三吡唑基硼稀土烷基化合物的合成和反应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
设计合成结构新颖、反应独特及具有高效催化性能的稀土金属有机化合物,并应用于有机合成和烯烃聚合是稀土金属有机化学的长期研究目标之一。为了满足日益增长的设计新型稀土催化剂的需要,人们正努力寻找合适的非茂配体作为茂基的替代体。三吡唑基硼配体是一类含氮多齿配体,能与多种金属配位,受到金属有机化学家的广泛关注。本论文重点研究了三(3,5-二甲基吡唑)基硼(TpMe2)作为辅助配体的稀土单烷基,双烷基和硅胺基化合物的合成以及反应,揭示了一系列新型的稀土金属有机反应,丰富了三吡唑基硼稀土有机化合物的合成和反应化学。全文共合成和表征了77个新稀土金属有机化合物,并测定了其中72个化合物的晶体结构,主要研究成果如下:
     1.我们通过引入茂基配体,成功地合成了TpMe2/Cp混配型稀土单烷基化合物(TpMe2)CpYCH2Ph(THF)(2-1),有效地避免TpMe2配体的解离或降解反应。2-1可以和含酸性质子的有机试剂如:苯乙炔,邻胺基吡啶发生直接反应生成相应的稀土炔基和吡啶胺基化合物(TpMe2)CpYC≡CPh(THF)(2-2)和(TpMe2)CpY(η2-NHPy)(2-3)。研究发现,2-1对一些不饱和有机小分子具有较高的反应活性。例如,2-1与取代基空间位阻较小的碳化二亚胺反应时,在室温下就能得到其插入产物(TpMe2)CpY[(RN)2CCH2Ph](R=‘Pr(2-4a),Cy(2-4b)),而对位阻较大的碳化二亚胺如ArN=C=NAr (Ar=C6H3iPr2-2,6)则需要在较高的温度下才能顺利的进行插入反应,得到化合物(TpMe2)CpY[(2,6-iPr-C6H3N)2C(CH2Ph)](2-4c)。在与PhNCX (X=S,O)时,也能得到其单插入产物(TpMe2)CpY[XC(CH2Ph)NPh](X=S(2-5),X=O(2-6))。当与活性较高的CS2反应时,能在较短的时间内结束反应得到配合物(TpMe2)CpY[S2C(CH2Ph)](2-7)。2-1也能与苄基叠氮反应,生成插入产物(TpMe2)CpY[η3-N(CH2Ph)NN(CH2Ph))(2-8)。我们研究发现2-2能在室温与碳化二亚胺反应得到插入产物(TpMe2)CpY[(RN)2CC三CPh](R=iPr(2-9a),Cy(2-9b)),并且能在加热的条件下催化苯乙炔与碳化二亚胺的偶联反应,高收率的得到N,N’-二取代的丙炔基脒(RN=C(C三CR')(NHR))(R=iPr(2-10a),Cy(2-10b))。然而,2-2也能与PhNCS发生插入反应给出化合物(TpMe2)CpY[SC(C≡CPh)NPh](2-11)。试图利用2-1催化邻烯丙基苯胺的氢胺化环化未获成功,只得到苄基质解产物(TpMe2)CpY(NHC6H4CH2CH=CH2-o)(THF)(2-12)。另外,我们还考察了稀土吡啶胺基化合物2-3与碳化二亚胺和异(硫)氰酸苯酯的反应,发现碳化二亚胺插入N-H键给出化合物(TpMe2)CpY{η2-N[C(NR)(NHR)Py]}(R=iPr(2-14a),R=Cy(2-14b));当异氰酸苯酯反应生成插入稀土-氮键及部分摘茂产物(TpMe2)[η2-OC(NPh)NHPy]Y[μ-η2:η2-N(Ph)C(O)NPy]YCp(TpMe2)(2-15)。2-3与异硫氰酸苯酯反应给出其插入Y-Nσ键的产物(TpMe2)CpY[η2-N(Ph)C(NHPy)S](2-16),没有摘茂产物被观测到。进一步研究,我们还发现2-16能与2-5反应给出硫代酰胺双负离子桥联的双核化合物(TpMe2)[η2-N(Ph)C(CH2Ph)S]Y1[μ-η2:η2-N(Ph)C(S)NPy] Y2(Cp)(TpMe2)(2-17)。这些研究结果显著地异于二茂基稀土吡啶2-胺基化合物的反应。
     2.我们利用TpMe2YC12(THF)与苄基钾的复分解反应高产率的合成了三吡唑基硼稀土双烷基化合物TpMe2Y(CH2Ph)2(THF)(3-1)。研究它与一些不饱和有机小分子的反应,我们发现3-1与等当量的异硫氰酸苯酯反应,经过C=S双键的断裂得到四核的立方型的配合物[TpMe2Y(μ3-S)]4(3-2)。然而,当与异氰酸苯酯反应时,得到一个通过双负离子OC(CHPh)NPh配体桥联的双核配合物TpMe2Y(THF)[μ-η1:η3-OC(CHPh)NPh][μ-η3:η2-OC(CHPh) NPh]YTpMe2(3-3)。3-3能继续与三甲基氯硅烷反应得到化合物(TpMe2)YCl[η2-OC(CH(SiMe3)Ph)NPh](THF)(3-4)。3-1与苯乙腈反应的产物与其反应条件有关。例如:在室温下,该反应可分离得到一个离子对型重排产物[(TpMe2)Y]+[TpMe2Y(NCCHPh)3]-(3-5),而在加热(120℃)的条件下,我们分离得到是苯乙腈的苄基脱质子、氰基插入及TpMe2配体解离产物TpMe2Y[μ-η1:η1-Pyrazoyl]2[μ-η1:η2-NC(CH2Ph)CHPh]YTpMe2(3-6)。3-1与等当量的碳化二亚胺反应仅得到碳化二亚胺单插入稀土-碳键的产物TpMe2Y(CH2Ph)[(RN)2C(CH2Ph)](R=iPr(3-8a),R=C6H3-iPr-2,6(3-8b))。我们还考察了3-1与大位阻芳胺(2,6-二异丙基苯胺)的反应,试图得到端配稀土亚胺化合物未获成功,只能得到胺基部分质解产物TpMe2Y(NHAr)CH2Ph(THF)(3-9)。有意思的是,3-9与等当量的二异丙基碳化二亚胺反应时,得到一个对称的双负胍基稀土配合物TpMe2Y[(iPrN)2C=NAr](3-10)。为了了解3-10的形成机理,我们还研究以下反应。3-8a与等当量的2,6-二异丙基苯胺反应只生成胺质解烷基产物TpMe2Y(NHAr)[(iPrN)2C(CH2Ph)](3-11)。即使长时间的加热3-11也不能转化为3-10。3-1与等当量的邻胺基吡啶反应可生成一个含桥联亚胺配体的双核稀土配合物TpMe2(THF)Y(μ-η1:η2-NPy)YTpMe2(3-12)。
     3.我们研究了三吡唑基硼稀土单或双烷基化合物2-1和3-1与一些芳香性氮杂环的反应,发现2-1与N-甲基苯并咪唑反应得到一个含C-H键活化的配合物(TpMe2)CpY[η2-(N3,C2)-NC7H4NCH3](NC7H5NCH3)(4-1)。4-1的形成与反应的计量比无关。然而,2-1与N-甲基咪唑的反应产物却受反应计量比或反应条件的影响较大。N-甲基咪唑与单烷基配合物2-1之间计量比≥1时,室温下只得到三核大环产物[(TpMe2)CpY(μ-η1:η1-(N3,C5)-NC3H2NCH3)]3(4-2),咪唑环的5位发生了C-H键活化,该大环产物稳定,不受稍高温度的影响。然而,当计量比大于1且在60℃时,却得到了两个未预期的重排产物(TpMe2)Y{κ4-(N,N,N,N)-[NC(CH3) CHC(CH3)N]2BH[NC(CH3)CHC(N)CHCN(CH3)CHCHN]}(4-3)和配合物Cp3Y(NC3H3NCH3)(4-4)。据推测,配合物4-3的获得可能经历了一个卡宾中间体的过程。同样,配合物3-1与两当量的N-甲基咪唑反应,也得到一个六核大环产物{(TpMe2)Y[(μ-η1:η1-(N3,C5)-NC3H2NCH3)][η2-(N3,C2)-NC3H2NCH3)])6(4-5),在该配合物中配位的两个咪唑环一个发生了5位的C-H键活化,一个是2位的C-H键活化。3-1与两当量的N-甲基苯并咪唑反应,得到配合物(TpMe2)Y[η3-(N,N,N)-N(CH3)C6H4NCHCH(Ph)CHN(CH3)C6H4N](4-6),该配合物的获得据推测是经过偶联,开环和偶联的过程。这些过程可以通过获得的化合物C6H4NC(CH2Ph)NCH3(4-7)和配合物{(TpMe2)Y[μ-η2:η1-8C6H4N(CH=CHPh)](THF)}2(4-8)得以证明。4-8的获得不受配合物3-1和苯并噻唑的计量比的影响。
     4.系统的研究了烷基配合物2-1和3-1与腈类和亚胺的反应,为高效的构建亚氨基配体找到了一条切实可行的合成路径。配合物2-1与等当量的苯甲腈反应,得到氰基插入Y-C键的产物(TpMe2)CpY[NCPh(CH2Ph)](THF)(5-1)和配合物5-1的烯胺亚胺的互变体(TpMe2)CpY[NHCPh(CHPh)](THF)(5-2)。研究发现,配合物5-1和5-2的比例受反应温度的影响较大,高温有利于配合物5-1的生成,而低温时配合物5-2的含量较高。当配合物2-1与两当量的苯甲腈在较高的温度下发生反应得到苯甲腈双插入Y-C键的产物(TpMe2)CpY{η2-NHC(Ph)N [C(Ph)CHPh]}(5-3),同时研究还发现,配合物5-1和5-2之间不存在可逆性。当配合物2-1与等当量的二苯基亚胺反应时,也能顺利的得到亚胺基插入Y-C键的产物(TpMe2)CpY[N(Ph)C(Ph)CH2Ph](5-4),表明孤对电子对腈和亚胺能否顺利发生插入反应可能扮演着重要的作用。尽管只获得了配合物(TpMe2)CpY[NC(tBu)(CH2Ph)](THF)(5-5)的单晶结构,但生成配合物5-1和5-2之间的反应特性也被配合物2-1与等当量的tBuCN之间的反应所证实。当配合物2-1与等当量的邻胺基苯甲腈发生反应时,在室温或85℃时都生成双核产物[(TpMe2)CpY(μ-η1:η1-NHC6H4CN-o)]2(5-6),在室温条件下且加入HMPA时获得单核产物(TpMe2)CpY(NHC6H4CN-o)(HMPA)(5-7)。研究发现,两当量的配合物2-1与1当量的邻胺基苯甲腈反应的产物也受温度影响较大,在室温下,得到配合物[(TpMe2)CpY(THF)]2(μ-η1:η1-NHC6H4C(CH2Ph)N-o)(5-8),在85℃却得到两个产物配合物(TpMe2)CpY[η2-NHC6H4C(CH2Ph)NH-o)](5-9)和配合物(TpMe2)CpY(η2-Pyrazoyl-3,5-dimethyl)(5-10)。同样,配合物2-1与2当量的邻胺基苯甲腈反应的产物也受温度影响较大,在室温下,只得到配合物5-6,在85℃却得到一个摘茂的产物配合物TpMe2Y[κ3-(4-NH(C8N2H4)(2-NHC6H4)](HMPA)(5-11)。3-1与等当量的邻胺基苯甲腈反应得到一个双负亚胺基桥联的双核产物{TpMe2Y-[μ-η1:η1-NHC6H4C(CH2Ph)N-o]}(5-12)。而当配合物3-1与两当量的叔丁基异腈在110℃反应时,却得到含两个异腈基碳原子偶联形成的双负基配体的产物TpMe2Y{η2-[N(iBu)C(CH2Ph)]2}(THF)(5-13)。
