基于纳米金催化还原的精细化学品清洁合成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金是化学惰性极高的贵金属,同时由于其难于高分散,向来不被用作为催化剂的活性组分。20世纪60年代,人们曾考察过多种含金催化剂,但并未发现它比其它贵金属催化剂更优良的催化性能。然而,日本化学家Haruta在80年代末发现高度分散在氧化物上的金纳米粒子,不仅对CO低温氧化具有很高的催化活性,且具良好抗水性、稳定性和湿度增强效应,打破了“金没有或不具备催化活性”的传统观念,由此人们对其催化特性产生了极大兴趣和关注。在过去的十年中,有关金催化剂的研究和开发日趋活跃。除在CO低温氧化、丙烯直接环氧化及水煤气变换(WGS)等气相反应中表现优异外,纳米金催化剂对精细化学品合成工艺中一些极其重要的反应,如液相选择氧化和选择还原等,同样表现出异乎寻常的催化能力。基于上述背景,本论文围绕纳米Au应用于精细有机分子的选择加氢及还原转化展开研究,论文的主要研究内容如下:
     一、水相金催化不饱和羰基化合物选择加氢
     α,β-不饱和醇是香料、药物及其他精细化工产品生产中的重要原料和反应中间体,在有机合成中有着广泛的应用。目前工业上生产不饱和醇多采用以α,β-不饱和羰基化合物为原料的计量还原方法,在使用过程中会产生大量的废弃物和副产物,存在严重的环境问题。采用简约、高效的多相催化技术以实现α,β-不饱和醛、酮化学选择性还原符合当前绿色可持续化学的要求,但催化加氢的难点在于这类分子中既有C=C键又有C=O键,由于C=C键的键能小于C=O键,前者的加氢在热力学上更有利。已有工作表明,在绝大多数金属催化剂(如Pt、 Pd、Ru、Ni等)上α,β-不饱和醛更倾向于加氢生成饱和醛,对不饱和醇的选择性低。此外,该类催化加氢体系大都在有机溶剂中进行,不符合绿色化学的宗旨。
     本部分工作开发了以水作为环境友好反应介质,负载型纳米金催化剂催化α,β-不饱和羰基化合物选择加氢生产α,β-不饱和酮。采用CTAB模板法制备了具有介孔结构的高比表面CeO2载体,以水相Au/CeO2催化剂催化巴豆醛加氢为模型反应,考察了载体比表面积对巴豆醛选择加氢活性及选择性的影响。研究发现,CeO2比表面积越大,反应活性及选择性也越高,可归因于高比表面积有利于氧缺陷位的形成和纳米Au分散度的提高,使得金与载体相互作用增强从而改善并提高了反应活性。对比水与各种有机溶剂作为反应介质的反应性能,发现水作为溶剂的活性和选择性均远高于有机溶剂,反应温度100℃,氢气压力为1.0MPa,采用Au/CeO2为催化剂,水相中反应3.5h巴豆醛几乎完全转化,巴豆醇选择性高达86%。为进一步探讨水对反应的促进作用,对比研究了苯乙烯和苯甲醛竞争反应中不同溶剂对C=C键与C=O键活化能力的差异。在水中苯甲醛1h转化率将近100%,而苯乙烯转化率仅为1%,两者速率比大于99。采用有机溶剂为介质,C=C键加氢能力均高于C=O键。由此推测认为水的存在使得C=O键更易吸附在催化剂表面,在有效抑制C=C键活化的同时显著促进了C=O键的选择还原。需指出的是,水相Au/CeO2催化加氢体系不但适用于α,β-不饱和醛,在α,β-不饱和酮的选择加氢中也能取得较好结果。
     二、纳米金催化CO/H2O选择还原柠檬醛
     以负载型纳米金为催化剂的催化选择加氢反应是近期发现的一类具有重要应用前景的新催化反应体系,与传统贵金属催化剂相比在控制反应选择性方面独具优势。纳米金催化剂最突出的优点是反应条件温和,目标产物选择性高,在精细化学品加氢合成及还原领域有着更为广阔的应用前景,但金所固有的化学惰性(外层d轨道电子全充满)严重制约了其对H2的吸附与活化,使得其实际加氢速率比传统铂族催化剂约低两个数量级。如果能够避开H-H直接活化这一瓶颈步骤,将使得纳米Au催化还原这一绿色过程向真正实现工业化应用又迈进一步。从纳米金催化的低温水煤气变换制氢过程(WGS, CO+H2O→CO2+H2)与有机底物催化加氢反应集成耦合的角度来看,利用WGS反应产生的原位活性氢物种作为氢源为在温和条件下实现面向精细化学品绿色合成的高效、高选择性还原提供了一种可能。以此为依据,最近我们课题组以廉价、易得的CO/H2O为氢源成功地实现了负载型纳米Au催化剂在低温WGS条件下对不饱和硝基化合物及α,β-不饱和醛的高选择性催化还原。为进一步揭示并理解WGS反应与不饱和极性键选择还原的低温耦合机制,本部分工作以柠檬醛选择加氢为模型反应,系统研究并探索了以CO/H2O为氢源,负载型纳米Au催化剂在低温水煤气变换反应条件下对α,β-不饱和羰基化合物的选择催化还原行为。
     系统对比考察了CeO2、TiO2、Al2O3及Fe2O3四类不同金属氧化物负载的纳米Au催化剂催化CO/H2O为氢源催化柠檬醛选择还原制备橙花醇和香叶醇的催化行为,结果显示Au/CeO2较之于其他三个催化剂表现出更好的活性和选择性。同时研究了四种催化剂WGS反应性能,发现柠檬醛选择还原反应速率与100℃时类似液相WGS反应条件下CO的反应速率呈很好的线性关联。在此基础上进一步研究了Au粒径尺寸对Au/CeO2催化柠檬醛选择加氢的影响,通过对Au负载量的调变可实现Au的尺寸大小的调控。随着Au负载量降低,Au颗粒尺寸也相应减小,EXAES表征显示表面配位不饱和的Au随之增多。负载量0.5wt%的Au/CeO2金粒径仅为1.5nm,其对于橙花醇和香叶醇的选择性高达92%。运用原位DRIFTS表征手段,鉴定出原位WGS反应生成的中间物种羟羰基(HO-C=Oδ-)。基于多种谱学表征结果,推测认为小颗粒Au与CeO2接触界面增多将有利于经由WGS反应生成更多的异裂氢,而异裂氢更趋向于对极性C=O键的选择还原,大大提高了目标产物的选择性。
     三、纳米金催化腈/胺直接还原偶联制高级胺
     胺类化合物是医药、农药、染料等许多化学品的重要原料和中间体。一级胺通常由腈催化加氢、硝基化合物还原制得。二级胺和三级胺的来源主要是一级胺与卤代烷在计量碱存在的条件下耦合制得,但此过程中容易发生过度烷基化,而且许多卤代烃毒性很强,会产生大量副产物和废弃物。由腈和胺还原偶联制备高级胺是一种非常高效的反应路线,Pd/C、Rh/C等多相催化体系已有报道。虽由此可高收率的获得高级胺,但腈需要大大过量,底物普适性不强,且需要大量的有机溶剂,三废问题严重,不符合现代绿色化工要求。因此,开发清洁高效的高级胺催化合成体系,具有重要的环保意义和经济价值。
     在对纳米Au催化腈选择加氢制胺类化合物的研究中意外发现体系中引入胺作溶剂后,腈/胺能直接还原偶联高收率制取仲胺。基于该发现,系统研究了不同金属氧化物负载的纳米Au催化剂催化腈/胺还原偶联的催化行为,Au/TiO2显示出最优的催化性能。无溶剂条件下Au/TiO2催化等计量腈/胺直接还原偶联反应,合成芳香族、脂肪族等多达18种二级胺。结合Hammett方程、反应动力学曲线和中间产物反应行为等多种研究手段,合理推测出腈还原胺化反应机理,认为反应中影响产物分布的关键步骤是亚胺的还原,吸附态的亚胺可快速被还原生成二级胺,而游离态的则不会再被活化。受还原胺化制备二级胺反应机理启发,将腈/胺配比定为2:1时,反应体系不但能高效合成芳香族三级胺(得率87~96%),对于脂肪族三级胺,在适当延长反应时间后也有不错的收率。此外,该体系还能够环化偶联合成吲哚及衍生物,表现出极强的底物适用性。升高反应温度与氢气压力,采用有机溶剂甲苯后,还能够利用芳硝基化合物直接与腈偶联高效合成高级胺,实现了“一锅多步法”的简约合成。
The catalytic potential of gold (Au) has long been ignored owing to its high chemical inertness, although it has been used for coinage, jewelry, and other arts for thousand years. However, since Haruta's discovery in the late1980s that well-dispersed gold catalysts can exihibit ultrahigh catalytic activity in the low temperature CO oxidation, intensive and extensive research efforts have been devoted to the subject of Au catalysis. Over the last decase, it has been well established that besides unique catalytic activity for anumber of gas phase reactions including CO oxidation, epoxidation of propylene, and wate-gas-shift, supported gold catalysts also exhibit unique performance in a braod range of liquid phase organic transformations, especially for selective reduction reactions. Against this background, we have studied gold catalysts for selective hydrogenation and reductive amination in liquid fine chemical synthesis. The main conclusions are described as follows:
     1. Gold catalysts for the chemoselective hydrogenation of carbonyl compounds in neat water
     Chemoselective hydrogenation of α,β-unsaturated carbonyl compounds (unsaturated aldehydes or ketones, UALs or UKEs) to the corresponding allylic alcohols is an important step in the industrial synthesis of fine chemicals, particular of pharmaceuticals, perfumes and cosmetics. Although extensively studied, selective allylic alcohol synthesis facilitated by catalytic hydrogenation rather than traditional stoichiometric reduction remains a challenging issue. Conventional hydrogenation catalysts based on supported Pt, Pd, Ru, and Rh produce mainly saturated aldehydes. Although great efforts have been made to overcome this problem over the past decades, catalyst preparation often remains tedious and elusive, and the amount of the modifying agent must be precisely controlled. In addition, most publications are available that address the use of supported metal NPs for producing allylic alcohols from carbonyl compounds hydrogenation in organic solvents. Alternative clean and efficient catalyst that would enable the preferential hydrogenation of the C=O group versus C=C is highly desirable.
