, N. Mizuno.1,3-Dipolar cycloaddition of organic azides to alkynes by a dicoppersubstituted silicotungstate. J. Am. Chem. Soc.2008, 130:15304-15310.
    [173]K. Yamaguchi, M. Kotani, K. Kamata, N. Mizuno. An efficient one-pot three-component reaction to produce 1,4-disubstituted-1,2,3-triazoles catalyzed by a dicopper-substituted silicotungstate. Chem. Lett.2008,37:1258-1259.
    [174]K. Yamaguchi, N. Mizuno. Heterogeneously catalyzed liquidphase oxidation of alkanes and alcohols with molecular oxygen. New J. Chem.2002,26:972-974.
    [175]W. P. Griffith, N. Morley-Smith, H. I. S. Nogueira, A. G. F. Shoair, M. Suriaatmaja, A. J. P. White, D. J. Williams. Studies on polyoxo and polyperoxo-metalates. J. Organomet. Chem.2000,607:146-155.
    [176]R. Shiozaki, A. Inagaki, H. Kominami, S. Yamaguchi, J. Ichihara, Y. Kera. Catalytic properties of holmiumdecatungstate modified with cetylpyridinium cation [{C5H5N(CH2)15(CH3)7H2Ho(Ⅲ)W10O36; Cetyl-HoW10] for H2O2-oxidation of alcohols and olefins and its working states under an organic-solvent-free condition. J. Mol. Catal. A. Chem. 1997,124:29-37.
    [177]R. Shiozaki, A. Inagaki, A. Ozaki, H. Kominami, S. Yamaguchi, J. Ichihara, Y. Kera. Catalytic behavior of a series of lanthanide decatungstates [Ln(Ⅲ)WoO369-; Ln:La-Yb] for H202-oxidations of alcohols and olefins. Some chemical effects of the 4f'-electron in the lanthanide(III) ion on the Catalyses. J. Alloys Compd.1997,261:132-139.
    [178]Y. Kera, A. Inagaki, Y. Mochizuki, H. Kominami, S. Yamaguchi, J. Ichihar. Selective oxidations of allylic alcohols with H2O2 on a series of lanthanide decatungstate modified with 1-hexadecylpyridinium cation [{C5H5N(CH2)15CH3}7H2Ln(Ⅲ)W10O36; cetyl-LnW10, Ln: La-Er]:kinetic features and working mechanisms. J. Mol. Catal. A. Chem.2002,184: 413-429.
    [179]P. Wasserscheid, W. Keim. Ionic liquids-new''solutions" for transtion metal catalysis. Angew. Chem. Int. Ed.2000,39:3772-3789.
    [180]J. G. Huddleston, A. E. Visser, W. M. Reichert, H. D. Willauer, G. A. Broker, R. D. Rogers. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem.2001,3:156-164.
    [181]A. B. Bourlinos, K. Raman, R. Herrera, Q. Zhang, L. A. Archer, E. P. Giannelis. A liquid derivative of 12-tungstophosphoric acid with unusually high conductivity. J. Am. Chem. Soc.2004,126:15358-15359.
    [182]M. Tamada, S. Ueda, T. Hayashi, H. Ohno. Thermally stable polymer gel electrolytes composed of branched polyimide and ionic liquid/zwitterion mixture prepared by in situ polycondensation. Chem. Lett.2008,37:86-87.
    [183]J. L. Anderson, R. Ding, A. Ellern, D. W. Armstrong. Structure and properties of high stability geminal dicationic ionic liquids. J. Am. Chem. Soc.2005,127:593-604.
    [184]P. G. Rickert, M. R. Antonio, M. A. Firestone, K.-A. Kubatko, T. Szreder, J. F. Wishart, M. L. Dietz. Tetraalkylphosphonium polyoxometalate ionic liquids:novel, organic-inorganic hybrid materials. J. Phys. Chem. B 2007,111:4685-4692.