     5.研究了三吡唑基硼稀土膦化物的合成及单膦化物与不饱和小分子之间的反应,并开拓性的研究了这些稀土膦化物的氧化反应。在温和的条件下,配合物2-1和等当量的HPPh2或HP(O)Ph2之间质解反应生成配合物(TpMe2)CpYPPh2(THF)(6-1)和(TpMe2)CpY(OPPh2)(THF)(6-2)。在相同条件下,双烷基配合物3-1分别与两当量的HPPh2和HP(O)Ph2反应,得到配合物TpMe2Y(PPh2)2(THF)(6-3)和离子对型配合物[(TpMe2)2Y]+[TpMe2Y(OPPh2)3]-(6-4)。配合物6-1分别与不饱和小分子PhNCO和PhNCS之间的反应也被研究。研究发现,PhNCO和PhNCS能够分别插入等当量的配合物6-1的Y-Pσ-键中,得到配合物(TpMe2)CpY[OC(PPh2)NPh](THF)(6-5)和(TpMe2)CpY[SC(PPh2)NPh](6-6)。研究还发现,配合物6-1是很好的PhNCO环三聚催化剂,其催化机理是分别通过PhNCO连续插入Y-p6-键,依次经过配合物6-5和(TpMe2)CpY[OC(PPh2) N(Ph)CONPh](6-7),最后生成三聚产物(PhNCO)3(6-8)。然而,配合物6-1对PhNCS的环三聚没有催化作用。我们在考察稀土膦化物与硫、硒、碲单质的反应发现,配合物6-1或6-3分别与1当量或两当量的硫(硒、碲)反应都能够得到配合物[(TpMe2)2Y]+[X2PPh2]-(X=S(6-9a),Se(6-9b),Te(6-9c))。机理研究认为,配合物6-9的获得可能通过硫(硒、碲)的插入,部分脱插入,磷元素的再氧化,接着重排得到的。然而,配合物6-2与氧族单质反应,并没有发生产物的重排,只高产率的得到了可预知的配合物(TpMe2)CpY[OP(X)PPh2](THF)(X=S(6-12a),Se(6-12b),Te(6-12c)),这可能与稀土和氧配体间的强成键能力有关,不容易发生稀土-氧键的断裂重排。
     6.首次研究了稀土促进的N(SiMe3)2阴离子的C-si断裂和其双C-H键活化,为构建阴离子的甲脒基和单碳桥联的双脒基配体提供了一条直接的路线。研究发现,TpMe2LnCl2与两当量的胍基钾K[(RN)2CN(SiMe3)2]得到了未预期的稀土甲脒基化合物TpMe2Ln[(RN)2CMe][N(SiMe3)3](R=iPr,Ln=Y(7-la,),Er(7-lb);R=Cy,Ln=Y(7-2))。据推测,这些配合物中的甲脒基配体[(RN)2CCH3]是经过Me-Si断裂和碳化二亚胺的插入后形成的。而这些配合物也可以通过TpMe2LnCl2分步的与等当量的相应的KGua反应后,接着加入等当量的KGua或KN(SiMe3)2反应得到。在分步进行反应研究时,TpMe2YC12与等当量的KGua(iPr)反应,得到配合物TpMe2Y(Cl)N(SiMe3)2(THF)(7-4),表明在含该配体的金属配合物中,胍基配体是不稳定的,很容易发生碳化二亚胺的脱插入。配合物7-4也可以通过TpMe2YC12与等当量的KN(SiMe3)2反应得到。研究还发现,TpMe2LnC12分步的与等当量的KGua(iPr)和KN(SiMe3)2反应除了得到配合物7-1外,也同时得到了配合物TpMe2Ln[(iPrN)2CCH2SiMe2NSiMe3)](Ln=Y(7-5a),Er(7-5b))。当配合物TpMe2LnC12(THF)与两当量的KN(SiMe3)2反应1小时后接着和一当量的DCC(CyN=C=NCy)反应,得到共晶配合物{TpMe2Ln[(CyN)2CMe][N(SiMe3)3]}-{TpMe2Ln[(CyN)2CCH2SiMe2NSiMe3)]}(Ln=Y(7-6a),Er(7-6b))。而共晶中的单C-H键活化部分TpMe2Y[(CyN)2CCH2SiMe2NSiMe3)](7-7)可以由TpMe2YC12分步的与等当量的KGua(Cy)和KN(SiMe3)2反应获得。研究发现,当配合物7-5a依次与等当量的KN(SiMe3)2和iPrN=C=NiPr反应或者7-5a与等当量的KGua(DIC)反应都得到了其双C-H键活化的产物TpMe2Y{Me3SiNSi(Me2)-CH[C(NiPr)2]2)K(THF)2(7-8)。研究结果显示,在我们的体系中,硅胺基配体的Me-Si断裂和Y甲基脱质子是竞争的。
It is a long-standing research subject in organolanthanide chemistry that novel rare-earth organometallic complexes with unique reactivity and efficient catalytic activity are synthesized and applied in the field of organic synthesis and polymerization of olefins. Many efforts focus on the search of novel supporting ligands to alternate the well-defined cyclopentadienyl systems. The polypyrazolyborate ligands (Tp*) represent an attractive and versatile alternative due to the fine-tuning of the ligand size and controlling the metal coordination sphere through the modification of the3-and5-substituents of the pyrazolyl rings. As the extension of the synthesis and reactivity of Tp*-supported rare earth organometallic complexes, this paper focus on investigating the synthesis and reactivity of TpMe2-supported rare-earth monoalkyl, dialkyl and silyl amide complexes. Herein we have synthesized77new compounds, among the structures of72were determined by X-ray single-crystal diffraction analysis. The main results are as follows:
     1. We have synthesized successfully TpMe2/Cp mixed monoalkyl complex (TpMe2)CpYCH2Ph(THF)(2-1) by the introduction of the cyclopentadienyl ligand, avoided effectively the TpMe2ligand-degradation. Protonolysis of2-1with acid organic reagent such as phenylacetylene and o-aminopyridine gave the corresponding alkynyl and amide derivatives (TpMe2)CpYCCPh(THF)(2-2) and (TpMe2)CpY(η2-NH-Py)(2-3). It has been found that2-lcan react with a series of unsaturated substrates such as carbodiimides, isocyanate, isothiocyanate, and CS2under mild condition to form smoothly complexes (TpMe2)CpY[(RN)2CCH2Ph](R=*Pr(2-4a), Cy(2-4b),2,6-'Pr-C6H3(2-4c)),(TpMe2)CpY[XC(CH2Ph)NPh](X=S (2-5), X=O (2-6)) and (TpMe2)CpY[S2C(CH2Ph)](2-7). Moreover, we also investigated the reactions of2-1with benzyl azide, the product (TpMe2)CpY[η3-N(CH2Ph)N N(CH2Ph))(2-8) with η3coordination mode was achieved. Carbodiimides and isothiocyanate can also insert into the Y-C(alkynyl) σ-bond of2-2to yield complexes (TpMe2)CpY[(RN)2CC=CPh](R='Pr(2-9a), Cy(2-9b)), and (TpMe2)CpY[SC(C=CPh)NPh](2-11). Further investigations indicated that2-1can catalyze effectively the cross-coupling reactions of phenylacetylene with carbodiimides in high yield to give N,N'-disubstituted propiolamidines (RN=C(C=CR')(NHR))(R='Pr (2-10a), Cy(2-10b)). However, it is not successful to attempt the hydroamination/cyclization of o-allylaniline catalyzed by2-1, we only obtained the benzyl abstraction product (TpMe2)CpY(NHC6H4CH2CH=CH2-o)(THF)(2-13). We also explored the reactivity of2-3toward some unsaturated substrates such as carbodiimides, isocyanate, and isothiocyanate. These results indicated that carbodiimides readily insert into the N-H bond of2-3to produce (TpMe2)CpY{η2-N[C(NR)(NHR)Py]}(R=iPr(2-14a), R=Cy(2-14b)). Similarly, the insertion and/or partially Cp-abstracted products (TpMe2)[η2-OC(NPh)-NHPy]Y[η-η2:η2-N(Ph)C(O)NPy]YCp(TpMe2)(2-15) and (TpMe2) CpY[η2-N(Ph)C-(NHPy)S](2-16), were obtained in the reactions of2-3with phenyl isocyanate and phenyl isothiocyanate, respectively. We also found that2-16can react with2-5to form a dinuclear complex (TpMe2)[η2-N(Ph)C(CH2Ph)S]Y[μ-η2:η2-N(Ph)C(S)NPy]-YCp(TpMe2)(2-17). These results were significantly different from those observations of the reactions of Cp2Ln(η2-NHPy) with these molecules.