     We demonstrate that gold supported on metal oxides can catalyze the reduction of UALs and UKEs to the corresponding allylic alcohols in high yields in aqueous media. Mesostructured ceria with high surface area has been prepared via template-assisted precipitation method. The catalytic properties of the Au/CeO2catalysts with different surface areas in various solvents were investigated using chemoselective hydrogenation of crotonaldehyde (CAL) as a model reaction. Comparing the results of Au/CeO2with those corresponding to Au/CeO2indicated that an increased surface area of ceria support (150m2·g-1) is favorable for obtaining a gold catalyst with enhanced catalytic activity and selectivity, when neat water was applied as the solvent, the specific rate of the initial activity is dramatically boosted to an unprecedented value of226.4μmol-gAu-1·S-1, which is almost3times that of the isopropanol system and nearly one order of magnitude higher than that for cyclohexane, with an excellent selectivity up to ca.90%can be achieved for CROL production. To rationalize the beneficial effect achieved by using H2O as a solvent, an intermolecular competitive hydrogenation of benzaldehyde and styrene using the Au/CeO2catalyst in different media under similar reaction conditions has been investigated. It is revealed that the preferential reduction of benzaldehyde proceeds much more rapidly in water, in sharp contrast to that occurred in organic solvents. Therefore, the intrinsic higher rate for the Au-catalyzed aldehyde reduction in water is responsible for the high chemoselectivity observed. Moreover, this new Au/CeO2catalytic system has also been suitable for the environmentally clean reduction of a range of unsaturated ketones in water.
     2. Gold-catalyzed chemoselective reduction of citral using CO and H2O as the hydrogen source
     Supported gold nanoparticles have recently emerged as active and selective catalysts for a broad array of organic transformations including chemoselective reduction of nitro or unsaturated carbonyl compounds by molecular hydrogen. One critical limitation associated with the current Au-catalyzed hydrogenation process, however, is the unfavorably low hydrogen-delivery capacity compared to the conventional hydrogenation metals. Very recently, our group have developed a highly effective heterogeneous gold-catalyzed, CO/H2O-mediated reduction approach for deoxygenation epoxides, chemoselective reduction unsaturated carbonyl compounds and nitro compounds under very mild conditions. The unique activity of gold catalyst enables us to reasonably conclude that the reaction does not proceed through the seemingly simple reduction of unsaturated carbonyl compounds with H2in situ generated from the gold-catalyzed water-gas shift reaction (CO+H2O→CO2+H2, generally ignited above100℃), and then leads to the present study that seeks to elucidate the mechanism of this transformation.
     Chemoselective reduction of citral using CO and H2O as the hydrogen source was performed over four different metal oxide-supported Au catalysts with similar Au particle sizes (Au/CeO2, Au/TiO2, Au/Fe2O3, and Au/Al2O3). The activity of the supported gold catalysts for citral reduction strongly depends on the nature of the oxide support, ranking in the order Au/CeO2>AU/TiO2> Au/Fe2O3> Au/Al2O3. From the experimentally proven correlation between WGS reaction and citral hydrogenation, the intrinsic higher rate for the Au/CeO2-catalyzed WGS reaction is responsible for the genesis of catalytically active sites for aldehyde reduction.
     On this basis, a series of CeO2-supported gold nanocatalysts deposited with varying gold size were further studied in relation to their performance in the reduction of citral using CO and H2O as the hydrogen source. The size of gold nanoparticle was found decrease with the decrease of gold loading. The results of the activity tests of gold supported on ceria with0.5~8wt%gold loading and catalyst characterization techniques (XRD, TEM, XPS, ICP and XANEs) suggest that selectivity toward the formation of unsaturated alcohol increased with the decrease in the gold particle sizes. In accordance with in situ FTIR experiments for CO/H2O adsorbed, we propose that heterolytic cleavage of H2yield a Hδ+/Hδ-pair at metal/suooprt interface on which higher dispersion of gold is favored, so that the hydrogenation of the polar C=O group increases over that of the non-polar C=C group.
     3. Gold-catalyzed reductive N-alkylation of nitriles with amines
     The amine is one of the most important partial structures of biologically active compounds and functional materials. Mono-and polyamines are produced by catalytic hydrogenation of the corresponding nitriles, or reduction of nitro compounds. The most commonly used method for synthesis of higher amines is the coupling of amines with alkyl halides in the presence of stoichiometric amounts of bases. This procedure, however, can be problematic due to overalkylation, the toxic nature of many alkyl halides, as well as the concomitant formation of large quantities of undesired waste. An alternative environmentally-benign approach is the N-alkylation of amines with readily available nitriles. Nevertheless, despite tremendous efforts in the last two decades, only two examples of heterogeneous catalyst systems for the reductive coupling of nitriles and amines have appeared, and these systems have often suffered from problems such as an excess of nitrile, narrow applicability to a limited number of amines, and the use of organic solvents. From the environmental and atom economical point of view, the development of new practical and efficient one-pot process that can allow the direct synthesis of higher amines under green conditions still remains a major challenge.
     The catalytic activity and selectivity for the solvent-free reaction of equimolar amounts of benzonitrile and aniline to give N-phenylbenzylamine (NPB) were compared by using various catalysts. Among the Au NP catalysts tested, Au/TiO2exhibited the highest activity toward this alkylation to afford NPB in99%yield with a trace of the semi-hydrogenated product N-benzylidenebenzenamine. Structurally diverse nitriles, including aromatic, aliphatic ones react with various amines to give the desired products in good to excellent yields. Furthermore, various structurally diverse nitroarenes, regardless of the presence of electron-withdrawing or donating functional groups, also could be mono-alkylated with benzonitrile to give the corresponding secondary amines in excellent yields. By monitoring the reaction, a plausible mechanism wqas proposed. Motivated by the suggested mechanism, the applicability of this protocol id further extended to the synthesis of tertiary amines through direct amination of various amines using2equiv of nitriles.
引文
[1]C.J. Li. Reactions in Aqueous Media with a focus on C-C Bond Formations. Chem. Rev. [J],1993,93:2023-2035.