    [185]L. Dai, S. Yu, Y. Shan, M. He。Novel room temperature inorganic ionic liquids. Eur. J. Inorg. Chem.2004,2004:237-241.
    [186]T. Rajkumar, G. R. Rao. Investigation of hybrid molecular material prepared by ionic liquid and polyoxometalate anion. J. Chem. Sci.2008,120(6):587-594.
    [187]J. Shi, G. Pan. Preparation of 1-butyl-3-methylimidazolium dodecatungstophosphate and its catalytic performance for esterification of ethanol and acetic acid. Front. Chem. China. 2009,4:132-135.
    [188]B. S. Chhikara, S. Tehlan, A. Kumar. 1-Methyl-3-butylimidazolium Decatungstate in Ionic Liquid:An Efficient Catalyst for the Oxidation of Alcohols. Synlett 2005,1:63-66.
    [189]A. Kumar. Epoxidation of alkenes with hydrogen peroxide catalyzed by 1-methyl-3-butylimidazoliumdecatungstate in ionic liquid. Catal. Commun.2007,8:913-916.
    [190]B. S. Chhikara, R. Chandra, V. Tandon. Oxidation of alcohols with hydrogen peroxide catalyzed by a new imidazolium ion based phosphotungstate complex in ionic liquid. J. Catal. 2005,230:436-439.
    [191]C. P. Mehnert, R. A. Cook, N. C. Dispenziere, M. Afeworki. Supported ionic liquid catalysis-a new concept for homogeneous hydroformylation catalysis. J. Am. Chem. Soc. 2002,124:12932-12933.
    [192]X. Shi, J. Wei. Selective oxidation of sulfide catalyzed by peroxotungstate immobilized on ionic liquid-modified silica with aqueous hydrogen peroxide. J. Mol. Catal. A. Chem.2008, 280:142-147.
    [193]A. Bordoloi, S. Sahoo, F. Lefebvre, S. B. Halligudi. Heteropoly acid-based supported ionic liquid-phase catalyst for the selective oxidation of alcohols. J. Catal.2008,259: 232-239.
    [194]X. Lang, Z. Li, C. Xia. [a-PW12040]3- Immobilized on ionic liquid-modified polymer as a heterogeneous catalyst for alcohol oxidation with hydrogen peroxide. Syn. Commun.2008, 38:1610-1616.
    [195]J. Park, J. Joo, S. G. Kwon, Y. J. Jang, T. Hyeon. Synthesis of Monodisperse Spherical Nanocrystals. Angew. Chem. Int. Ed.2007,46(25):4630-4660.
    [196]V. Polshettiwar, R. S. Varma. Green chemistry by nano-catalysis. Green Chem.2010, 12(5):743-754.
    [197]D. K. Yi, S. S. Lee, J. Y. Ying, Synthesis and Applications of Magnetic Nanocomposite Catalysts. Chem. Mater.2006,18:2459-2461.
    [198]M. Shokouhimehr, Y. Piao, J. Kim, Y. Jang, T. Hyeon. A Magnetically Recyclable Nanocomposite Catalyst for Olefin Epoxidation. Angew. Chem. Int. Ed.2007,46:7039-7043.
    [199]S. Shylesh, J. Schweizer, S. Demeshko,V. Schunemann, S. Ernst, W. R. Thiel. A magnetically recyclable nanocomposite catalyst for olefin epoxidation. Adv. Synth. Catal. 2009,351:1789-1795.
    [200]X. X. Zheng, S. Z. Luo, L. Zhang, J.-P. Cheng. Magnetic nanoparticle supported ionic liquid catalysts for CO2 cycloaddition reactions. Green Chem.2009,11,455-458.
    [201]S. V. Dzyuba, R. A. Bartsch. Expanding the polarity range of ionic liquids. Tetrahedron Lett.2002,43:4657-4659.
    [202]A. Aggarwal, N. L. Lancaster, A. R. Sethi, Tom Welton. The role of hydrogen bonding in controlling the selectivity of Diels-Alder reactions in room-temperature ionic liquids. Green Chemistry,2002,4,517-520.