     2. Treatment of TpMe2YCl2(THF) with two equiv of KCH2Ph in THF gave the expected dialkyl complex TpMe2Y(CH2Ph)2(THF)(3-1) in high yield. The reactions of3-1with PhNCS and PhNCO led to the formation of a novel cubane-type sulfur complex [TpMe2Y(3-S)]4(3-2) and an insertion and hydrogen-abstracted product TpMe2Y(THF)[μ-η1:η3-OC(CHPh)NPh][μ-η3:η2-OC(CHPh)NPh]YTpMe2(3-3) in moderate yields, respectively.3-3can further react with (CH=3)3SiCl to give a1,4-addition product (TpMe2)YCl{η2-N(Ph)C[CPh(SiMe3)]O}(THF)(3-4). The investigations on the reactivity of3-1toward PhCH2CN indicated that the products depend on the reaction conditions. For example, the reaction of3-1with PhCH2CN in THF at room temperature to form [(TpMe2)Y]+[TpMe2Y(NCCHPh)3]-(3-5), but this reaction in toluene at120℃to give TpMe2Y[μ--η1:η1-Pyrazoyl]2[μ-η1:η2-NC (CH2Ph)CHPh]YTpMe2(3-6). In contrast to the above observations, the reaction of3-1with carbodiimides only afforded the simple Y-C σ-bond insertion products TpMe2Y(CH2Ph)[(RN)2C(CH2Ph)](R=iPr (3-8a); R=Ar=C6H3-iPr-2,6(3-8b)). The reaction of3-1with2,6-diisopropylaniline did not give the expected rare-earth terminal imido complex TpMe2Y=NAr, only was isolated a benzyl-abstracted product TpMe2Y(NHAr)CH2Ph(THF)(3-9). Interestingly,3-9reacted with one equiv of DIC to produce a symmetric dianionic guanidinate complex Tp e Y[('PrN)2C=NAr](3-10). To give an insight of the mechanism for the formation of3-10, the reaction of3-8a with one equiv of2,6-diisopropylaniline at room temperature was investigated. Nevertheless, the reaction, even heated at higer mperature in toluene for a long time, only afforded complex TpMe2Y(NHAr)[(iPrN)2C(CH2Ph)](3-11). It should be noted that the reaction of3-1with o-aminopyridine generated a bridged-imine product TpMe2(THF)Y(μ-η1:η2-NPy)YTpMe2(3-12), different from those observed in the reaction of3-1with2,6-diisopropylaniline.
     3. The TpMe2-supported yttrium alkyl complexes2-1and3-1displayed unique reactivity toward some aromatic N-heterocycles. Treatment of2-1with two equiv of1-methylbenzimidazole to give a C-H activation product (TpMe2)CpY[η2-(N3,C2)-N C7H4NCH3](NC7H5NCH3)(4-1).2-1reacted with one or two equiv of1-methylimidazole at room temperature to give a trinuclear metallomacrocyclic complex [(TpMe2)CpY(μ-η1:η1-(N3,C5)NC3H2NCH3)]3(4-2), in which the C-H bond at5-postion in imidazolyl ring was activated.2-1reacted with two equiv of1-methylimidazole at60℃to give two structural characterized products (TpMe2)Y{κ4-(N,N,N,N)-[NC(CH3)CHC(CH3)N]2BH[NC(CH3)CHC(N)CHCN(CH3) CHCHN]}(4-3) and Cp3Y(NC3H3NCH3)(4-4). The formation of4-3might undergo a N-heterocyclic carbene intermediate. Similarly, the reaction of3-1with two equiv of1-methylimidazole to form a hexnuclear metallomacrocyclic complex{(TpMe2)Y-[(μ-η1:η1-(N3,C5)NC3H2NCH3)][η72-(N3,C2)-NC3H2NCH3)]}6(4-5), in which two C-H bonds at2-or5-postion in imidazolyl ring were activated. However,3-1reacted with two equiv of1-methylbenzimidazole to afford (TpMe2)Y[η3-(N,N,N)-N(CH3)C6H4NCHCH(Ph)CHN(CH3)C6H4N](4-6), undergoing the C-H activation, carbon-carbon coupling, and ring-opening processes. To testify this, we also investigated the reaction of3-1with benzothiazole, and isolated an expected complex {(TpMe2)Y[μ-η2:η1-SC6H4N(CH=CHPh)](THF)}2(4-8). Further investigations indicated that the formation of4-8is independent of the reaction stoichiometry.
     4. We also investigated the reaction of2-1with organonitriles, isocyanide, and imine, and revealed some unusual transformations of these small molecules.2-1reacted with one equiv of benzonitrile to afford (TpMe2)CpY[NCPh(CH2Ph)](THF)(5-1) by a insertion of cyano group into Y-C σ-bond in12%yield, and its imine-enamine tautomer (TpMe2)CpY[NHCPh(CHPh)](THF)(5-2) in64%yield. It should be noted that this reaction was worked at80℃, and afforded5-1as major product. To further study the difference of reactivity of5-1and5-2, we also investigated their reactions with PhCN, and found that both of5-1and5-2cannot react with PhCN at room temperature, but5-2can react with PhCN in toluene at120℃to give the N-H bond addition product (TpMe2)CpY(N(H)C(Ph)NC=CH(CH2Ph)Ph)(5-3)(21%), companied with the formation of5-1(49%)(Scheme2).5-3cannot further react with excess of PhCN though5also contains an active N-H bond similar to that of5-2.2-1reacted with one equiv of diphenyl maleimide at room temperature to result in the formation of the expected product (TpMe2)CpY[N(Ph)C(Ph)CH2Ph](5-4). To extend the scope of these reactions, we also investigated the reaction of2-1with tBuCN, and isolated(TpMe2)CpY[NC('Bu)(CH2Ph)](THF)(5-5), a analogue of5-1. An equimolar reaction of2-1with2-NH2C6H4CN in THF at room temperature formed the benzyl protonation product [(TpMe2)CpY(μ-NHC6H4CN)]2(5-6) in24%isolated yield.5-6was also achieved in85℃through the same raction. The monomer product (TpMe2)CpY(NHC6H4CN)(HMPA)(5-7) can be obtained through the coordination of HMPA with5-6at room temperature. The reaction of5-6with2-1at room temperature gave the expected cyano group insertion product [(TpMe2)CpY (THF)]2(μ-NHC6H4C(CH2Ph)=N)(5-8). However, this reaction under the heating conditions gave an unexpected rearrangement product (TpMe2)CpY(THF)(η2-NH C6H4C(CH2Ph)=NH)(5-9) in lower yield, companied with the formation of small amount of (TpMe2)CpY (η2-Pyrazoyl-3,5-dimethyl)(5-10). Treatment of2-1with two equiv of o-aminobenzonitrile afforded a nucleophilic addition/cyclization product TpMe2Y[κ3-(4-NH(C8N2H4)(2-NHC6H4)](HMPA)(5-11).3-1reacted with one equiv of o-aminobenzonitrile to form a dianionic imido complex {TpMe2Y[μ-η1:η1-NHC6H4C(CH2Ph)N-o]}(5-12). The reaction of3-1with two equivof tBuNC at110℃to give a carbon-carbon coupling product TpMe2Y{η2-[N(tBu)C(CH2Ph)]2}(THF)(5-13).
     5. Four novel TpMe-supported yttrium phosphides and oxidephosphides complexes (TpMe2)CpYPPh2(THF)(6-1),(TpMe2)CpYOPPh2(THF)(6-2), TpMe2Y(PPh2)2(THF)(6-3), and [(TpMe2)2Y]+[TpMe2Y(OPPh2)3]-(6-4) were synthesized through the protonlysis of2-1and3-1with HPPh2or HP(O)Ph2. Treatment of6-1with1equiv of PhNCO/PhNCS at room temperature results in mono-insertion of PhNCO/PhNCS into the Y-P σ-bond of6-1to yield complex (TpMe2)CpY[OC(PPh2)NPh](THF)(6-5) or (TpMe2)CpY[SC(PPh2)NPh](6-6). While the reaction of6-1with2equiv of PhNCO afforded the diinsertion product (TpMe2)CpY[OC(PPh2)N(Ph)C(O)NPh](6-7). However,6-6cannot further react with PhNCS under the same conditions. Moreover,6-1can catalyze effectively the cyclotrimerization of PhNCO under mild conditions, but does not catalyze cyclotrimerization of PhNCS. We also investigated the reaction of these yttrium phosphides and oxidephosphides complexes with elemental sulfur (selenium, tellurium). Both of6-1and6-3reacts with one or two equiv of elemental sulfur (selenium, tellurium) to produce the rearrangement products [(TpMe2)2Y]+[X2PPh2]-(X=S(6-9a), X=Se(6-9b), X=Te(6-9c)). However, the reaction of6-2with one equiv elemental sulfur (selenium, tellurium) gave the expected complex (TpMe2)CpY[OP(X)PPh2](THF)(X=S(6-12a), X=Se(6-12b), X=Te(6-12c)).
     6. Rare-earth metal mediated C-Si cleavage and double C-H functionalizations of anionic N(SiMe3)2were observed for the first time, and offered a straightforward route to construct the anionic methyl-amidinate and single-carbon bridged bis-amidinate ligands. Treatment of TpMe2LnCl2(THF) with two equiv of K[(RN)2CN(SiMe3)2] gave the unexpected methylamidinate complexes TpMe2Ln[(RN)2CMe][N(SiMe3)3](R=isopropyl, Ln=Y (7-la), Er (7-lb); R=cyclohexyl, Ln=Y (7-2)) in moderate yields, which might undergo a Me-Si cleavage and carbodiimide-insertion process. Further investigations indicated that these complexes could be also synthesized by the stepwise reaction of Tp e2LnCl2with one equiv of the corresponding KGua and one equiv of KGua or KN(SiMe3)2. It should be noted that the reaction of TpMe2YCl2(THF) with one equiv of KGua yielded TpMe2Y(Cl)N(SiMe3)2(THF)(7-4), a C-N cleavage product. The formation of7-4indicated that this guanidinate ligand is not stable in the metal complexes with the TpMe2ligand, and takes place facilely a carbodiimide deinsertion. The reaction of TpMe2LnCl2with KGua('Pr) and KN(SiMe3)2in a1:1:1ratio also afforded7-1, companied with the formation of small amount of y-methyl deprotonation product TpMe2Ln[(iPrN)2CCH2SiMe2NSiMe3)](Ln=Y (7-5a), Er (7-5b). TpMe2LnCl2(THF) reacted with two equiv of KN(SiMe3)2for1h (a short time), then subsequently with one equiv of CyN=C=NCy to afford the cocrystaline complexes ({TpMe2Ln[(CyN)2CMe][N(SiMe3)3]}{TpMe2Ln[(CyN)2CCH2SiMe2NSi-Me3)]}(Ln=Y(7-6a), Er(7-6b)). The single C-H functionallization product TpMe2Y[(CyN)2CCH2SiMe2NSiMe3)](7-7) has been obtained by the reaction TpMe2YCl2with two equiv of KN(SiMe3)2for12h, and subsequently with one equiv of DCC. It is also found that the double C-H functionalization product TpMe2Y{Me3SiNSi(Me2)CH[C(NiPr)2]2}K(THF)2(7-8) was isolated form the reaction of7-5a with one equiv of KN(SiMe3)2, subsequent with one equiv of'PrN=C=N'Pr or7-5a with one equiv of KGua(DIC).
引文
[1](a) Lappert M. F.; Evans W.; Mingos. D. M.P. J. Organic. Synthesis London,Academic Press,1994 (b) Imamoto, T., London:Academic Press,1994 (c) Kobaysshi S. Berlin:Springer,1999 (d) Kgan, H. B. Chem. Rev.2002,102, 1805 (e) William J. Evans, Benjiamin L.Davis Chem. Rev.2002,102,2119.