    [2]P.T. Anastas, J.C. Warner. Green Chemistry:Theory and Practice. Oxford:Oxford University Press [M],1998.
    [3]闵恩泽,傅军.绿色化学的进展.化学通报[J],1999,1:10-15.
    [4]纪红兵,佘远斌.绿色氧化与还原.北京:中国石化出版社[M],2004:1-21.
    [5]W.W. Myddleton. Fine chemicals in the growing cosmetics industry. Chem. Products and Chem. News [J],1957,20:64-68.
    [6]M. Pagliaro, G.J. Hutchings. Heterogeneous catalysis for fine chemicals. Catal. Sci. Technol. [J],2011,1:1543-1543.
    [7]R.A. Sheldon. Selective catalytic synthesis of fine chemicals:opportunities and trends. J. Mol. Catal. A [J],1996,107:75-83.
    [8]S. Nishimura. Handbook of heterogeneous catalytic hydrogenation for organic synthesis. New York:Wiley,2001,1-44.
    [9]L.L. Wei, L.M. Wei, W.B. Pan, S.P. Leou, M.J. Wu. Selective reduction of alkynes catalyzed by palladium acetate with sodium methoxide as the hydride source. Tetrahedron Lett. [J],2003,44:1979-1981.
    [10]Z. Dobrovolna, P. Kacer, L. Cerveny. Competitive hydrogenation in alkene-alkyne-diene systems with palladium and platinum catalysts. J. Mol. Catal. A [J], 1998,130:279-284.
    [11]B.M. Choudary, M.L. Kantam, A. Rahman, C.R.V. Reddy. Selective reduction of aldehydes to alcohols by calcined Ni-Al hydrotalcite. J. Mol. Catal. A [J],2003, 206:145-151.
    [12]X. Zhang, Y. Geng, B. Han. Asymmetric hydrogenation of ketones catalyzed by zeolite-supported gelatin-Fe complex. Polym. Adv. Technol. [J],2001,12:642-646.
    [13]K. Tahara, E. Nagahara, Y. Itoi. Liquid-phase hydrogenation of carboxylic acid on supported bimetallic Ru-Sn-alumina catalysts. Appl. Catal. A [J],1999,189:243-250.
    [14]A. Vass, J. Dudas, J. Toth, R.S. Varma. Solvent-free reduction of aromatic nitro compounds with alumina-supported hydrazine under microwave irradiation. Tetrahedron Lett. [J],2001,42:5347-5349.
    [15]H.U. Blaser. Heterogeneous catalysis for fine chemicals production. Catal. Today [J],2000,60:161-165.
    [16]A. Chambers, S.D. Jackson, D. Stirling, G. Webb. Selective hydrogenation of cinnamaldehyde over supported copper catalysts. J. Catal. [J],1997,168:301-314.
    [17]A.J. Marehi, D.A. Gordo, A.F. Trasarti, C.R. Apesteguia. Liquid phase hydrogenation of cinnamaldehyde on Cu-based catalysts. Appl. Catal. A [J],2003, 249:53-67.
    [18]Z.M. Miehalska, B. Ostaszewski, J. Zientarska, J.M. Rynkowski. Novel polymer-supported platinum catalyst for selective hydrogenation of crotonaldehyde. J. Mol. Catal. A [J],2002,185:279-283.
    [19]D. Loffreda, F. Delbeeq, F. Vigne, P. Sautet. Chemo-regioselectivity in hetero-geneous catalysis:competitive routes for C=O and C=C hydrogenations from a theoretical approach. J. Am. Chem. Soc. [J],2006,128:1316-1323.
    [20]Z. Poltarzewski, S. Galvagno, R. Pietropaolo, P. Staiti. Hydrogenation of α,β-unsaturated aldehydes over Pt-Sn/Nylon. J.Catal. [J],1986,102:190-198.
    [21]P. Reyes, G. Pecchi, J.L.G. Fierro. Surface structures of Rh-Cu sol-gel catalysts and performance for crotonaldehyde hydrogenation. Langmuir [J],2001,17:522-527.
    [22]M. Bartok, A. Molndr. The chemistry of double-bonded functional groups. New York:Wiley [M],1983,843-865.
    [23]P.L. Mills, P.A. Ramaehandran, R.V. Chaudhari. Multiphase reaction-engineering for fine chemicals and pharmaceutieals. Chem. Eng. Rev. [J],1992,8:1-176.
    [24]A.L. Gemal, J.L. Luehe. Lanthanoids in organic synthesis 6 reduction of alpha- enones by sodium borohydride in the presence of lanthanoid chlorides:synthetic and mechanistic aspects. J. Am. Chem. Soc. [J],1981,103:5454-5459.
    [25]黄宪.有机合成.北京:高等教育出版社[M],1992:305-310.
    [26]P. Claus, A. Bruekner, C. Mohr, H. Hofmeister. Supported gold nanoparticles from quantum dot to mesoscopic size scale:effect of electronic and structural properties on catalytic hydrogenation of conjugated functional groups. J. Am. Chem. Soc. [J],2000,122:11430-11439.
    [27]W.F. Turley, R.J. Adams. Selective hydrogenation of cinnamaldehyde over Pt-Zn-Fe. J. Am. Chem. Soc. [J],1925,47:306-309.
    [28]P.N. Rylander. Hydrogenation method. New York:Academic Press [M],1985, 11-13.
    [29]P. Gallezot, D. Richard. Selective hydrogenation of α,β-unsaturated aldehydes. Catal. Rev.-Sci. Eng. [J],1998,40:81-126.
    [30]Y.A. Ryndin, C.C. Santini, D. Prat, J.M. Basset. Chemo-, region-, and diastereo-selective hydrogenation of oxopromegestone into trimegestone over supported platinoids:effects of the transition metal, support nature, tin additives, and modifiers. J. Catal. [J],2000,190:364-373.
    [31]M. Lashdaf, A.O.I. Krause, M. Lindblad, M. Tiitta, T. Venalainen. Behaviour of palladium and ruthenium catalysts on alumina and silica prepared by gas and liquid phase deposition in cinnamaldehyde hydrogenation. Appl. Catal. A [J], 2003,241:65-75.
    [32]A. Giroir-Fendler, D. Richard, P. Gallezot. Studies in surface science and catalysis. Amsterdam:Elsevier [M],1988,171-172.
    [33]M.T. Tran, J. Massardier, P. Gallezot, B. Imelik. Studies in surface science and catalysis. Amsterdam:Elsevier [M],1982,141-148.
    [34]J.M. Planeix, N. Coustel, B. Coq, V. Brotons, P.S. Kumbhar, R. Dutartre, P. Geneste, P. Bernier, P.M. Ajayan. Application of carbon nanotubes as supports in heterogeneous catalysis. J. Am. Chem. Soc. [J],1994,116:7935-7936.
    [35]F. Coloma, A. Sepulveda-Escribano, F. Rodriguez-Reinoso. Improvement of the selectivity to crotyl alcohol in the gas-phase hydrogenation of crotonaldehyde over platinum/activated carbon catalysts. Appl. Catal. A [J],1995,123:1-5.
    [36]M. Englisch, A. Jentys, J.A. Lercher. Structure sensitivity of the hydrogenation of crotonaldehyde over Pt/SiO2 and Pt/TiO2. J.Catal. [J],1997,166:25-35.
    [37]D. Poondi, M.A. Vannice. The influence of MSI (metal-support interactions) on phenylacetaldehyde hydrogenation over Pt catalysts. J. Mol. Catal. A [J],1997, 124:79-89.
    [38]A. Dandekar, M.A. Vannice. Crotonaldehyde hydrogenation on Pt/TiO2 and Ni/TiO2 SMSI catalysts. J. Catal. [J],1999,183:344-354.
    [39]W. Gruenert, A. Brueckner, H. Hofmeister, P. Claus. Structural properties of Ag/TiO2 catalysts of acrolein hydrogenation. J. Phys. Chem. B [J],2004,108: 5709-5717.
    [40]M. Abid, R. Touroude, D.Y. Murzin. Catalysis of organic reactions. New York: Dekker [M],2003,577-585.
    [41]J. Kaspar, M. Graziani, G.P. Escobar, A. Trovarelli. Chemoselective hydrogenation of unsaturated carbonyl compounds over groups 8 and 9 titania-supported metal catalysts. J. Mol. Catal. [J],1992,72:243-251.