    [203]J. Ross, J. L. Xiao. The effect of hydrogen bonding on allylic alkylation and isomerization reactions in ionic liquids. Chem. Eur. J.2003,9,4900-4906.
    [204]C. Chiappe, D. Pieraccini. Kinetic Study of the Addition of Trihalides to Unsaturated Compounds in Ionic Liquids. Evidence of a Remarkable Solvent Effect in the Reaction of IC12-. J. Org. Chem.2004,69,6059-6064.
    [205]J. Dupont, P. A. Z. Suarez. Physico-chemical processes in imidazolium ionic liquids. Phys. Chem. Chem. Phys.2006,8:2441-2452.
    [206]P. Bonhote, A.-P. Dias, N. Papageorgiou, K. Kalyanasundaram, M. Gratzel. Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts. Inorg. Chem.1996, 35(5):1168-1178.
    [207]A. J. Carmichael, K. R. Seddon. Polarity study of some l-alkyl-3-methylimidazolium ambient-temperature ionic liquids with the solvatochromic dye. Nile Red. Phys. Org. Chem. 2000,13:591-595.
    [208]S. G Zhang, X. J. Qi, X. Y. Ma, L. J. Lu, Y. Q. Deng. Hydroxyl Ionic Liquids:The Differentiating Effect of Hydroxyl on Polarity due to Ionic Hydrogen Bonds between Hydroxyl and Anions. J. Phys. Chem. B,2010,114(11):3912-3920.
    [209]M. J. Muldoon, C. M. Gordon, I. R. Dunkin. Investigations of solvent-solute interactions in room temperature ionic liquids using solvatochromic dyes. J. Chem. Soc., Perkin Trans.2,2001,2(4):433-435.
    [210]W. Linert, R. F. Jameson, A. Taha. Donor numbers of anions in solution:the use of solvatochromic Lewis acid-base indicators. J. Chem. Soc, Dalton Trans.1993,21: 3181-3186.
    [211]J. Bartosik, A.-V. Mudring. [Ni(tmen)(acac)][B(Ph)4] a probe for the anion basicity of ionic liquids. Phys. Chem. Chem. Phys.2010,12(16):4005-4011.
    [212]R. Lungwitz, M. Friedrich, W. Linert, S. Spange. New aspects on the hydrogen bond donor (HBD) strength of 1-butyl-3-methylimidazolium room temperature ionic liquids. New J. Chem.2008,32(9):1493-1499.
    [213]R. Lungwitz, V. Strehmel, S. Spange. The dipolarity/polarisability of 1-alkyl-3-methylimidazolium ionic liquids as function of anion structure and the alkyl chain length. New J. Chem.2010,34(6):1135-1140.
    [214]C. Reichardt. Pyridinium-N-phenolate betaine dyes as empirical indicators of solvent polarity:Some new findings. Pure Appl. Chem.2008,80(7):1415-1432.
    [215]M. Salanne, C. Simon, P. Turq. Conductivity-Viscosity-Structure:Unpicking the Relationship in an Ionic Liquid. J. Phys. Chem. B 2007,111:4678-4684.
    [216]M. V. Migliorini, R. K. Donato, M. A. Benvegnu, J. Dupont, R. S. Goncalves, H. S. Schrekker. Imidazolium ionic liquid-water mixtures:The formation of a new species that inhibits the electrocatalytical charge transfer processes on a platinum surface. Catal. Commun. 2008,9:971-975.
    [217]R. F. de Souza, J. C. Padilha, R. S. Goncalves, J. Dupont. Room temperature dialkylimidazolium ionic liquid-based fuel cells. Electrochem. Commun.2003,5:728-731.
    [218]S. Z. E. Abedin, F. Endres. Electrodeposition of Metals and Semiconductors in Air-and Water-Stable Ionic Liquids. ChemPhysChem.2006,7:58-61.