    [2](a) Shen Z. Q.; Quyang J.; Wang F. S.; Hu Z. Y.; Yu F. S.; Qian B. G.; J Polym. Chem. Ed.1980,18,3343. (b) Quyang J. Japan-China Bilaeral Symposium on Polymer Science and Technology.Tokyo, Japan:1981,67. (c) Shen Z. Q., Quyang J. Handbook on the physics and Chemistry of Rare Earths,North Holland:Elsevier Science Publisher,1987, Chapter 9,61.
    [3](a) Bailey P. H.; Pace, S. Coord. Chem. Rev.2001,214,91. (b) Robbert Duchateau, Auke Meetsma, and Jan H. Teuben. Organometallies 1996,15,1656.
    [4](a) Hong, S.; Marks, T. J. Acc. Chem. Res.2004,37,673. (b) Hou, Z.; Wakatsuki, Y. Coord. Chem. Rev.2002,231,1. (c) Evans, W. J.; Forrestal, K. J.; Ziller, J. W. J. Am. Chem. Soc.1998,120,9273. (d) Zhou, X. G.; Huang, Z. E.; Cai, R. F.; Zhang, L. B.; Zhang L. X. Organometallics 1999,18,4128. (e) Zhang, J.; Han, F. Y.; Han, Y. N.; Chen, Z. X.; Weng, L. H.; Zhou, X. G. Inorg. Chem.2008,47, 5552.
    [5](a) Evans, W. J.; Engerer, S. C.; Piliero, P. A.; Wayda, A. L. in:Tsutsui, M. (Ed.), Fundamental Research in Homogeneous Catalysis, vol.3, Plenum Press, New York,1979, p.941. (b) Anwander R. Lanthanides:Chemistry and Use in Organic Synthesis, ed. Kobayashi S. Springer-Verlag, Berlin Heidelberg New York,1999, p.1. (c) Zhou, X. G.; Zhu, M. J. organomet. Chem.2002,647,28.
    [6](a) Marques, N.; Sella, A.; Takats, J. Chem. Rev.2002,102,2137. (b) Trofimenko, S. Scorpionates:The Coordination Chemistry of Polypyrazolylborate Ligands; Imperial College Press:London.1999.
    [7](a) Stainer, M. V. R.; Takats, J. Inorg. Chem.1982,21,4050. (b) Stainer, M. V. R.; Takats, J. J. Am. Chem. Soc.1983,105,410. (c) Apostolidis, C.; Rebizant, J.; Kanellakopulos, B.; von Ammon, R.; Dornberger, E.; Muller, J.; Powietzka, B.; Nuber, B. Polyhedron 1997,16,1057. (d) Md. Abdus Subhan, Ryouji Kawahata, Hiroyasu Nakata, Akira Fuyuhiro, Toshiaki Tsukuda, Sumio Kaizaki, Inorganica Chimica Acta.2004,357,3139. (e) Md. Abdus Subhan, Takayoshi Suzuki, Akira Fuyuhiro,; Sumio Kaizaki. Dalton Trans.2003,3785.
    [8]Jennifer L. Galler, Sam Goodchild, James Gould, Robert McDonald, Andrea Sella, Polyhedron 2004.23 . 253.
    [9]Hillier, A. C.; Zhang, W.; Maunder, G. H.; Liu, S.Y.; Eberspacher, T. A.; Metz, M. V.; McDonald, R.; Domingos, A.; Marques, N.; Day, V. W.; Sella, A.; Takats , J. Inorg. Chem. 2001, 40, 5106.
    [10]Hillier, A. C.; Liu, S. Y; Sella, A.; Elsegood, M. R. J. Inorg. Chem. 2000, 39, 2635.
    [11]Kunrath, F. A.; Casagrande, O. L.; Toupet, L.; Carpentier, J. F. Polyhedron 2004, 23, 2437.
    [12]Domingos, A.; Elsegood, M.R.J.; Hillier, A. C.; Lin, G.; Liu, S.Y.; Lopes, I.; Marques, N.; Maunder, G. H.; McDonald, R.; Sella, A.; Steed, J. W.; Takats, J. Inorg. Chem. 2002, 41, 6761.
    [13]Onishi, M.; Nagaoka, N.; Hiraki , K.; Itoh, K. J. Alloys Comp. 1996, 236, 6.
    [14]Apostolidis, C.; Carvalho, A.; Domingos, A.; Kanellakopoulos , B.; Maier, R. Marques, N.; Matos, A. P. D; Rebizant, J. Polyhedron. 1999, 18, 263.
    [15]Long, D. P.; Chandrasekaran , A.; Day, R.O.; Bianconi, P. A.; Rheingold , A. Inorg. Chem. 2000, 39, 4476.
    [16]Lopes, I.; Monteiro, B.; Lin, G.; Domingos, A .; Marques, N.; Takats, J. J. Organomet. Chem. 2001, 632, 119.
    [17](a) Hillier, A. C., Ph.D. Thesis, U. of London, 1998. (b) Zhang, X. W., Ph.D. Thesis, U. of Alberta, 1995. (102) (c) Lopes, I., Ph.D. Thesis, U. of Lisbon, 2001.. (d) Liu, S. Y, Ph.D. Thesis, U. of London, 1996.
    [18]Domingos, A.; Elsegood, M. R. J.; Hillier, A. C.; Lin, G. Y, Liu, S. Y.; Lopes, I.; Marques, N.; Maunder, G. H.; McDonald, R.; Sella, A.; Steed, J. W.; Takats, J. Inorg. Chem. 2002, 41, 6761.
    [19](a) Amoroso, A. J.; Jeffery, J. C.; Jones, P. L.; McCleverty, J. A.; Rees, L.; Rheingold, A. L.; Sun, Y M.; Takats, J.; Trofimenko, S.; Ward, M. D.; Yap, G. P. A. J. Chem. Soc., Chem. Commun. 1995, 1881. (b) Jones, P. L.; Amoroso, A. J.; Jeffery, J. C.; McCleverty, J. A.; Psillakis, E.; Rees, L. H.; Ward, M. D. Inorg. Chem. 1997, 36, 10. (c) Armaroli, N.; Accorsi, G.; Barigelletti, P.; Couchman, S. M.; Fleming, J. S.; Harden, N. C.; Jeffery, J. C.; Mann, K. L. V.; McCleverty, J. A.; Rees, L. H.; Starling, S. R.; Ward, M. D. Inorg. Chem. 1999, 38, 5769. (d) Motson, G. R.; Mamula, O.; Jeffery, J. C.; McCleverty, J. A.; Ward, M. D.; von Zelewsky. J. Chem. Soc., Dalton Trans. 2001, 1389.
    [20]Hammes, B. S.; Luo, X. M.; Chohan, B. S.; Carrano, M. W.; Carrano, C. J. J. Chem. Soc., Dalton Trans.2002,3374.
    [21]Apostolidis, C.; Carvalho, A.; Domingos, A.; Kanellakopulos, B.; Maier, R.; Marques, N.; de Matos, A. F.; Rebizant, J. Polyhedron 1998,18,263.
    [22]Zimmermann, M.; Takats, J.; Kiel, G.; Tornroosa, K. W.; Anwander, R. Chem. Commun.2008,612.
    [23]Blackwell, J. A.; Lehr, C.; Sun, Y.; Piers, W. E.; Pearce Batchilder, S. D.; Zaworotko, M. J.; Young, V. G. J. Can. J. Chem.1997,75,702.
    [24](a) Cheng, J. H.; Saliu, K.; Kiel, G. Y Ferguson, M. J.; McDonald, R.; Takats, J. Angew. Chem. Int. Ed.2008,47,1. (b) Cheng, J. H.; Saliu, K.; Kiel, G. Y. Ferguson, M. J.; McDonald, R.; Takats, J. Angew. Chem. Int. Ed.2008,47,4910.
    [25]Cheng, J. H.; Saliu, K.; Ferguson, M. J.; McDonald, R.; Takats, J. J. Organomet. Chem.2010,695,2696.
    [26]Cheng, J. H.; Ferguson, M. J.; Takats, J. J. Am. Chem. Soc.2010,132,2.
    [27]Ball, R.; Matison, J. G.; Takats, J.,190 ACS National Meeting, Chicago,1985, Abstract 291.
    [28]Masino, A. P., Ph.D. Thesis, U. of Alberta,1978.
    [29]Long, D. P.; Bianconi, P. A. J. Am. Chem. Soc.1996,118,12453.
    [30]Zimmermann, M.; Takats, J.; Kiel, G.; Tornroosa, K. W.; Anwander, R. Chem. Commun.2008,612.
    [31]Litlab(?), R.; Zimmermann, M.; Saliu, K.; Takats, J.; Tornroosa, K. W.; Anwander, R. Angew. Chem. Int. Ed.2008,47,9560.
    [32]Han, F. Y.; Zhang, J.; Han, Y N.; Zhang, Z. X.; Chen, Z. X.; Weng, L. H.; Zhou, X. G. Inorg. Chem.2009,48,1774.
    [33]Lopes, I.; Lin, G. Y.; Domingos, A.; McDonald, R.; Marques, N.; Takats, J. J. Am. Chem. Soc.1999,121,8110.
    [34]Lin, G. Y.; McDonald, R.; Takats, J. J. Organomet. Chem.2001,626,16.
    [35]Domingos, A.; Lopes, I.; Waerenborgh, J. C.; Marques, N.; Lin, G. Y.; Zhang, X. W.; Takats, J.; McDonald, R.; Hillier, A. C.; Sella, A.; Elsegood, M. R. J.; Day. V. W. Inorg. Chem.2007,46,9415.
    [36](a) Arndt, S.; Voth, P.; Spaniol, T. P.; Okuda, J. Organometallics 2000,19, 4690-4700. (b) Carver, C. T.; Monreal, M. J.; Diaconescu, P. L. Organometallics 2008,27,363-370. (c) Hultzsch, K. C.; Spaniol, T. P.; Okuda, J. Angew. Chem., Int. Ed.1999,38,227-230. (d) Hitzbleck, J.; Beckerle, K.; Okuda, J.; Halbach, T.; Mulhaupt, R. Macromol. Symp. 2006,236,23-29.
    [37](a) William J. Evans, Wayd, A. L. J. Chem. Soc. Chem. Commun. 1981, 292-293. (b) Zhou, Y; Yap, G. P. A.; Richeson, D. S. Organometallics 1998, 17, 4387-4391.
    [38]Zhou, X. G.; Zhang, L. B.; Zhu, M.; Cai, R. F.; Weng, L. H. Organometallics 2001, 20, 5700.
    [39]Ma, L. P.; Zhang, J.; Cai, R. F.; Chen, Z. X.; Weng, L. H.; Zhou, X. G. J. Organomet. Chem. 2005, 690, 4926.
    [40]den Haan, K. H.; Wielstra, Y.; Teuben, J. H. Organometallics 1987, 6, 2053.
    [41]Casely, I. J.; Ziller, J. W.; Evans. W. J. Organometallics 2011, 30, 4873.