    [42]H. Yoshitake, Y. Iwasawa. Cooperative behavior of two kinds of reaction sites and reaction mechanisms for deuteration of acrolein on SMSI platinum/niobium pentoxide catalyst. J. Catal. [J],1990,125:227-242.
    [43]P. Reyes, G. Pecchi, J.L.G. Fierro. Surface Structures of Rh-Cu Sol-Gel catalysts and performance for crotonaldehyde hydrogenation. Langmuir [J],2001,17:522-527.
    [44]W.E. Passcoe, J.F. Stenbery. Seventh Conf. Catal. in Org. Syntheses, Chicago. New York:Academic Press [C],1978.
    [45]F. Delbecq, P. Sautet. Competitive C=C and C=O adsorption of α,β-unsaturated aldehydes on Pt and Pd surfaces in relation with the selectivity of hydrogenation reactions:a theoretical approach. J. Catal. [J],1995,152:217-236.
    [46]I. Horiuchi, M. Polanyi. Mechanism of α,β-unsaturated aldehydes selective hydrogenation. Trans. Farad Soc. [J],1934,30:1164-1167.
    [47]B. Coq, F. Figueras, P. Geneste. Hydrogenation of α,β-unsaturated carbonyls: acrolein hydrogenation on group VIII metal catalysts. J. Mol. Catal. [J],1993,78: 211-226.
    [48]C.M. Pradier, T. Birehem, Y. Berthier. Hydrogenation of 3-methylbutenal on Pt(110) comparison with Pt(111). Catal. Lett. [J],1994,29:371-380.
    [49]T. Birchem, C.M. Pradier, Y. Berthier, G. Cordier. Reactivity of 3-methyl-crotonaldehyde on Pt(111). J. Catal. [J],1994,146:503-510.
    [50]P. Gallezot, A. Giroir-Fendler, D. Richard. Chemoselectivity in cinnamaldehyde hydrogenation induced by shape selectivity effects in platinum-Y zeolite catalysts. Catal. Lett. [J],1990,5:169-174.
    [51]D. Tas, R.F. Parton, K. Vercruysse, P.A. Jacobs. Studies in surface science and catalysis. Amsterdam:Elsevier [M],1997,1261-1268.
    [52]V. Satagopan, S.B. Chandalia. Selectivity aspects in the multi-phase hydrogenation of α,β-unsaturated aldehydes over supported noble metal catalysts: part I. J. Chem. Tech. Biotechnol. [J],1994,59:257-263.
    [53]S.S. Insaf, D.T. Wieiak, Facile non-racemizing route for the N-alkylation of hindered secondary amines. Synthesis [J],1999,3:435-440.
    [54]M. Swamura, Y. Ito. Catalytic asymmetric synthesis by means of secondary interaction between chiral ligands and substrates. Chem. Rev. [J],1992,92:857-871.
    [55]R.N. Salvatore, C.H. Yoon, K.W. June. Synthesis of secondary amines. Tetrahedron [J],2001,57:7785-7811.
    [56]V.C.Grey. Catalytic hydrogenation of acetonitrile to ethylamines. US 4090972 [P], 1978-12-08.
    [57]H.U. Blaser, C Malan, B. Pugin, F. Spindler, H. Steiner, M. Studer. Selective Hydrogenation for Fine Chemicals:Recent Trends and New Developments. Adv. Catal. Synth. [J],2003,345:103-151.
    [58]B. Cornils, W.A. Herrmann, R.W. Eckl. Industrial aspects of aqueous catalysis. J. Mol. Catal. A [J],1997,116:27-33.
    [59]W.A. Herrmann, C.W. Kohlpaintner. Water-Soluble Ligands, Metal Complexes, and Catalysts:Synergism of Homogeneous and Heterogeneous Catalysis. Angew. Chem. Int. Ed. [J],1993,32:1524-1544.
    [60]P.J. Baricelli, G. Rodriguez, M. Rodriguez, E. Lujano, F. Lopez-Linares. Synthesis, characterization and aqueous-biphase hydrogenation of olefins by the ruthenium complexes Ru(CO)3(TPPMS)2 and RuH2(CO)(TPPMS)3. Appl. Catal. A [J],2003,239:25-34.
    [61]K. Chaudhari, B. Rajaram, A.J. Chandwadkar. Beckmann rearrangement of cyclohexanone oxime over mesoporous Si-MCM-41 and Al-MCM-41 molecular sieves. J. Mol. Catal. A [J],2002,177:247-253.
    [62]N. SYED. Processes to produce caprolactam from butadiene. Process Econonics Program Review [J/O],1999,95:1-2.
    [63]孙锦宜.化工产品大全.北京:化学工业出版社[M],1998.
    [64]G. Cordier, P. Fouillous, N. Laurain. Catalyst for the hydrogenation of nitriles to amines, preparation process thereof and hydrogenation process making use thereof. US:5840989 [P],1998-11-24.
    [65]G.D. Yadav, M.R. Kharkara. Liquid-phase hydrogenation of saturated and unsaturated nitriles:Activities and selectivies of bimetallic nickel-copper and nickeliron catalysts supported on silica. Appl. Catal. A [J],1995,126:115-123.
    [66]何光文,陈宏博,王伟杰.2,3,5,6-四氟苯胺的合成.精细化工中间体[J],2008,38:40-41.
    [67]H.G. Zengel, M.J. Bergfeld. Preparation of p-Phenylenediamine from tereph-thalic ester. Ger:2216115 [P],1973-08-21.
    [68]单玉华,邬国英Hofmann降解法合成对苯二胺.江苏石油化工学院学报[J],2002-3:1-4.
    [69]S.R. Schmidt. Catalysis of organic reactions. Boca Raton:CRC Press [M],2006.
    [70]L.F. Albright. Commercial processes for hydrogenation fatty oils. Chem. Eng. [J], 1967,74:249-250.
    [71]H. Greenfield. Metal sulfide catalysis for hydrogenation of halonitroenzenes to haloanilines. J. Org. Chem. [J],1967,32:3670-3678.
    [72]T. Baneriee. Homogeneous reduction of nitrobenzene. Chem. Ind. [J],1979,26: 212-216.
    [73]R.C. Ryan. Metal cluster catalysis, selective reduction of nitrobenzene catalyzed by rhodium carbonyl cluster anious evidence for water gas shift reaction. J. Mol. Catal. [J],1979,5:319-325.
    [74]P.N. Rylander. Catalytic Hydrogenation over Platinum Metals, New York: Academic Press [M],1967.
    [75]S. Nishimura. Handbook of Heterogeneous Catalytic Hydrogenation for Organic Synthesis. New York:Wiley [M],2001.
    [76]A.S. Sheldon, H. van Bekkum. Fine Chemicals through Heterogeneous Catalysis. Weinheim:Wiley-VCH [M],2001,384.
    [77]C.F. Lane. Sodium cyanoborohydride-A highly selective reducing agent for organic functional groups. Synthesis [J],1975,3:135-146.
    [78]R.F. Boroh, M.D. Bernstein, H.D. Durst. Cyanohydridoborate anion as a selective reducing agent. J. Am. Chem. Soc. [J],1971,93:2897-2904.
    [79]A.F. Abdel-Magid, K.G. Carson, B.D. Harris. Reductive amination of aldehydes and ketones with sodium triacetoxyborohydride studies on direct and indirect reductive amination procedures. J. Org. Chem. [J],1996,61:3849-3862.
    [80]J. Gebauer, P. Dewi, S. Blechert. Stereoselective synthesis of substituted N-heterocycles via sequential cross metathesis-reductive cyclization. Tetrahedron Lett. [J],2005,46:43-46.
    [81]T. Gross, A.M. Seayad, M. Ahmad, M. Beller. Synthesis of primary amines: first homogeneously catalyzed reductive amination with ammonia. Org. Lett. [J], 2002,4:2055-2058.
    [82]D. Xiao, X. Zhang. Highly enantioselective hydrogenation of acyclic imines catalyzed by Ir-f-Binaphane complexes. Angew. Chem. Int. Ed. [J],2001,40: 3425-3428.