    [219]Q. Zhu, Y. Song, X. F. Zhu, X. L. Wang. Ionic liquid-based electrolytes for capacitor applications. J. Electroanal. Chem.2007,601:229-236
    [220]N. Papageorgiou, Y. Athanassov, M. Armand, P. Bonhote, H. Pettersson, A. Azam, and M. Gratzel. The Performance and Stability of Ambient Temperature Molten Salts for Solar Cell Applications. J. Electrochem. Soc.1996,143(10):3099-3108.
    [221]E. Markevich, V. Baranchugov, D. Aurbach. On the possibility of using ionic liquids as electrolyte solutions for rechargeable 5 V Li ion batteries. Electrochem. Commun.2006,8: 1331-1334.
    [222]R. F. de Souza, J. C. Padilha, R. S. Goncalves, J. Rault-Berthelot. Dialkylimidazolium ionic liquids as electrolytes for hydrogen production from water electrolysis. Electrochem. Commun.2006,8:211-216.
    [223]F. Endres, S. Z. E. Abedin. Air and water stable ionic liquids in physical chemistry. Phys. Chem. Chem. Phys.2006,8:2101-2106.
    [224]Y. X. Qiao, Z. S. Hou, H. Li, Y. Hu, B. Feng, X. R. Wang, L. Hua. Polyoxometalate-based protic alkylimidazolium salts as reaction-induced phase-separation catalysts for olefin epoxidation. Green Chem.2009,11:1955-1960.
    [225]S. Takai, T. Nakanishi, K. Oikawa, S. Torii, A. Hoshikawa, T. Kamiyama, T. Esaka. Neutron diffraction and IR spectroscopy on mechanically alloyed La-substituted PbWO4. Solid State Ionics 2004,170:297-304.
    [226]W. Li, T. B. Tang, X. Feng. Complex color centers in ultraviolet-light irradiated PbWO4 single crystal. J. Appl. Phys.2000,87(11):7692-7695.
    [227]J.-M. Andanson, F. Jutz and A. Baiker. Supercritical CO2/Ionic Liquid Systems:What Can We Extract from Infrared and Raman Spectra? J. Phys. Chem. B 2009,113: 10249-10254.
    [228]M. J. Tang, T. Zhu. Heterogeneous reactions of gaseous methanesulfonic acid with NaCl and sea salt particles. Sci. China. Ser. B-Chem.2009,52(1):93-100.
    [229]M. Gjikaj, W. Brockner, J. Namyslo, A. Adam. Crown-ether enclosure generated by ionic liquid components—synthesis, crystal structure and Raman spectra of compounds of imidazolium based salts and 18-crown-6. CrystEngComm.2008,10:103-110.
    [230]Y. Jeon, J. Sung, D. Kim, C. Seo, H. Cheong, Y. Ouchi, R. Ozawa, H. Hamaguchi. Structural Change of 1-Butyl-3-methylimidazolium Tetrafluoroborate+Water Mixtures Studied by Infrared Vibrational Spectroscopy. J. Phys. Chem. B 2008,112:923-928.
    [231]B. C. Guo, J. J. Wan, Y. D. Lei, D. M. Jia. Curing behaviour of epoxy resin/graphite composites containing ionic liquid. J. Phys. D:Appl. Phys.2009,42,145307.
    [232]L. M. Epstein, E. S. Shubina. New types of hydrogen bonding in organometallic chemistry. Coord. Chem. Rev.2002,231:165-181
    [233]吴阳,张甜甜,李静蕊.半胱氨酸阴离子与咪唑阳离子间相互作用的理论研究.化 学学报,2009,67:1851-1858.
    [234]T. Umecky, M. Kanakubo, Y. Ikushima. Effects of alkyl chain on transport properties in 1-alkyl-3-methylimidazolium hexafluorophosphates. J. Mol. Liq.2006,119(1-3):77-81.