    [42]Li, S. H.; Cheng, J. H.; Chen, Y. H.; Nishiura, M.; Hou, Z. M. Angew. Chem. Int. Ed. 2011, 50, 6360.
    [43]Bercaw, J. E.; Davies, D. L.; Wolczanskit, P. T. Organometallics 1986, 5, 443
    [44]Duchateau, R.; Tuinstra, T.; Brussee, E. A. C.; Meetsma, A.; Duijnen, P. Th. V.; Teuben, J. H. Organometallics 1997, 16, 3511.
    [45]Duchateau, R.; Brussee, E. A. C.; Meetsma, A.; Teuben, J. H. Organometallics 1997, 16, 5506.
    [46]Beetstra, D. J.; Meetsma, A.; Hessen, B.; Teuben, J. H. Organometallics 2003, 22, 4372.
    [47](a) Aluarez, C. S.; Bond, A. D.; Harron, E. A.; Layfield, R. A.; McAllister, J. A.; Pask, C. M.; Rawson, J. M.; Wright, D. S. Organometallics, 2001, 20, 4135. (b) Kempe, R. Eur. J. Inorg. Chem. 2003, 791. (c) Standfest-Hauser, C. M.; Mereiter, K.; Schmid, R.; Kirchner, K. Dalton Trans. 2003, 2329. (d) Alvarez, C. S.; Bond, A. D.; Cave, D.; Mosquera, M. E. G.; Harron, E. A.; Layfield, R. A.; McPartlin, M.; Rawson, J. M.; Wood, P. T.; Wright, D. S. Chem. Commun. 2002, 2980. (e) Layfield, R. A.; Bashall, A.; McPartlin, M.; Rawson, J. M.; Wright, D. S. Dalton Trans. 2006, 1660.
    [48](a) Sun, Y; Zhang, Z. X.; Wang, X.; Li, X. Q.; Weng, 1. H.; Zhou, X. G. Organometallics, 2009, 28, 6320. (b) Sun, Y; Zhang, Z. X.; Wang, X.; Li, X. Q.; Weng, 1. H.; Zhou, X. G. Dalton. Trans. 2010, 30, 221.(c) Pi, C. F.; Liu, R. T. Pang, Z.; Zhang, J.; Luo, J.; Chen, Z. X.; Weng, L. H Zhou, X. G. Organometallics, 2007, 26, 1934. (d) Pi, C. F.; Liu, R. T.; Zheng, P. Z.; Chen, Z. X.; Zhou, X. G. Inorg. Chem. 2007, 46, 5252. (f) Han, F. Y.; Zhang, J.; Han, Y N.; Zhang, Z. X.; Chen, Z. X.; Weng, L. H.; Zhou, X. G. Inorg. Chem. 2009, 48,111 A.
    [49]吴茂英CN101085782
    [50](a) Mansfield, N. E.; Grundy,J.; Coles, M. P.; Avent, A. G.; Hitchcock, P. B. J. Am. Chem. Soc.2006,128,13879; (b) Mansfield, N. E.; Coles, M. P.; Avent, A. G.; Hitchcock, P. B. Organometallics 2006,25,2470. (c) Grundy, J.; Coles, M. P.; Hitchcock, P. B. Dalton Trans.2003,2573. (d) Mansfield, N. E.; Coles, M. P.; Hitchcock, P. B. Dalton Trans.2006,2052. (e) Mansfield, N. E.; Coles, M. P.; Hitchcock, P. B. Dalton Trans.2005,2833. (f) Grundy, J.; Coles, M. P.; Avent, A. G.; Hitchcock, P. B.; Chem. Commun.2004,2410. g) Coles, M. P.; Hitchcock, P. B. Chem. Commun.2002,2794. (h) Thewissen, D. H. M. W.; Ambrosius, H. P. M. M.; van Gaal, H. L. M.; Steggerda, J. J. J. Organomet. Chem.1980,192,101. i) Hey-Hawkins, E.; Lindenberg, F. Z. Naturforsch. 1993,48b,951. (j) Zhang, W. X.; Nishiura, M.; Hou, Z. Chem. Commun.2006,3812.
    [51]Organic Phosphorus Compounds (Eds.:D. M. Kosolapoff, L.Maier), Wiley, New York,1973.
    [52](a) S. J. Berners-Price, R. E. Norman, P. J. Sadler, J. Inorg. Biochem.1987,31, 197. (b) Popescu, A. R.; Laromaine, A.; Teixidor, F.; Sillanpaa, R. J.; Kivekas, R.; Llambias, J. I.; Vinas, C. Chem. Eur. J.2011,17,4429.
    [53]Zhang, W. X.; Nishiura, M.; Mashiko, T.; Hou, Z. M. Chem. Eur. J.2008,14, 2167.
    [54]Miller, K. L.; Williams, B. N.; Benitez, D.; Diaconescu, P. L. J. Am. Chem. Soc. 2010,132,342.
    [55](a) Carver, C. T.; Diaconescu, P. L. J. Am. Chem. Soc.2008,130,7558. (b) Carver, C. T.; Diaconescu, P. L. J. Alloys Compd.2009,488,518. (c) Carver, C. T.; Benitez, D.; Miller, K. L.; Williams, B. N.; Tkatchouk, E.; Goddard, W. A.; Diaconescu, P. L. J. Am. Chem. Soc.2009,131,10269.
    [56]Carver, C.T.; Diaconescu, P. L. J. Am. Chem. Soc.2008,130,7558.
    [57](a) Jantunen, K. C.; Scott, B. L.; Kiplinger, J. L. J. Am. Chem. Soc.2006,128, 6322. (b) Pool, J. A.; Scott, B. L.; Kiplinger, J. L. Chem. Commun.2005,2591. (c) Hitzbleck, J.; Okuda, J. Organometallics 2007,26,3227. (d) DuhoviC, S.; Moneral, M. J.; Diaconescu, P. L. Inorg. Chem.2010,49,7165.
    [58]Monreal, M. J.; Khan, S.; Diaconescu, P. L. Angew. Chem. Int. Ed.2009,48, 8352.
    [59](a) Bradley, D. C.; Chisholm, M. H. Acc. Chem. Res.1976,9,273. (b) Lappert, M. F.; Power, P. P.; Sanger, A. R.; Srivastava, R. C. C. In Metal and Metalloid Amides; Ellis Horwood:Chichester, England,1980. (c) Lappert, M. F.; Protchenko, A. V.; Power, P. P.; Seeber, A. L. In Metal Amide Chemistry; Wiley: Chichester, England,2009.
    [60](a) Vitanova, D. V.; Hampel, F.; Hultzsch, K. C. Dalton. Trans.2005,1565. (b) Molander, G. A.; Dowdy, E. D. J. Org. Chem.1999,64,6515. (c) Bunel, E.; Burger, B. J.; Bercaw, J. E. J. Am. Chem. Soc.1988,110,976. (d) Molander. G. A.; Romero, J. A. C. Chem. Rev.2002,102,2161.
    [61]Wang, J. F.; Cai, T.; Yao, Y. M.; Zhang, Y.; Shen, Q. Dalton. Trans.2007,5275.
    [62](a) Simpson, S. J.; Turner, H. W.; Andersen, R. A. Inorg. Chem.1981,20,2991. (b) Karl, M.; Harms, K.; Seybert, G.; Massa,W.; Fau, S.; Frenking, G.; Dehnicke, K. Z. Anorg. Allg. Chem.1999,625,2055. (c) Niemeyer, M. Inorg. Chem.2006, 45,9085. (d) Han, F.; Zhang, J.; Yi,W.; Zhang, Z.; Yu, J.;Weng, L.; Zhou, X. Inorg. Chem.2010,49,2793. (e) Wang, J.; Gardiner, M. G. Chem. Commun. 2005,1589. (f)Simpson, S. J.; Turner, H. W.; Andersen, R. A. J. Am. Chem. Soc. 1979,101,7728. (g) Simpson, S. J.; Turner, H. W.; Andersen, R. A. Inorg. Chem. 1981,20,2991.
    [63](a) Planalp, R. P.; Andersen, R. A.; Zalkin, A. Organometallics.1983,2,16. (b) Korobkov, I.; Gambarotta, S. Inorg. Chem.2010,49,3409. (c) Benaud,O.; Berthet, J. C.; Thuery, P.; Ephritikhine, M. Inorg. Chem.2010,49,8117.
    [64](a) Sen, S. S.; Hey, J.; Herbst-Irmer, R.; Roesky, H. W.; Stalke, D. J. Am. Chem. Soc.2011,133,12311. (b) Xiao, Y. X.; Son, D. Y. Organometallics 2004, 23,4438. (c) Luo, B.; Young Jr., V. G.; Gladfelter. W. L. J. Organomet. Chem. 2002,649,268.
    [65](a) Armitage, D. A. In Comprehensive Organometallic Chemistry;Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon:New York,1982; Vol.2, Chapter 9.1. (b) Itami, K.; Terakawa, K.; Yoshida, J.-i.; Kajimoto, O. J. Am. Chem. Soc. 2003,125,6058. (c) Rauf, W.; Brown, J. M. Angew. Chem.2008,120,4296. Angew. Chem., Int. Ed. 2008,47,4228. (d) Tobisu, M.; Onoe, M.; Kita, Y. Chatani, N. J. Am. Chem. Soc.2009,131,7506.
    [1]Marques, N.; Sella, A.; Takats, J. Chem. Rev.2002,102,2137.
    [2]Trofimenko, S. Scorpionates:The Coordination Chemistry of Polypyrazolylborate Ligands; Imperial College Press:London,1999.
    [3](a) Lopes, I.; Monteiro, B.; Lin, G.; Domingos, A.; Marques, N.; Takats, J. J. Organomet. Chem.2001,632,119. (b) Caller, J. L.; Goodchild, S.; Gould, J.; McDonald, R.; Sella, A. Polyhedron 2004,23,253.
    [4](a) Lopes, I.; Lin, G. Y.; Domingos, A.; McDonald, R.; Marques, N.; Takats, J. J. Am. Chem. Soc.1999,121,8110. (b) Lin, G. Y.; McDonald, R.; Takats, J. J. Organomet. Chem.2001,626,16. (c) Domingos, A.; Lopes, I.; Waerenborgh, J. C.; Marques, N.; Lin, G. Y.; Zhang, X. W.; Takats, J.; McDonald, R.; Hillier, A. C.; Sella, A.; Elsegood, M. R. J.; Day. V. W. Inorg. Chem.2007,46,9415.
    [5]Han, F. Y.; Zhang, J.; Han, Y N.; Zhang, Z. X.; Chen, Z. X.; Weng, L. H.; Zhou, X. G. Inorg. Chem.2009,48,1774.
    [6](a) Evans, W. J.; Ulibarri, T. A.; Ziller, J. W. Organmetallics 1991,10,134. (b) Zhang, Z. X.; Zhang, L. X.; Li, Y. R.; Hong, L. C.; Chen, Z. X.; Zhou, X. G. Inorg. Chem.2010,49,5715.