    [83]A. Trifonova, J.S. Diesen, C.J. Chapman, P.G. Andersson. Application of phosphine-oxazoline ligands in Ir-catalyzed asymmetric hydrogenation of acyclic aromatic N-Arylimines. Org. Lett. [J],2004,6:3825-3827.
    [84]R. Kadyrov, T.H. Riermeier. Highly enantioselective hydrogen-transfer reductive amination:Catalytic asymmetric synthesis of primary amines. Angew. Chem. Int. Ed. [J],2003,42:5472-5474.
    [85]B.C. Ranu, A. Majee, A. Sarkar. One-pot reductive amination of conjugated aldehydes and ketones with silica gel and zinc borohydride. J. Org. Chem. [J], 1998,63:370-373.
    [86]I. Saxena, R. Borah, J.C. Sarma. Reductive amination of aromatic aldehydes and ketones with nickel boride. J. Chem. Soc. [J], Perkin Trans.12000,503.
    [87]R.A.Stalker, T.E. Munsch, J.D. Tran, X.P. Nie, R. Warmuth, A. Beatty, C.B. Aakeroy. Asymmetric synthesis of two new conformationally constrained lysine derivatives. Tetrahedron [J],2002,58:4837-4849.
    [88]F. Machetti, F.M. Cordero, F.D. Sarlo, A.M. Papini, M.C. Alcaro, A. Brandi. Synthesis of Free and Nα-Fmoc-/Nγ-Boc-Protected (2S,4S)- and (2S,4R)-4-Aminopipecolic Acids. Eur. J. Org. Chem. [J],2004,2928-2935.
    [89]F. Trigalo, R. Joyeau, V.C. Pham, J.J. Youte, P. Rasoanaivoa, F. Frappier, Synthesis of modulators of chloroquine resistance in Plasmodium falciparum, analogues of malagashanine from strychnobrasiline. Tetrahedron [J],2004,60: 5471-5474.
    [90]D.J. Denhart, R.J. Mattson, J.L.Ditta, J.E. Macor. One-pot synthesis of homotryptamines from indoles. Tetrahedron Lett. [J],2004,45:3803-3805.
    [91]V. Santagada, F. Frecentese, E. Perrisutti, F. Fiorino, B. Severino, O. Cirillo, S. Terracciano, G. Caliendo. Efficient microwave combinatorial parallel and nonparallel synthesis of N-alkylated glycine methyl esters as peptide building blocks. J. Comb. Chem. [J],2005,7:618-621.
    [92]S. Hoffmann, A.M. Seayad, B. List. A powerful Br(?)nsted acid catalyst for the organocatalytic asymmetric transfer hydrogenation of imines. Angew. Chem. Int. Ed. [J],2005,44:7424-7427.
    [93]G.C. Bond, C. Louis, D.T. Thompson. Catalysis by gold. Imperial College Press [M].2006.
    [94]X. Lai, T.P.St Clair, M. Valden, D.W. Goodman. Scanning tunneling microscopy studies of metal clusters supported on TiO2 (110):morphology and electronic structure. Prog. Surf. Sci. [J],1998,59:25-52.
    [95]M. Haruta, T. Kobayashi, H. Sano, N. Yamada. Novel gold catalysts for the oxidation of carbon-monoxide at a temperature far below 0℃. Chem. Lett. [J], 1987,43:405-408.
    [96]A.C. Gluhoi, S.D. Lin, B.E. Nieuwenhuys. The beneficial effect of the addition of base metal oxides to gold catalysts on reactions relevant to air pollution abatement. Catal. Today [J],2004,90:175-181.
    [97]S. Schimpf, M. Lucas, C. Mohr, U. Rodemerck, A. Bruckner, J. Radnik, H. Hofmeister, P. Claus. Supported gold nanoparticles:in-depth catalyst character-rization and application in hydrogenation and oxidation reactions. Catal. Today [J],2002,72:63-78.
    [98]D.T. Thompson. An overview of gold-catalysed oxidation processes. Gold Bull. [J],2006,38:231-240.
    [99]A.S.K. Hashmi, G.J. Hutchings. Gold catalysis. Angew. Chem. Int. Ed. [J],2006, 45:7896-7936.
    [100]M. Valden, X. Lai, D.W. Goodman. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science [J],1998,281: 1647-1650.
    [101]N. Lopez, T.V.W. Janssens, B.S. Clausen, Y. Xu, M. Mavrikakis, T. Bligaard, J.K. Norskov. On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation. J. Catal. [J],2004,223:232-235.
    [102]H.G. Boyen, G. Kastle, F. Weigl, B. Koslowski, C. Dietrich, P. Ziemann, J.P. Spatz, S. Riethmuller, C. Hartmann, M. Moller. Oxidation-resistant gold-55 clusters. Science [J],2002,297:1533-1536.
    [103]N. Lopez, T.V.W. Janssens, B.S. Clausen, Y. Xu, M. Mavrikakis, T. Bligaard, J.K. Norskov. On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation. J. Catal. [J],2004,223:232-235.
    [104]N. Lopez, J.K. Norskov. Catalytic CO oxidation by a gold nanoparticle:A density functional study. J. Am. Chem. Soc. [J],2002,124:11262-11263.
    [105]N. Lopez, J.K. Norskov, T.V.W. Janssens, A. Carlsson, A. Puig-Molina, B.S. Clausen, J.D. Grunwaldt. The adhesion and shape of nanosized Au particles in a Au/TiO2 catalyst. J. Catal. [J],2004,225:86-94.
    [106]M.M. Schubert, S. Hackenberg, A.C. van Veen, M. Muhler, V. Plzak, R.J. Behm. CO oxidation over supported gold catalysts-"inert" and "active" support materials and their role for the oxygen supply during reaction. J. Catal. [J],2001,197:113-122.
    [107]M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M.J. Genet, B. Delmon. Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3, and Co3O4. J. Catal. [J],1993,144:175-192.
    [108]G.J. Hutchings, M.S. Hall, A.F. Carley, P. Landon, B.E. Solsona, C.J. Kiely, A. Herzing, M. Makkee, J.A. Moulijn, A. Overweg, J.C. Fierro-Gonzalez, J. Guzman, B.C. Gates. Role of gold cations in the oxidation of carbon monoxide catalyzed by iron oxide-supported gold. J. Catal. [J],2006,242:71-81.
    [109]M. Chen, Y. Cai, Z. Yan, D.W. Goodman. On the origin of the unique properties of supported Au nanoparticles. J. Am. Chem. Soc. [J],2006,128:6341-6346.
    [110]M.I. Dominguez, M. Sanchez, M.A. Centeno, M. Montes, J.A. Odriozola. CO oxidation over gold-supported catalysts-coated ceramic foams prepared from stainless steel wastes. Appl. Catal. A [J],2006,302:96-103.
    [111]M. Haruta, T. Kobayashi, H. Sano, N. Yamada. Novel gold catalysts for the oxidation of carbon-monoxide at a temperature far below 0-Degrees-C. Chem. Lett. [J],1987,4:405-408.
    [112]L.D. Socaciu, J. Hagen, T.M. Bernhardt, L. Woste, U. Heiz, H. Hakkinen, U. Landman. Catalytic CO oxidation by free Au2-:Experiment and theory. J. Am. Chem. Soc. [J],2003,125:10437-10445.
    [113]W. Yan, S. Brown, Z. Pan, S.M. Mahurin, S.H. Overbury, S. Dai. Ultrastable gold nanocatalyst supported by nanosized non-oxide substrate. Angew. Chem. Int. Ed. [J],2006,45:3614-3618.
    [114]G. Hutchings. New directions in gold catalysis. Gold Bull. [J],2004,37:3-11.
    [115]L. Ilieva, G. Pantaleo, I. Ivanov, A.M. Venezia, D. Andreeva. Gold catalysts supported on CeO2 and CeO2-Al2O3 for NOX reduction by CO. Appl. Catal. B [J], 2006,65:101-109.
    [116]D. Niakolas, C. Andronikou, C. Papadopoulou, H. Matralis. Influence of metal oxides on the catalytic behavior of Au/Al2O3 for the selective reduction of NOx by hydrocarbons. Catal. Today [J],2006,112:184-187.