    [235]A. B. Pereiro, J. L. Legido, A. Rodriguez. Physical properties of ionic liquids based on 1-alkyl-3-methylimidazolium cation and hexafluorophosphate as anion and temperature dependence. J. Chem. Thermodyn.2007,39(8):1168-1175.
    [236]M. Blesic, M. S. Kwasny, T. Belhocine, H. Q. N. Gunaratne, J. N. C. Lopes, M. F. C. Gomes, A. A. H. Padua, K. R. Seddon, L. P. N. Rebelo. 1-Alkyl-3-methylimidazolium alkanesulfonate ionic liquids, [CnH2n+1mim][CkH2k+1SO3]:synthesis and physicochemical properties. Phys. Chem. Chem. Phys.2009,11:8939-8948.
    [237]C. R.-Castro, L. F. Vega. Transport Properties of the Ionic Liquid 1-Ethyl-3-Methylimidazolium Chloride from Equilibrium Molecular Dynamics Simulation. The Effect of Temperature. J. Phys. Chem. B 2006,110:14426-14435.
    [238]W. Xu, E. I. Cooper, C. A. Angell. Ionic Liquids:Ion Mobilities, Glass Temperatures, and Fragilities. J. Phys. Chem. B 2003,107:6170-6178.
    [239]H. Tokuda, K. Hayamizu, K. Ishii, M. A. B. H. Susan, M. Watanabe. Physicochemical Properties and Structures of Room Temperature Ionic Liquids.2. Variation of Alkyl Chain Length in Imidazolium Cation. J. Phys. Chem. B 2005,109:6103-6110.
    [240]W. Wang, R. Balasubramanian, R.W. Murray. Electron Transport and Counterion Relaxation Dynamics in Neat Ferrocenated Imidazolium Ionic Liquids. J. Phys. Chem. C 2008,112:18207-18216.
    [241]A. A. J. Torriero, A. I. Siriwardana, A. M. Bond, I. M. Burgar, N. F. Dunlop, G.B. Deacon, D. R. MacFarlane. Physical and Electrochemical Properties of Thioether-Functionalized Ionic Liquids. J. Phys. Chem. B 2009.113:11222-11231.
    [242]C. C. Cassol, G.Ebeling, B. Ferrera and J. Dupont. A Simple and Practical Method for the Preparation and Purity Determination of Halide-Free Imidazolium Ionic Liquids. Adv. Synth. Catal.2006,348:243-248.
    [243]J. W. Tilley, D. L. Coffen, B. H. Schaer, J. Lind. A Palladium-Catalyzed Carbonyl Insertion Route to Pyrido[2,1-b] quinazoline Derivatives. J. Org. Chem.1987,52:2469-2474.
    [244]V. S. Pore, N. G. Aher, M. Kumar, P. K. Shukla. Design and synthesis of fluconazole/bile acid conjugate using click reaction. Tetrahedron 2006,62:11178-11186.
    [245]C. K. Lee, H. W. Huang, I. J. B. Lin. Simple amphiphilic liquid crystalline N-alkylimidazoIium salts. A new solvent system providing a partially ordered environment. Chem. Commun.2000,1911-1912.
    [246]N. J. Campbell, A. C. Dengel, C. J. Edwards, W. P. Griffith. Studies on transition metal peroxo complexes. Part 8. The nature of peroxomolybdates and peroxotungstates in aqueous solution. J. Chem. Soc., Dalton Trans.1989,1203-1208.
    [247]W. H. Awad, J. W. Gilman. Thermal degradation studies of alkyl-imidazolium salts and their application in nanocomposites. Thermochim Acta 2004,409:3-11.
    [248]B. Torok, M. Torok, M. Rozsa-Tarjani, I. Palinko, L. I. Horvath, I. Kiricsi, A. Molnar. Interactions between solvent molecules and the reduced or unreduced forms of silico-molybdic acid studied by ESR and NMR spectroscopies and molecular modelling. Inorg. Chim. Acta.2000,298:77-83.