    [7]Duchateau, R.; Brussee, E. A. C.; Meetsma, A.; Teuben, J. H. Organmetallics 1997,16,5506.
    [8](a) Saliu, K. O.; Cheng, J. H. Mcdonald, R. M. Ferguson, M. J. Takats, J. Organmetallics 2010,29,4950. (b) Lin, G. Y.; McDonald, R.; Takats, J. Organometallics 2000,19,1814.
    [9](a) Evans, W. J.; Ulibarri, T. A.; Chamberlain, L. R.; Ziller, J. W.; Alvarez, D. Organometallics 1990,9,2124. (b) Cameron, T. M.; Gordon, J. C.; Scott, B. L.; Organometallics 2004,23,2995. (c) Zhou, M.; Guo, H. D.; Yao, Y M.; Zhou, L. Y.; Sun, H. M.; Sheng, H. T.; Zhang, Y.; Shen, Q. Inorg. Chem.2007,46,958. (d) Cole, M. L.; Deacon, G. B.; Forsyth, C. M.; Junk, D. C.; Konstas, K.; Wang, J. Chem. Eur. J.2007,13,8092. (e) Liu, B.; Liu, X. L.; Cui, D. M.; Liu, L. Organometallics 2009,28,1453.
    [10](a) Pi, C. F.; Liu, R. T.; Pang, Z.; Zhang, J.; Luo, J.; Chen, Z. X.; Weng, L. H Zhou, X. G. Organometallics,2007,26,1934. (b) Dietel, A. M.; Doring, C.; Glatz, G.; Butovskii, M. V.; Tok, C.; Schappacher, F. M.; Pottgen, R.; Kempe, R. Eur. J. Inorg. Chem.2009,1051.
    [11]Yang, Y.; L, K.; Wang, Y.; Cui, D. M. Chem. Commun. 2010, 46, 6150.
    [12](a) Doring, C.; Kempe, R. Eur. J. Inorg. Chem. 2009, 412. (b) Doring, C.; Kretschmer, W. P.; Bauer, T.; Kempe, R. Eur. J. Inorg. Chem. 2009, 4255. (c) Luconi, L.; Lyubov, D. M.; Bianchini, C.; Rossin, A.; Faggi, C.; Fukin, G. K.; Cherkasov, A. V.; Shavyrin, A. S.; Trifonov, A. A.; Giambastiani, G.; Eur. J. Inorg. Chem. 2010, 608. (d) Zimmermann, M.; Tomroos, K.W; Waymouth, R. M.; Anwander, R.; Organometallics, 2008 , 27, 4310. (e) Lyubov, D. M.; Fukin,G. K.; Cherkasov, A. V. Shavyrin, A. S.; Trifonov, A. A.; Luconi, L.; Bianchini, C.; Meli, A.; Giambastiani, G. Organometallics, 2009, 28, 1227.
    [13]Matson, E. M.; Forrest, W. P,; Fanwick, P. E.; Bart, S. C. J. Am. Chem. Soc. 2011, 133, 4948.
    [14]Zhang, J.; Ruan, R. Y.; Shao, Z. H.; Cai, R. F.; Weng, L. H.; Zhou, X. G. Organometallics 2002, 21, 1420.
    [15]Li, H. R.; Yao, Y. M.; Shen, Q.; Weng, L. H. Organometallics 2002, 21, 2529.
    [16]Evans, W. J.; Seibel, C. A.; Ziller, J. W. and Doedens, R. J. Organometallics 1998, 17, 2103.
    [17](a) Zhang, W. X.; Nishiura, M.; Hou, Z. M. J. Am. Chem. Soc. 2005, 127, 16788. (b) Zhou, S. L.; Wang, A. W.; Yang, G. S.; Li, Q. H.; Zhang, L. J.; Yao, Z. J.; Zhou, Z. K.; Song, H. B. Organometallics 2007, 26, 3755.
    [18]Miiller, T. E.; Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada, M. Chem. Rev. 2008, 108, 3 795.
    [19](a) Cai, T.; Chen, X. N.; Xu, F.; Zhang, Y; Yao, Y M.; Shen, Q. J. J. Organomet. Chem. 2009, 694, 3167. (b) Wang, S. W.; Li, H. W.; Xie, Z. W. Organometallics 2004, 23, 2469.
    [20](a) Sun, Y; Zhang, Z. X.; Wang, X.; Li, X. Q.; Weng, 1. H.; Zhou, X. G. Organometallics, 2009, 28, 6320. (b) Sun, Y.; Zhang, Z. X.; Wang, X.; Li, X. Q.; Weng, 1. H.; Zhou, X. G. Dalton. Trans. 2010, 30, 221.
    [21](a) Bailey, P. J.; Coxall, R. A.; Dick, C. M.; Fabre, S.; Henderson, L. C.; Herber, C.; Liddle, S. T.; Parkin, A.; Parsons, S. Chem. Eur. J 2003, 9, 4820. (b) Majumdar, K. C.; Chattopadhyay, B.; Samanta, S. Tetrahedron. Lett. 2009, 50, 3178.
    [22]Sheldrick, G. M. SADABS, A Program for Empirical Absorption Correction, Gdttingen, Germany, 1998.
    [23]Sheldrick, G. M. SHELXL-97, Program for the refinement of the crystal structure, University of Gottingen, Germany, 1997.
    [1]Reviews: (a) Nishiura, M.; Hou, Z. Nature Chem. 2010, 2, 257. (b) Zeimentz, P. M.; Arndt, S.; Elvidge, B. R.; Okuda, J. Chem. Rev. 2006, 106, 2404. (c) Edelmann, F. T. in Comprehensive Organometallic Chemistry Ⅲ, Vol. 4.01 (Eds.: R. H. Crabtree, D. M. P. Mingos), Elsevier, Oxford, 2006, p. 1.
    [2](a) Hayes, P. G.; Piers, W. E.; McDonald, R. J. Am. Chem. Soc. 2002, 124, 2132. (b) Bambirra, S.; Bouwkamp, M.; Meetsman, A.; Hessen, B. J. Am. Chem. Soc. 2004, 126, 9182. (c) Luo, Y.; Baldamus, J.; Hou, Z. J. Am. Chem. Soc. 2004, 126, 13910. (d) Zhang, L.; Luo, Y.; Hou, Z. J Am. Chem. Soc. 2005, 127, 14562. (e) Li, X.; Baldamus, J.; Hou, Z. Angew. Chem., Int. Ed. 2005, 44, 962. (f) Zhang, L.; Suzuki, T.; Luo, Y.; Nishiura, M.; Hou, Z. Angew. Chem., Int. Ed. 2007, 46, 1909. (g) Wang, B.; Cui, D.; Lv, K. Macromolecules 2008, 41, 1983. (h) Ravasio, A.; Zampa, C.; Boggioni, L.; Tritto, I.; Hitzbleck, J.; Okuda, J. Macromolecules 2008, 41, 9565. (i) Zimmermann, M.; Tornroos, K. W.; Anwander, R. Angew. Chem. Int. Ed. 2008, 47, 775. (j) Zhang, L.; Nishiura, M.; Yuki, M.; Luo, Y.; Hou, Z. Angew. Chem. Int. Ed. 2008, 47, 2642. (k) Xu, X.; Chen, Y.; Sun, J. Chem. Eur. J. 2009, 15, 846. (1) Li, X.; Nishiura, M.; Hu, L.; Mori, K.; Hou, Z. J. Am. Chem. Soc. 2009, 131, 13870. (m) Du, G.; Wei, Y.; Ai, L.; Chen, Y.; Xu, Q.; Liu, X.; Zhang, S.; Hou, Z.; Li, X. Organometallics 2011, 30,160.
    [3](a) Cheng, J.; Shima, T.; Hou, Z. Angew. Chem., Int. Ed. 2011, 50, 1857. (b) Lyubov, D. M.; Doing, C.; Ketkov, Y. S.; Kempe, R.; Trifonov, A. A. Chem. Eur. J. 2011, 17, 3824. (c) Nishiura, M.; Baldamus, J.; Shima, T.; Mori, K.; Hou, Z. Chem. Eur. J 2011, 17, 5033. (d) Ohashi, M.; Konkol, M.; Rosal, I. D.; Poteau, R.; Maron, L.; Okuda, J. J. Am. Chem. Soc. 2008, 130, 6920. (e) Chen, J.-H.; Saliu, K.; Kiel, G. Y.; Ferguson, M. J.; McDonald, R.; Takats, J. Angew. Chem., Int. Ed. 2008, 47, 4910. (f) Li, X.; Baldamus, J.; Nishiura, M.; Tardif, O.; Hou, Z. Angew. Chem., Int. Ed. 2006, 45, 8184. (g) Ward, B. D.; Bellemin-Laponnaz, S.; Gade, L. H. Angew. Chem. Int. Ed. 2005, 44, 1668. (h) Arndt, S.; Beckerle, K.; Zeimentz, P. M.; Spaniol, T. P.; Okuda, J. Angew. Chem., Int. Ed. 2005, 44, 7473. (i) Hultzsch, K. C.; Voth, P.; Spaniol, T. P.; Okuda, J. Z. Anorg. Allg. Chem. 2003, 629, 1272. (j) Tardif, O.; Nishiura, M.; Hou, Z. Organometallics 2003, 22, 1171.
    [4]Selected examples of rare earth metal monoalkyl complexes: (a) Pi, C.; Li, X.; Zhang, L.; Liu, R.; Weng, L.; Zhou, X. Inorg. Chem. 2010, 49, 7632. (b) Casely, I. J.; Suh, Y S.; Ziller, J. W.; Evans, W. J. Organometallics 2010, 29, 5209. (c) Sun, J. L.; Berg, D. J.; Twamley, B. Organometallics 2008, 27, 683. (d) Evans, W. J.; Rego, D. B.; Ziller, J. W.; Dipasquale, A. G.; Rheingold, A. L. Organometallics 2007, 26, 4737. (e) Zhang, W.; Nishiura, M.; Hou, Z. J. Am. Chem. Soc. 2005, 127, 16788. (f) Zhang, J.; Ruan, R.; Shao, Z.; Cai, R.; Weng, L.; Zhou, X. Organometallics 2002, 21, 1420. (g) Zhou, X.; Zhang, L. B.; Zhu, M.; Cai, R.; Weng, L. Organometallics 2001, 20, 5700. (h) Evans, W. J.; Forrestal, K. J.; Ziller, J. W. J. Am. Chem. Soc. 1998, 120, 9273.
    [5](a) Li, S.; Cheng, J.; Chen, Y.; Nishiura, M.; Hou, Z. Angew. Chem., Int. Ed. 2011, 50, 6360. (b) Siladke, N. A.; Ziller, J. W.; Evans, W. J. J. Am. Chem. Soc. 2011, 133, 3507.