    [117]B.E. Solsona, T. Garcia, C. Jones, S.H. Taylor, A.F. Carley, G.J. Hutchings. Supported gold catalysts for the total oxidation of alkanes and carbon monoxide. Appl. Catal. A [J],2006,312:67-76.
    [118]D.I. Enache, J.K. Edwards, P. Landon, B. Solsona-Espriu, A.F. Carley, A.A. Herzing, M. Watanabe, C.J. Kiely, D.W. Knight, G.J. Hutchings. Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2 catalysts. Science [J],2006,311:362-365.
    [119]N.S. Patil, B.S. Uphade, P. Jana, S.K. Bharagava, V.R. Choudhary. Epoxidation of styrene by anhydrous t-butyl hydroperoxide over reusable gold supported on MgO and other alkaline earth oxides. J. Catal. [J],2004,223:236-239.
    [120]P. Lignier, F. Morfin, S. Mangematin, L. Massin, J.L. Rousset, V. Caps. Stereoselective stilbene epoxidation over supported gold-based catalysts. Chem. Commun. [J],2007,2:186-188.
    [121]L. Prati, M. Rossi. Gold on carbon as a new catalyst for selective liquid phase oxidation of diols. J. Catal. [J],1998,176:552-560.
    [122]F. Porta, L. Prati. Selective oxidation of glycerol to sodium glycerate with gold-on-carbon catalyst:an insight into reaction selectivity. J Catal. [J],2004,224:397 -403.
    [123]D. Wang, A. Villa, F. Porta, D. S. Su, L. Prati. Single-phase bimetallic system for the selective oxidation of glycerol to glycerate. Chem. Commun. [J],2006,18: 1956-1958.
    [124]S.K. Klitgaard, K. Egeblad, U.V. Mentzel, A.G. Popov, T. Jensen, E. Taarning, I.S. Nielsen, C.H. Christensen. Oxidations of amines with molecular oxygen using bifunctional gold-titania catalysts. Green Chem. [J],2008,10:419-423.
    [125]A. Grirrane, A. Corma, H. Garcia. Gold-catalyzed synthesis of aromatic azo compounds from anilines and nitroaromatics. Science [J],2008,322:1661-1664.
    [126]A. Corma, P. Serna. Chemoselective hydrogenation of nitro compounds with supported gold Catalysts. Science [J],2006,313:332-334.
    [127]F.Z. Su, Y.M. Lu, L.C. Wang, Y. Cao, H.Y. He, K.N. Fan. Ga-Al mixed-oxide-supported gold nanoparticles with enhanced activity for aerobic alcohol oxidation. Angew. Chem. Int. Ed [J],2008,47:334-337.
    [128]L. He, L.C. Wang, H. Sun, J. Ni, Y. Cao, H.Y. He, K.N. Fan. Efficient and selective room-temperature gold-catalyzed reduction of nitro compounds with CO and H2O as the hydrogen source. Angew. Chem. Int. Ed [J],2009,48:9538-9542.
    [129]L. He, L.C. Wang, H. Sun, J. Ni, Y. Cao, H.Y. He, K.N. Fan. A novel gold-catalyzed chemoselective reduction of α,β-unsaturated aldehydes using CO and H2O as the hydrogen source. Chem. Commun. [J],2010,46:1553-1556.
    [130]F.Z. Su, L. He, J. Ni, Y. Cao, H.Y. He, K.N. Fan. Efficient and chemoselective reduction of carbonyl compounds with supported gold catalysts under transfer hydrogenation conditions. Chem. Commun. [J],2008,44:3531-3533.
    [131]C. Mohr, H. Hofmeister, P. Claus. The influence of real structure of gold catalysts in the partial hydrogenation of acrolein. J. Catal. [J],2003,213:86-94.
    [132]C. Milone, R. Ingoglia, L. Schipilliti, C. Crisafulli, G. Neri, S. Galvagno. Selective hydrogenation of α,β-unsaturated ketone to α,β-unsaturated alcohol on gold-supported iron oxide catalysts:Role of the support. J. Catal. [J],2005,236: 80-90.
    [133]B. Campo, M. Volpe, S. Ivanova, R. Touroude. Selective hydrogenation of crotonaldehyde on Au/HSA-CeO2 catalysts. J. Catal. [J],2006,242:162-171.
    [1]S. Nishimura. Handbook of heterogeneous catalytic hydrogenation for organic synthesis. Chichester:Wiley [M],2001,178.
    [2]J.C. Serrano-Ruiz, G.W. Huber, M.A. Sanchez-Castillo, J.A. Dumesic, F. Rodriguez-Reinoso, A. Sepulveda-Escribano. Effect of Sn addition to Pt/CeO2-Al2O3 and Pt/Al2O3 catalysts:An XPS, Sn-119 Mossbauer and microcalorimetry study. J. Catal. [J],2006,241:378-388.
    [3]M.T. Schaal, A.C. Pickerell, C.T. Williams, J.R. Monnier. Characterization and evaluation of Ag-Pt/SiO2 catalysts prepared by electroless deposition. J. Catal. [J],2008,254:131-143.
    [4]L. Sordelli, R. Psaro, G. Vlaic, A. Cepparo, S. Recchia, C. Dossi, A. Fusi, R. Zanoni. EXAFS studies of supported Rh-Sn catalysts for citral hydrogenation. J. Catal. [J],1999,182:186-198.
    [5]U. K. Singh, M.A. Vannice. Kinetics of liquid-phase hydrogenation reactions over supported metal catalysts-a review. Appl. Catal. A [J],2001,213:1-24.
    [6]P. Claus., A. Bruckner, C. Mohr, H. Hofmeister. Upported gold nanoparticles from quantum dot to mesoscopic size scale:Effect of electronic and structural properties on catalytic hydrogenation of conjugated functional groups. J. Am. Chem. Soc. [J],2000,122:11430-11439.
    [7]C. Milone, R. Ingaglia, M.L. Tropeano, G. Neri, S. Galvagno. Selective liquid phase hydrogenation of citral on Au/Fe2O3 catalysts. Chem. Commun. [J],2003, 7:868-869.
    [8]J.E. Bailie, G.J. Hutchings. Promotion by sulfur of gold catalysts for crotyl alcohol formation from crotonaldehyde hydrogenation. Chem. Commun. [J], 1999,21:2151-2152.
    [9]J. Lenz, B.C. Campo, M. Alvarez, M.A. Volpe. Liquid phase hydrogenation of alpha,beta-unsaturated aldehydes over gold supported on iron oxides. J. Catal. [J],2009,267:50-56.
    [10]B. Campo, G. Santori, C. Petit, M.A. Volpe. Liquid phase hydrogenation of crotonaldehyde over Au/CeO2 catalysts. Appl. Catal. A [J],2009,359:79-83.
    [11]H.Y. Chen, C.T. Chang, S.J. Chiang, B.J. Liawc, Y.Z. Chen. Selective hydrogenation of crotonaldehyde in liquid-phase over Au/Mg2AlO hydrotalcite catalysts. Appl. Catal. A [J],2010,381:209-215.
    [12]Q.Y. Yang, Y. Zhu, L. Tian, S.H. Xie, Y. Pei, H. Li, H.X. Li, M.H. Qiao, K.N. Fan. Preparation and characterization of Au-In/APTMS-SBA-15 catalysts for chemoselective hydrogenation of crotonaldehyde to crotyl alcohol. Appl. Catal. A [J],2009,369:67-76.
    [13]C.J. Li, T.H. Chan. Comprehensive organic reactions in aqueous media. New Jersey:Wiley [M],2007,2.
    [14]C. Wang, C.Q. Li, X.F. Wu, A. Pettman, J.L. Xiao. pH-Regulated asymmetric transfer hydrogenation of quinolines in water. Angew. Chem. Int. Ed. [J],2009, 48:6524-6528.
    [15]L. He, J. Ni, L.C. Wang, F.J. Yu, Y. Cao, H.Y. He, K.N. Fan. Aqueous room temperature gold-catalyzed chemoselective transfer hydrogenation of aldehydes. Chem. Eur. J. [J],2009,15:11833-11837.
    [16]H. Yamada, H. Urano, S. Goto. Selective hydrogenation of unsaturated aldehyde in gas-liquid-liquid-solid four phases. Chem. Eng. Sci. [J],1999,54:5231-5235.