    [249]F. Bigi, A. Corradini, C. Quarantelli, G. Sartori. Silica-bound decatungstates as heterogeneous catalysts for H2O2 activation in selective sulfide oxidation. J. Catal.2007,250: 222-230.
    [250]T. Ueda., J.-i. Nambu, H. Yokota, M. Hojo. The effect of water-miscible organic solvents on the substitution reaction of Keggin-type heteropolysilicates and -germanates with vanadium(V) ion. Polyhedron 2009,28:43-48.
    [251]Y. Y. Liu, K. Murata, M. Inaba. Liquid-phase oxidation of benzene to phenol by molecular oxygen over transition metal substituted polyoxometalate compounds. Catal. Commun.2005,6:679-683.
    [252]S. Sakaguchi, Y. Nishiyama, Y. Ishii. Selective Oxidation of Monoterpenes with Hydrogen Peroxide Catalyzed by Peroxotungstophosphate (PCWP). J. Org. Chem.,1996,61: 5307-5311.
    [253]R. R. L. Martins, M. G. P. M. S. Neves, A. J. D. Silvestre, M. M. Q. Simoes, A. M. S. Silva, A. C. Tome, J. A. S. Cavaleiro, P. Tagliatesta, C. Crestini. Oxidation of unsaturated monoterpenes with hydrogen peroxide catalysed by manganese(Ⅲ) porphyrin complexes. J. Mol. Catal. A:Chem.2001,172:33-42.
    [254]L. Li, J. L. Shi. A Highly Active and Reusable Heterogeneous Ruthenium Catalyst for Olefin Metathesis. Adv. Synth. Catal.2005,347:1745-1749.
    [255]R. Abu-Reziq, D. S. Wang, M. Post, H. Alper. Platinum Nanoparticles Supported on Ionic Liquid-Modified Magnetic Nanoparticles:Selective Hydrogenation Catalysts. Adv. Synth. Catal.2007,349:2145-2150.
    [256]R. Alcantara, L. Canoira, P. G Joao, J-M. Santos, I. Vazquez. Ethylbenzene oxidation with air catalysed by bis(acetylacetonate)nickel(II) and tetra-n-butylammonium tetrafluoroborate. Appl. Catal., A 2000,203:259-268.
    [257]R. J. Errington, S. S. Petkar, B. R. Horrocks, A. Houlton, L. H. Lie, S. N. Patole. Covalent Immobilization of a TiW5 Polyoxometalate on Derivatized Silicon Surfaces. Angew. Chem., Int. Ed.2005,44:1254-1257.
    [258]L. H. Bi, Y. Shen, J. G Jiang, E. K. Wang, S. J. Dong. Electrochemical behavior and assembly of tetranuclear Dawson-derived sandwich compound [Cd4(H2O)2(As2W15O56)2]16-on 4-aminobenzoic acid modified glassy carbon electrode. Anal. Chim. Acta 2005,534: 343-351.
    [259]M. Zynek, M. Serantoni, S. Beloshapkin, E. Dempsey, T. McCormac. Electrochemical and Surface Properties of Multilayer Films Based on a Ru2t Metallodendrimer and the Mixed Addenda Dawson Heteropolyanion. Electroanalysis 2007,19:681-689.
    [260]W. Feng, Y. S. Ding, Y. Liu, R. Lu. The photochromic process of polyoxometalate-based nanocomposite thin film by in situ AFM and spectroscopy. Mater. Chem. Phys.2006,98:347-352.
    [261]Y. K. Lu, X. B. Cui,Y. B. Liu, Q. F. Yang, S. Y. Shi, J. Q. Xu, T. G. Wang. Two new transition-metal complexes (TMCs)-templated three-dimensional supramolecular networks based on tungstovanadophosphates. J. Solid State Chem.2009,182:690-697.
    [262]Y. H. Wang, C. X. Guo, Y. W. Chen, C. W. Hu, W. H. Yu. Self-assembled multilayer films based on a Keggin-type polyoxometalate and polyaniline. J. Colloid Interf. Sci.2003, 264:176-183.