    [6](a) Cheng, J.; Ferguson, M. J.; Takats, J. J. Am. Chem. Soc. 2010, 132, 2. (b) Takenaka, Y.; Shima, T.; Baldamus, J.; Hou, Z. Angew. Chem., Int. Ed. 2009, 48, 7888. (c) Shima, T.; Hou, Z. J. Am. Chem. Soc. 2006, 128, 8124. (d) Cui, D.; Nishiura, M.; Hou, Z. Angew. Chem., Int. Ed. 2005, 44, 959. (e) Tardif, O.; Hashizume, D.; Hou, Z. J Am. Chem. Soc. 2004, 126, 8080. (f) Cui, D.; Tardif, O.; Hou, Z. J. Am. Chem. Soc. 2004,126, 1312.
    [7](a) Marques, N.; Sella, A.; Takats, J. Chem. Rev. 2002, 102, 2137. (b) Trofimenko, S. Scorpionates: The Coordination Chemistry of Polypyrazolylborate Ligands, London, Imperial College Press, 1999.
    [8](a) Cheng, J. H.; Saliu, K.; Kiel, G. Y. Ferguson, M. J.; McDonald, R.; Takats, J. Angew. Chem. Int. Ed. 2008, 47, 1. (b) Cheng, J. H.; Saliu, K.; Kiel, G. Y Ferguson, M. J.; McDonald, R.; Takats, J. Angew. Chem. Int. Ed. 2008, 47, 4910.
    [9]Han, F.; Zhang, J.; Yi, W.; Zhang, Z.; Yu, J.; Weng, L.; Zhou, X. Inorg. Chem. 2010, 49, 2793.
    [10]No example of tetranuclear cubane-like Ln4S4 complex, but two examples of lanthanide clusters including Ln6S6 double cubane core: (a) Kornienko, A.; Emge, T. J.; Kumar, G. A.; Riman, R. E.; Brennan, J. G. J. Am. Chem. Soc. 2005, 127, 3501. (b) Huebner, L.; Kornienko, A.; Emge, T. J.; Brennan, J. G. Inorg. Chem. 2005, 44, 5118.
    [11](a) Yi, W.; Zhang, J.; Li, M.; Chen, Z.; Zhou, X. Inorg. Chem. 2011, 50, 11813. (b) Wang, H.; Li, H.; Xie, Z. Organometallics 2003, 22, 4522. (c) Li, H.; Yao, Y; Shen, Q.; Weng, L. Organometallics 2002, 21, 2529.
    [12]A sole example of C=S cleavage of phenyl isocyanate on a ditantalum dihydride complex containing side-on- and end-on-bound dinitrogen: Ballmann, J.; Yeo, A.; Patrick, B. O.; Fryzuk, M. D. Angew. Chem., Int. Ed. 2011, 50, 507.
    [13](a) Bercaw, J. E.; Davies, D. L.; Wolczanskit, P. T. Organometallics 1986, 5, 443. (b) Hirabayashi, T.; Itoh, K.; Sakai, S.; Ishii, Y. J Organomet. Chem.1970, 21, 273.
    [14](a) Kunrath, F. A.; Casagrande, O. L.; Toupet, L.; Carpentier, J. F. Polyhedron 2004, 23, 2437. (b) Apostolidis, C.; Carvalho, A.; Domingos , A.; Kanellakopoulos , B.; Maier, R.; Marques, N.; Matos, A. P. D; Rebizant , J. Polyhedron .1999, 18 , 263. (c) Long, D. P.; Chandrasekaran , A.; Day, R.O.; Bianconi, P. A.; Rheingold, A. Inorg. Chem. 2000, 39, 4476.
    [15]Mullins, S. M.; Duncan, A. P.; Bergman, R. G.; Arnold, J. Inorg. Chem. 2001, 40, 6952.
    [16]Ong, T.-G.; Yap, G. P. A.; Richeson, D. S. J Am. Chem. Soc. 2003, 125, 8100.
    [17](a) Scott, J.; Basuli, F.; Fout, A. R.; Huffman, J. C.; Mindiola, D. J. Angew. Chem., Int. Ed. 2008, 47, 8502. (b) Lu, E.; Li, Y; Chen, Y. Chem. Commun. 2010, 46, 4469.
    [18](a) Lu, E. L.; Chu, J. X.; Borzov, M.V.; Chen, Y. F.; Li, G. Y Chem. Commun. 2011, 47, 743. (b) Chu, J. X.; Lu, E. L.; Liu, Z. X.; Chen, Y F.; Leng, X. B.; Song, H. B. Angew. Chem. Int. Ed. 2011, 50, 1.
    [19]Gordon, J. C.; Giesbrecht, G. R.; Clark, D. L.; Hay, P. J.; Keogh, D. W.; Poli, R.; Scott, B. L.; Watkin, J. G. Organometallics 2002, 21, 4726-4734.
    [20]Long, D. P.; Chandrasekaran, A.; Day,R. O.; Bianconi, P. A.; Rheingold, A. L. Inorg. Chem. 2000, 39, 4476.
    [21](a) Bailey, P. J.; Coxall, R. A.; Dick, C. M.; Fabre, S.; Henderson, L. C.; Herber, C.; Liddle, S. T.; Parkin, A.; Parsons, S. Chem. Eur. J 2003, 9, 4820.
    [22]Sheldrick, G. M. SADABS, A Program for Empirical Absorption Correction, Gottingen, Germany, 1998.
    [23]Sheldrick, G. M. SHELXL-97, Program for the refinement of the crystal structure, University of Gbttingen, Germany, 1997.
    [1]For C(sp3)-H bond activation, see:(a) Kruger, A.; Haller, L. L. J.; Muller-Bunz, H.;Serada, O.; Neels, A.; Macgregor, S. A.; Albrecht, M. Dalton. Trans.2011,40, 9911. (b) Jazzar, R.; Hitce, J.; Renaudat, A.; Sofack-Kreutzer, J.; Baudoin, O. Chem.-Eur. J.,2010,16,2654. (c) Giri, R.; Shi, B.-F.; Engle, K.M.; Maugel, N.; Yu, J.-Q. Chem. Soc. Rev.2009,38,3242. (d) Labinger, J. A., Bercaw, J. E. Nature,2002,417,507. (e) Bergman, R. G. Nature.2007,446,391. (f) Lin, Z. Coord. Chem. Rev.2007,251,2280. (g) Perutz, R. N.; Sabo-Etienne, S. Angew. Chem., Int. Ed.2007,46,2578.(h) Dedieu, A. Chem. Rev.,2000,100,543; (i) Sakaki, S. Top. Organomet. Chem.,2005,12,31; (j) Lersch, M.; Tilset, M. Chem. Rev.,2005,105,2471.(k) Chen, H.; Schlecht, S.; Semple, T. C.; Hartwig, J. F. Science.2000,287,1995.(1) Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.; Hartwig, J. F. Chem. Rev.2010,110,890.(m) Ess, D. H.; Goddard, W. A.; Periana, R. A. Organometallics.2010,29,6459. (n) Balcells, D.; Clot, E.; Eisenstein, O. Chem. Rev.2010,110,749. (o) Baudoin, O. Chem. Soc. Rev.2011,40,4902.
    [2]For C(sp2)-H bond activation, see:(a) Akita, Y.; Inoue, A.; Yamamoto, K.; Ohta,A.; Kurihara, T.; Shimizu, M. Heterocycles 1985,23,2327. (b) Catellani,M.; Chiusoli, G. P.; Ricotti, S. J. Organomet. Chem.1985,296, C11.(c) Pivsa-Art, S.; Satoh, T.; Kawamura, Y.; Miura, M.; Nomura, M. Bull. Chem. Soc. Jpn.1998,71,467. (d) Rieth, R. D.; Mankad, N. P.; Calimano,E.; Sadighi, J. P. Org. Lett.2004,6,3981. (e) Chiong, H. A.; Daugulis, O.Org. Lett.2007,9,1449. (f) Li_egault, B.; Petrov, I.; Gorelsky, S. I.;Fagnou, K. J. Org. Chem.2010,75, 1047. (g) Deprez, N. R.; Kalyani, D.;Krause, A.; Sanford, M. S. J. Am. Chem. Soc.2006,128,4972. (h) Kakiuchi, F.; Kan, S.; Igi, K.; Chatani, N.; Murai, S. J. Am. Chem.Soc.2003,125,1698. (i) Oi, S.; Fukita, S.; Inoue, Y. Chem. Commun.1998,2439. (j) Bedford, R. B.; Coles, S. J.; Hursthouse, M. B.; Limmert, M. E. Angew. Chem., Int. Ed.2003,42,112. (k) Caron, L.; Campeau, L.-C.; Fagnou, K. Org. Lett.2008,10,4533. (1) Cho, S. H.; Hwang, S. J.;Chang, S. J. Am. Chem. Soc.2008,130,9254. (m) Chen, X.; Li, J.-J.; Hao,X.-S.; Goodhue, C. E.; Yu, J.-Q. J. Am. Chem. Soc.2006,128,78.(n) Chiong, H. A.; Pham, Q.-N.; Daugulis, O. J. Am. Chem. Soc.2007,129,9879. (o) Desai, L. V.; Stowers, K. J.; Sanford, M. S. J. Am. Chem.Soc.2008,130,13285. (p) Shi, Z.; Li, B.; Wan, X.; Cheng, J.; Fang, Z.;Cao, B.; Qin, C.; Wang, Y. Angew. Chem., Int. Ed.2007,46,5554. (q) Do, H.-Q.; Daugulis, O. J. Am. Chem. Soc.2007,129, 12404. (r) Do, H.-Q.; Khan, R. M. K.; Daugulis, O. J. Am. Chem. Soc.2008,130, 15185. (s) Yotphan, S.; Bergman, R. G.; Ellman, J. A. Org. Lett.2009,11,1511. (t) Truong, T.; Daugulis, O. J. Am. Chem. Soc.2011,133,4243.
    [3](a) Giri, R.; Maugel, N.; Li, J.-J.; Wang, D.-H.; Breazzano, S. P.; Saunders, L. B. Yu, J.-Q. J. Am. Chem. Soc.2007,129,3510. (b) Wang, D.-H.; Wasa, M.; Giri, R.; Yu, J.-Q. J. Am. Chem. Soc.2008,130,7190. (c) Kalyani, D.; Deprez, N. R.; Desai, L. V.; Sanford, M. S. J. Am. Chem. Soc.2005,127,7330.(d) Deprez, N. R.; Sanford, M. S. J. Am. Chem. Soc.2009,131,11234. (e). Wang, Q.; Schreiber, S. L. Org. Lett.2009,11,5178. (f) Kim, J. Y.; Cho, S. H.; Joseph, J.; Chang, S. Angew. Chem. Int. Ed.2010,49,9899.(g) Cho, S. H.; Kim, J. Y.; Kwak, J.; Chang, S. Chem. Soc. Rev.2011,40,5068.