    [17]Y.J. Wang, J.M. Ma, M.F. Luo, P. Fang, M. He. Preparation of high-surface area nano-CeO2 by template-assisted precipitation method. J. Rare Earth. [J],2007, 25:58-62.
    [18]X.S. Huang, H. Sun, L.C. Wang, Y.M. Liu, K.N. Fan, Y. Cao. Morphology effects of nanoscale ceria on the activity of Au/CeO2 catalysts for low-temperature CO oxidation. Appl. Catal. B [J],2009,90:224-232.
    [19]J. Xu, L.C. Wang, Y.M. Liu, Y. Cao, H.Y. He, K.N. Fan. Mesostructured CeO2 as an effective catalyst for styrene synthesis by oxidative dehydrogenation of ethylbenzene. Catal. Lett. [J],2009,133:307-313.
    [20]J.H. Blank, J. Beckers, P.F. Collignon, G. Rothenberg. Redox kinetics of ceria-based mixed oxides in selective hydrogen combustion. Chemphyschem [J], 2007,8:2490-2497.
    [21]Q. Fu, H. Saltsburg, M. Flytzani-Stephanopoulos. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science [J],2003,5635:935-938.
    [22]F. Boccuzzi, A. Chiorino, M. Manzoli, D. Andreeva, T. Tabakova. FTIR study of the low-temperature water-gas shift reaction on Au/Fe2O3 and Au/TiO2 catalysts. J. Catal. [J],1999,1:176-185.
    [23]S. Mukherjee, M.A. Vannice. Solvent effects in liquid-phase reactions-I. Activity and selectivity during citral hydrogenation on Pt/SiO2 and evaluation of mass transfer effects. J. Catal. [J],2006,243:108-130.
    [24]C. L. Young. Hydrogen and Deuterium. Pergamon:Solubility data series [M], 1981, Volume 5/6.
    [25]H. Rojas, G. Borda, J.J. Martinez, J. Valencia, P. Reyesc. Liquid phase hydrogenation of citral and intermediaries over Ir/TiO2/SiO2 catalysts:Kinetic study. J. Mol. Catal. A [J],2008,286:70-78.
    [26]C. Milone, R. Ingoglia, L. Schipilliti, C. Crisafulli, G. Neri, S. Galvagno. Selective hydrogenation of α,β-unsaturated ketone to α,β-unsaturated alcohol on gold-supported iron oxide catalysts:Role of the support. J. Catal. [J],2005,236: 80-90.
    [27]C. Milone, R. Ingoglia, A. Pistone, G. Neri, F. Frusteri and S. Galvagno. Selective hydrogenation of α,β-unsaturated ketones to α,β-unsaturated alcohols on gold-supported catalysts. J. Catal. [J],2004,222,348-356.
    [1]M. Haruta, T. Kobayashi, H. Sano, N. Yamada. Novel gold catalysts for the oxidation of carbon-monoxide at a temperature far below 0℃. Chem. Lett. [J], 1987,43:405-408.
    [2]A.S.K. Hashmi, G.J. Hutchings. Gold catalysis. Angew. Chem. Int. Ed. [J], 2006,45:7896-7936,
    [3]A. Corma, P. Serna. Chemoselective hydrogenation of nitro compounds with supported gold Catalysts. Science [J],2006,313:332-334.
    [4]C. Milone, R. Ingaglia, M.L. Tropeano, G. Neri, S. Galvagno. Selective liquid phase hydrogenation of citral on Au/Fe2O3 catalysts. Chem. Commun. [J],2003, 7:868-869.
    [5]J.E. Bailie, G.J. Hutchings. Promotion by sulfur of gold catalysts for crotyl alcohol formation from crotoaldehyde hydrogenation. Chem. Commun. [J], 1999,21:2151-2152.
    [6]P. Serna, P. Conception, A. Corma. Design of highly active and chemoselective bimetallic gold-platinum hydrogenation catalysts through kinetic and isotopic studies. J. Catal. [J],2009,265:19-25.
    [7]F.Z. Su, Y.M. Lu, L.C. Wang, Y. Cao, H.Y. He, K.N. Fan. Ga-Al mixed-oxide-supported gold nanoparticles with enhanced activity for aerobic alcohol oxidation. Angew. Chem. Int. Ed [J],2008,47:334-337.
    [8]F.Z. Su, L. He, J. Ni, Y. Cao, H.Y. He, K.N. Fan. Efficient and chemoselective reduction of carbonyl compounds with supported gold catalysts under transfer hydrogenation conditions. Chem. Commun. [J],2008,44:3531-3533.
    [9]L. He, J. Ni, L.C. Wang, F.J. Yu, Y. Cao, H.Y. He, K.N. Fan. Aqueous room temperature gold-catalyzed chemoselective transfer hydrogenation of aldehydes. Chem. Eur. J. [J],2009,15:11833-11837.
    [10]X.B. Lou, L. He, Y. Qian, Y.M. Liu, Y. Cao, K.N. Fan. Highly chemo- and regioselective tansfer reduction of aromatic nitro compounds using ammonium formate catalyzed by supported gold nanoparticles. Adv. Synth. Catal. [J],2011, 353:281-286.
    [11]L. He, L.C. Wang, H. Sun, J. Ni, Y. Cao, H.Y. He, K.N. Fan. Efficient and selective room-temperature gold-catalyzed reduction of nitro compounds with CO and H2O as the hydrogen source. Angew. Chem. Int. Ed [J],2009,48:9538-9542.
    [12]L. He, L.C. Wang, H. Sun, J. Ni, Y. Cao, H.Y. He, K.N. Fan. A novel gold-catalyzed chemoselective reduction of a,P-unsaturated aldehydes using CO and H2O as the hydrogen source. Chem. Commun. [J],2010,46:1553-1556.
    [13]P. Reyes, H. Rojas, G. Pecchi, J.L.G. Fierro. Liquid-phase hydrogenation of citral over Ir-supported catalysts. J. Mol. Catal. A [J],2002,179:293-299.
    [14]D. Divakar, D. Manikandan, T. Sivakumar. Vapor-phase selective hydrogenation of citral over Pd/bentonite:effect of reduction method. J. Chem. Technol. Biotechnol. [J],2008,83:1472-1478.
    [15]R. Malathi, R.P. Viswanath. Citral hydrogenation on supported platinum catalysts. Appl. Catal. A [J],2001:208:323-327.
    [16]U.K. Singh, M.A. Vannice. Liquid-phase citral hydrogenation over SiO2-supported group VIII metals. J. Catal. [J],2001,199:73-84.
    [17]B.B. Bachiller, R.I. Rodriguez, R.A. Guerrero. Influence of Mg and Ce addition to ruthenium based catalysts used in the selective hydrogenation of α,β-unsaturated aldehydes. Appl. Catal. A [J],2001,205:227-237.
    [18]R.J. Davis. All that glitters is not Au0. Science [J],2003,301:926-927.
    [19]K. Okazaki, S. Ichikawa, Y. Maeda, M. Haruta, M. Kohyama. Electronic structures of Au supported on TiO2. Appl. Catal. A [J],2005,291:45-54.
    [20]J.T. Calla, R.J. Davis. X-ray absorption spectroscopy and CO oxidation activity of Au/Al2O3 treated with NaCN. Catal. Lett. [J],2005,99:21-26.
    [21]J.C. Fierro-Gonzalez, B.G. Anderson, K. Ramesh, C.P. Vinod, J.W. Niemant-sverdriet, B.C. Gates. Zeolite NaY-supported gold complexes prepared from Au(CH3)2(C5H7O2):reactivity with carbon monoxide. Catal. Lett. [J],2005,101: 265-274.
    [22]R. Zanella, S. Giorgio, C.H. Shin, C.R. Henry, C. Louis. Characterization and reactivity in CO oxidation of gold nanoparticles supported on TiO2 prepared by deposition-precipitation with NaOH and urea. J. Catal. [J],2004,222:357-367.
    [23]G. C. Bond, D. T. Thompson. Catalysis by Gold. Catal. Rev.-Sci. Eng. [J],1999, 41:319-388.
    [24]P. Conception, S. Carrettin, A. Corma. Stabilization of cationic gold species on Au/CeO2 catalysts under working conditions. Appl. Catal. A [J],2006,1:42-45.