    [263]T. Yokoi, Y. Sakamoto, O. Terasaki, Y. Kubota, T. Okubo, T. Tatsumi. Periodic Arrangement of Silica Nanospheres Assisted by Amino Acids. J. Am. Chem. Soc.2006,128: 13664-13665.
    [264]P. Yuan, D. Q. Wu, H. P. He, Z. Y. Lin. The hydroxyl species and acid sites on diatomite surface:a combined IR and Raman study. Appl. Surf. Sci.2004,227:30-39.
    [265]M. C. Capel-Sanchez, J. M. Campos-Martin, J. L. G.Fierro. Silylation of titanium-containing amorphous silica catalyst:Effect on the alkenes epoxidation with H2O2. Catal. Today 2010,158:103-108.
    [266]R. Lungwitz, S. Spange. Structure and Polarity of the Phase Boundary of N-Methylimidazolium Chloride/Silica. J. Phys. Chem. C 2008,112:19443-19448.
    [267]S. Y. Wei, Q. Wang, J. H. Zhu, L. Y. Sun, H. F. Lin, Z. H. Guo. Multifunctional composite core-shell nanoparticles. nanoscale 2011,3:4474-4502.
    [268]Y. L. Gu, C. Ogawa, J. Kobayashi, Y. Mori, S. Kobayashi. A Heterogeneous Silica-Supported Scandium/Ionic Liquid Catalyst System for Organic Reactions in Water. Angew. Chem., Int. Ed.2006,45:7217-7220.
    [269]P. Tundo. A. Perosa. Multiphasic heterogeneous catalysis mediated by catalyst-philic liquid phases. Chem. Soc. Rev.2007,36:532-550.
    [270]I. T. Horvath. The effect of water-miscible organic solvents on the substitution reaction of Keggin-type heteropolysilicates and -germanates with vanadium(V) ion. Catal. Lett.1990, 6:43-48.
    [271]V. P. Ananikov, K. A. Gayduk, I. P. Beletskaya, V. N. Khrustalev, M. Y. Antipin. Catalyst Leaching as an Efficient Tool for Constructing New Catalytic Reactions:Application to the Synthesis of Cyclic Vinyl Sulfides and Vinyl Selenides. Eur. J. Inorg. Chem.2009, 1149-1161.
    [272]P. Handa, K. Wikander, K. Holmberg. The Sonogashira reaction catalyzed by palladium leached from ordered mesoporous carbon. Microporous Mesoporous Mater.2009,117: 126-135.
    [273]P. P. Fang, A. Jutand, Z. Q. Tian, C. Amatore. Au-Pd Core-Shell Nanoparticles Catalyze Suzuki-Miyaura Reactions in Water through Pd Leaching. Angew. Chem., Int. Ed.2011,50: 12184-12188.
    [274]P. Tundo, A. Perosa. Multiphasic heterogeneous catalysis mediated by catalyst-philic liquid phases. Chem. Soc. Rev.2007,36:532-550.
    [275]C. Bianchini, V. D. Santo, A. Meli, W. Oberhauser, R. Psaro, F. Vizza. Preparation, Characterization, and Performance of the Supported Hydrogen-Bonded Ruthenium Catalyst [(sulphos)Ru(NCMe)3](OSO2CF3)/SiO2. Comparisons with Analogous Homogeneous and Aqueous-Biphase Catalytic Systems in the Hydrogenation of Benzylideneacetone and Benzonitrile. Organometallics 2000,19:2433-2444.
    [276]L. Hua, Y. X. Qiao, H. Li, B. Feng, Z. Y. Pan, Y. Y. Yu, W. W. Zhu, Z. S. Hou. Epoxidation of olefins with hydrogen peroxide catalyzed by a reusable lacunary-type phosphotungstate catalyst. Sci. China:Chem.2011,54:769-773.