    [25]A. Luengnaruemitchai, S. Osuwan, E. Gulari. Comparative studies of low-temperature water-gas shift reaction over Pt/CeO2, Au/CeO2, and Au/Fe2O3 catalysts. Catal. Commun. [J],2003,4:215-221.
    [26]J. Guzman, B.C. Gates. Simultaneous presence of cationic and reduced gold infunctioning MgO-supported CO oxidation catalysts:Evidence from X-ray absorption spectroscopy. J. Phys. Chem. B [J],2002,106:7659-7665.
    [27]J. Polte. Mechanism of gold nanoparticleformation in the classical citrate synthesis methodderived from coupled in situ XANES and SAXS evaluation. J. Am. Chem. Soc. [J],2010,132:1296-1301.
    [28]S. Wei, H. Oyanagi, W. Liu, T. Hu, S. Yin, G. Bian. Local structure of liquid gallium studied by X-ray absorption fine structure. J. Aon-Crystal Solids [J], 2000,275:160-168.
    [29]A. Carlsson, A. Puig-Molina, T.V.W. Janssens. New method for analysis of nanoparticle geometry in supported fcc metal catalysts with scanning transmission electron microscopy. J. Phys. Chem. B [J],2006,110:5286-5293.
    [30]J. Oudar. Hydrogenation reaction on platinum single crystals. J. Phys. Chem. [J], 1996,197:125-136.
    [31]S. Mukherjee, M.A. Vannice. Solvent effects in liquid-phase reactions:II. Kinetic modeling for citral hydrogenation. J. Catal. [J],2006,243:131-148.
    [32]Q. Fu, W.L. Deng, H. Saltsburg, M. Flytzani-Stephanopoulos. Activity and stability of low-content gold-cerium oxide catalysts for the water-gas shift reaction. Appl. Catal. B [J],2005,56:57-68.
    [33]P. Panagiotopoulou, A. Christodoulakis, D.I. Kondarides, S. Boghosian. Particle size effects on the reducibility of titanium dioxide and its relation to the water-gas shift activity of Pt/TiO2 catalysts. J. Catal. [J],2006,240:114-125.
    [34]L. Delannoy, N. El Hassan, A. Musi, N.N. Le To, J. Krafft, C. Louis. Preparation of supported gold nanoparticles by a modified incipient wetness impregnation method. J. Phys. Chem. B [J],2006,110:22471-22478.
    [35]R. Zanella, A. Sandoval, P. Santiago, V.A. Basiuk, J.M. Saniger. New Preparation Method of Gold Nanoparticles on SiO2. J. Phys. Chem. B [J],2006, 110:8559-8565.
    [36]T.F. Jaramillo, S.H. Baeck, B.R. Cuenya, E.W. McFarland. Catalytic activity of supported Au nanoparticles deposited from block copolymer micelles. J. Am. Chem. Soc. [J],2003,125:7148-7149.
    [37]T. Yoshisa, T. Okano, Y. Ueda. Activation of water molecule.1. Intermediates bearing on the water gas shift reaction catalyzed by Platinum(0) complexes. J. Am. Chem. Soc. [J],1978,100:3941-3942
    [38]S.D. Senanayake, D. Stacchiola, P. Liu, C. Buddie Mullins, J. Hrbek, J.A. Rodriguez. Interaction of CO with OH on Au(111):HCOO, CO3, and HOCO as key intermediates in the water-gas shift reaction. J. Phys. Chem. C [J],2009, 113:19536-19544.
    [39]K. Shimizu, Y. Miyamoto, T. Kawasaki, T. Tanji, Y. Tai, A. Satsuma. Chemoselective hydrogenation of nitroaromatics by supported gold catalysts: mechanistic reasons of size- and support-dependent activity and selectivity. J. Phys. Chem. C [J],2009,113:17803-17810.
    [1]S.S. Insaf, D.T. WITIAK, Facile non-racemizing route for the N-alkylation of hindered secondary amines. Synthesis [J],1999,3:435-440.
    [2]M. Swamura, Y. Ito. Catalytic asymmetric synthesis by means of secondary interaction between chiral ligands and substrates. Chem. Rev. [J],1992,92:857-871.
    [3]R.N. Salvatore, C.H. Yoon, K.W. June. Synthesis of secondary amines. Tetrahedron [J],2001,57:7785-7811.
    [4]B. Cornils, W.A. Herrmann, R.W. Eckl. Industrial aspects of aqueous catalysis. J. Mol. Catal. A [J],1997,116:27-33.
    [5]R.C. Ryan. Metal cluster catalysis, selective reduction of nitrobenzene catalyzed by rhodium carbonyl cluster anious evidence for water gas shift reaction. J. Mol. Catal. [J],1979,5:319-325.
    [6]R.C. Larock. Comprehensive Organic Transformations,2nd ed. New York: Wiley-VCH [M],1999, p.789-792.
    [7]R.N. Salvatore, A.S. Nagle, K.W. Jung. Cesium effect:High chemoselectivity in direct N-alkylation of amines. J. Org. Chem. [J],2002,67:674-683.
    [8]B. Basu, S. Paul, A.K. Nanda. Highly selective N-Alkylation of amines promoted on silica:An efficient and recyclable surface. Green Chem. [J],2009, 11:1115-1119.
    [9]R.C. Larock, Comprehensive Organic Transformations,2nd ed. New York: Wiley-VCH [M],1999, p.835-846.
    [10]Y. Watanabe, Y. Morisaki, T. Kondo, T. Mitsudo. Ruthenium complex-controlled catalytic N-mono-or N,N-dialkylation of heteroaromatic amines with alcohols. J. Org. Chem. [J],1996,61:4214-4218.
    [11]M. Mataloni, M. Petrini, R. Profeta. Synthesis of secondary amines by reduction of alpha-amidoalkylphenyl sulfones with sodium acetoxyborohydride. Synlett [J],2003,1129-1132.
    [12]T. Kan, T. Fukuyama, Ns strategies:a highly versatile synthetic method for amines. Chem. Commun. [J],2004,4:353-359.
    [13]R. Reguillo, M. Grellier, N. Vautravers, L. Vendier, S. Sabo-Etienne. Ruthenium-catalyzed hydrogenation of nitriles:Insights into the mechanism. J. Am. Chem. Soc. [J],2010,132:7854-7855.
    [14]J. Arras, D. Ruppert, P. Claus. Supported ruthenium catalysed selective hydrogenation of citral in presence of [NTf2]-based ionic liquids. Appl. Catal. A [J],2009,371:73-77.
    [15]S. Das, S.L. Zhou, D. Addis, S. Enthaler, K. Junge, M. Beller. Selective catalytic reductions of amides and nitriles to amines. Top. Catal. [J],2010,53: 979-984.
    [16]H. Sajiki, T.Ikawa, K. Hirota. Reductive and catalytic monoalkylation of primaryamines using nitriles as an alkylating reagent. Org. Lett. [J],2004,6: 4977-4980.
    [17]R. Nacario, S. Kotakonda, D.M.D. Fouchard, L.M. Viranga Tillekeratne, R.A. Hudson. Reductive monoalkylation of aromatic and aliphatic nitro compounds and the corresponding amines with nitriles. Org. Lett. [J],2005,7:471-474.
    [18]T. Ikawa, Y. Fujita, T. Mizusaki, S. Betsuin, H. Takamatsu, T. Maegawa, Y. Monguchi, H. Sajiki. Selective N-alkylation of amines using nitriles under hydrogenation conditions:facile synthesis of secondary and tertiary amines. Org. Biomol. Chem. [J],2012,10:293-304.
    [19]K.A. Connors. Chemical kinetics:the study of reaction rates in solution. Madison:Wiley-VCH [M],1990.
    [20]F.Z. Su, J. Ni, H. Sun, Y. Cao, H.Y. He, K.N. Fan. Gold supported on nanocrystalline (3-Ga2O3 as a versatile bifunctional catalyst for facile oxidative transformation of alcohols, aldehydes, and acetals into esters. Chem. Eur. J. [J], 2008,14:7131-7135.
    [21]L.F. Albright. Commercial processes for hydrogenation fatty oils. Chem. Eng. [J],1967,74:249-250.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700