    [277]Z. X. Zhang., W. Zhao, B. C. Ma, Y. Ding. The epoxidation of olefins catalyzed by a new heterogeneous polyoxometalate-based catalyst with hydrogen peroxide. Catal. Commun. 2010,12:318-322.
    [278]W. Zhao, Y. Ding, Z. X. Zhang, B. C. Ma, W. Y. Qiu. (C18H37)2(CH3)2N7PW11O39:a temperature-controlled phase transfer catalyst for olefin epoxidation. Reac. Kinet. Mech. Cat. 2011,102:93-102.
    [279]Z. H. Weng, J. Y. Wang, X. G.Jian. A reusable and active lacunary derivative [PW11O39]7- as benzyl alcohol oxidation catalyst with hydrogen peroxide. Catal. Commun. 2008,9:1688-1691.
    [280]C. Brevard, R Schimpf., G. Tourne, C. M. Tourne. Tungsten-183 NMR:a complete and unequivocal assignment of the tungsten-tungsten connectivities in heteropolytungstates via two-dimensional tungsten-183 NMR techniques. J. Am. Chem. Soc.1983,105:7059-7063.
    [281]M. Yoshizawa-Fujita, T. Tamura, Y Takeoka, M. Rikukawa. Low-melting zwitterion: effect of oxyethylene units on thermal properties and conductivity. Chem. Commun.2011,47: 2345-2347.
    [282]G.Papini, M. Pellei, G. G.Lobbia, A. Burini, C. Santini. Sulfonate-or carboxylate-functionalized N-heterocyclic bis-carbene ligands and related water soluble silver complexes. Dalton Trans.2009,35:6985-6990.
    [283]D. W. Tondo, E. C. Leopoldino, B. S. Souza, G.A. Micke, A. C. O. Costa, H. D. Fiedler, C. A. Bunton, F. Nome. Synthesis of a New Zwitterionic Surfactant Containing an Imidazolium Ring. Evaluating the Chameleon-like Behavior of Zwitterionic Micelles. Langmuir 2010,26:15754-15760.
    [284]A. Guerrero-Martinez, J. Perez-Juste, L. M. Liz-Marzan. Recent Progress on Silica Coating of Nanoparticles and Related Nanomaterials. Adv. Mater.2010,22:1182-1195.
    [285]Y.-S. Li, J. S. Church, A. L. Woodhead, F. Moussa. Preparation and characterization of silica coated iron oxide magnetic nano-particles. Spectrochim. Acta, Part A 2010,76: 484-489.
    [286]N. Pinna, S. Grancharov, P. Beato, P. Bonville, M. Antonietti, M. Niederberger. Magnetite Nanocrystals:Nonaqueous Synthesis, Characterization, and Solubility. Chem. Mater.2005,17:3044-3049.
    [287]A. C. Estrada, I. C. M. S. Santos, M. M. Q. Simoes, M. G. P. M. S. Neves, J. A. S. Cavaleiro, A. M. V. Cavaleiro. Silica supported transition metal substituted polyoxotungstates: Novel heterogeneous catalysts in oxidative transformations with hydrogen peroxide. Appl. Catal.,A 2011,392:28-35.
    [288]D. L. An, A. H. Ye, W. P. Deng, Q. H. Zhang, Y. Wang. Selective Conversion of Cellobiose and Cellulose into Gluconic Acid in Water in the Presence of Oxygen, Catalyzed by Polyoxometalate-Supported Gold Nanoparticles. Chem. Eur. J.2012,18:2938-2947.
    [289]S. Crossley, J. Faria, M. Shen, D. E. Resasco. Solid Nanoparticles that Catalyze Biofuel Upgrade Reactions at the Water/Oil Interface. Science 2010,327:68-72.
    [290]Q. Zhang, H. Su, J. Luo, Y. Y. Wei. A magnetic nanoparticle supported dual acidic ionic liquid:a "quasi-homogeneous" catalyst for the one-pot synthesis of benzoxanthenes. Green Chem.2012,14:201-208.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700