    [4](a) Calder, I. C.; Spotswood, T. M.; Sasse, W. H. F. Tetrahedron. Lett.1963,2,95. (b) Calder, I. C.; Sasse, W. H. F. Aust. J. Chem.1965,18,1819. (c) Nonnenmacher, M.; Kunz, D.; Rominger, F.; Oeser, T. Chem. Commun.2006, 1378. (d) Benhamou, L.; Chardon, E.; Lavigne, G.; Bellemin-Laponnaz, S.;Cesar, V. Chem. Rev.2011,111,2705.
    [5](a) Katzer, J. R.; Sivasubramanian, R. Catal. ReV.-Sci. Eng.1979,20,155. (b) Ho, T. C. Catal. ReV.-Sci. Eng.1988,30,117. (c) Perot, G. Catal. Today 1991,10, 447. (d) Prins, R. In A Handbook of Heterogeneous Catalysis; Ertl, G., Knozinger, H., Weitkamp, J., Eds.; VCH Verlagsgesellschaft:Weinheim, Germany,1997.(e) Kabe, T.; Ishikawa, A.; Qian, W. Hydrodesulfurization and Hydrodenitrogenation; Wiley-VCH:Chichester, UK,1999. (f) Furimsky, E.; Massoth, F. E. Catal. Rew.Sci. Eng.2005,47,297, and references therein.
    [6](a) Sanchez-Delgado, R. A. Organometallic modelling of the hydrodesulfurization and hydrodenitrogenation reactions; Kluwer AcademicPublishers:Dordrecht, The Netherlands,2002. (b) Weller, K. J.; Fox, P. A.; Gray, S. D.; Wigley, D. E. Polyhedron 1997,16,3139, and references therein, (c) Gray, S. D.; Weller, K. J.; Bruck, M. A.; Briggs, P. M.; Wigley, D. E. J. Am. Chem. Soc.1995,117,10678 (d) Weller, K. J.; Fox, P. A.; Gray, S. D.; Wigley, D. E. Polyhedron 1997,16, 3139, and references therein, (e) Kleckley, T. S.; Bennett, J. L.; Wolczanski, P. T.; Lobkovsky, E. B. J. Am. Chem. Soc.1997,119,247. (f) Bonanno, J. B.; Veige, A. S.; Wolczanski, P. T.; Lobkovsky, E. B. Inorg. Chim. Acta 2003,345, 173. (g) Neithamer, D. R.; Parkanyi, L.; Mitchell, J. F.; Wolczanski, P. T. J. Am.Chem. Soc.1988,110,4421. (h) Fout, A. R.; Bailey, B. C.; Tomaszewski, J.; Mindiola, D. J. J. Am. Chem..Soc.2007,129,12640. (i) Bailey, B. C; Fan, H.; Huffman, J. C.; Baik, M. H.; Mindiola, D. J. J. Am.Chem. Soc.2006,128,6798.
    [7](a) Huertos, M. A.; Perez, J.; Riera, L. J. Am. Chem. Soc.2008,130,5662. (b) Huertos, M. A.; Perez, J.; Riera, L.; Menendez-Velazquez, A. J. Am.Chem. Soc. 2008,130,13530.
    [8](a) Carver, C. T.; Benitez, D.; Miller, K. L.; Diaconescu, P. L. J. Am. Chem. Soc. 2009,131,10269. (b) Carver, C.T.; Diaconescu, P. L. J. Am. Chem. Soc.2008, 130,7558. (c) Miller, K. L.; Carver, C. T.; Williams, B.N.; Diaconescu, V.L.Organometallics 2010,29,2272. (d) Monreal, M. J.; Khan, S.; Diaconescu, P. L. Angew. Chem. Int. Ed.2009,48,8352. (e) DuhoviC, S.; Moneral, M. J.; Diaconescu, P. L. Inorg. Chem.2010,49,7165.
    [9](a) Edelmann, F. T.; Freckmann, D. M. M.; Schumann, H. Chem. Rev.2002,102, 1851. (b) Arndt, S.; Okuda, J. Chem. Rev.2002,102,1953. (c) Zimmermann, M.; Anwander, R. Chem. Rev.2010,110,6194. (d) Muller, T. E.; Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada, M. Chem. Rev.2008,108,3795.
    [10](a) Tian, S.; Arredondo, V. M.; Stern, C. L.; Marks, T. J. Organometallics.1999, 18,2568. (b) Arredondo, V. M.; Tian, S.; McDonald, F. E.; Marks, T. J. J. Am..Chem. Soc.1999,121,3633. (c) Douglass, M. R.; Marks, T. J. J. Am. Chem. Soc.2000,122,1824.
    [11](a) Hultzsch, K. C.; Spaniol, T. P.; Okuda, J. Angew. Chem., Int. Ed.1999,38, 227. (b) Tanaka, K.; Furo, M.; Ihara, E.; Yasuda, H. J. Polym. Sci., Polym. Chem. 2001,39,1382. (c) Okuda, J.; Amor, F.; Eberle, T.; Hultzsch, K. C.; Spaniol, T. P. Polym. Prepr.1999,40,371. (d) Hou, Z.; Koizumi, T.; Nishiura, M.; Wakatsuki, Y. Or ganometallics 2001,20,3323.
    [12](a) Yi Weiyin.; Zhang Jie.; Zhou, Xigeng. Or ganometallics 2011,30,5809. (b) Yi, Weiyin.; Zhang, Jie.; Li, Meng.; Zhou, Xigeng. Inorg. Chem.2011,50,11813.(c)见第四章双烷基配合物与苯基异腈酸酯和苯基异硫腈酸酯的反应。
    [13]Yasuo, K. Synthesis.1981,2,124.
    [14]Sheldrick, G. M. SADABS, A Program for Empirical Absorption Correction, Gottingen, Germany,1998.
    [15]Sheldrick, G. M. SHELXL-97, Program for the refinement of the crystal structure, University of Gottingen, Germany,1997.
    [1]Kukushkin, V. Y.; Pombeiro, A. J. L. Chem. Rev.2002,102,1771.
    [2](a) Kukushkin, V. Y.; Pombeiro, A. J. L. Inorg. Chim. Acta.2005,358,1. (b) Vicente, J.; Abad, J. A.; Lopez-saez, M. J.; Jones, P. G. Angew. Chem. Int. Ed. 2005,44,6001.
    [3]Michelin, R. A.; Mozzon, M.; Bertani, R. Coord. Chem. Rev.1996,147,299.
    [4](a) Pombeiro, A. J. L.; Kukushkin, V. Yu. In Comprehensive Coordination Chemistry,2nd ed.; Lever, A. B. P., Ed; Elsevier:London,2004; Vol.1, Chapter 1.34, pp 639. (b) Bokach, N. A.; Kukushkin, V. Yu. Usp. Khim. (Russ. Chem. Rev.) 2005,74,164. (c) Eglin, J. Comments Inorg. Chem.2002,23,23. (d) Murahashi, S. I.; Takaya, H. Acc. Chem. Res.2000,33,225. (e) Kukushkin, Yu. N. Russ. J. Coord. Chem.1998,24,173. (f) Parkins, A. W. Platinum Met. Rev. 1996,40,169. (f) da Rocha, Z. N.; Chiericato, G. Jr.; Tfouni, E. Adv. Chem. Ser. 1997,297. (g) Kuznetsov, M. L. Uspekhi Khim. (Russ. Chem. Rev.) 2002,71, 307. (h)Constable, E. C. Metals and Ligand Reactivity:An Introduction to the Organic Chemistry of Metal Complexes; VCH:Weinheim, Germany,1995; p 65. (i) Corain, B.; Basato, M.; Veronese, A. C. J. Mol. Catal.1993,81,133. (j).Chin, J. Acc. Chem. Res.1991,24,145. (k) Khripun, A.V.; Kukushkin, V. Y. Selivanou, S. I.; Haukka, M.; Pombeiro, A. J. L. Inorg. Chem.2006,45,5073.
    [5]Diaconescu, P. L.; Cummins, C. C. J. Am. Chem. Soc.2002,124,7660.
    [6]Kiplinger, J. L.; Morris, D. E.; Scott, B. L.; Burns, C. J. Organometallics 2002,21, 3073.
    [7](a) Feng, S. G.; White, P. S.; Templeton, J. L. J. Am. Chem. Soc.1994,116,8613.
    [8](a) Evans, W. J.; Meadows, J. H.; Hunter, W. E.; Atwood, J. L. J. Am. Chem. Soc. 1984,106,1291. (b) Erker, G.; Fromberg, W.; Atwood, J. L.; Hunter, W. E. Angew. Chem., Int. Ed. Engl.1984,23,68. (c) Bercaw, J. E.; Davies, D. L.; Wolczanski, P. T. Organometallics 1986,5,443. (d) Jordan, R. F.; Bajgur, C. S.; Dasher, W. E.; Rheingold, A. L. Organometallics 1987,6,1041. (e) Bochmann, M.; Wilson, L. M.; Hursthouse, M. B.; Motevalli, M. Organometallics 1988,7, 1148. (f) Woo, W. G.; Tilley, T. D. J. Organomet. Chem.1990,393, C6. (g) Debad, J. D.; Legzdins, P.; Lumb, S. A.; Batchelor, R. J.; Einstein, F. W. B. Organometallics 1992,11,6. (h) Erker, G.; Pfaff, R.; Kowalski, D.; Wurthwein, E. U.; Kruger, C.; Goddard, R. J. Org. Chem.1993,58,6771. (i) Temme, B.; Erker, G.; Frolich, R.; Grehl, M. J. Chem. Soc., Chem. Commun.1994,1713. (j) Debad, J. D.; Legzdins, P.; Lumb, S. A.; Batchelor, R. J.; Einstein, F. W. B. Organometallics 1995,14,2543. (k) Erker, G.; Ahlers, W.; Frohlich, R. J. Am. Chem. Soc.1995,117,5853. (1) Armstrong, D. R.; Henderson, K. W.; Little, I.; Jenny, C0; Kennedy, A. R.; McKeown, A. E.; Mulvey, R. E. Organometallics 2000,19,4369. (m) Boring, E.; Sabat, M.; Finn, M. G.; Grimes, R. Organometallics 1997,16,3993.
    [9](a) Collier, M. R.; Lappert, M. F.; McMeeking, J. Inorg. Nucl. Chem. Lett.1971,7, 689. (b) Erker, G.; Fromberg, W.; Kru ger,C.; Raabe, E. J. Am. Chem. Soc.1988, 110,2400. (c) Zhang; S.; Piers, W. E. Organometallics 2001,20,2088.
    [10](a) Werner, H.; Knaup, W.; Dziallas, M. Angew. Chem., Int. Ed. Engl.1987,26, 248. (b) Werner, H.; Daniel, T.; Muller, M.; Mahr, M. J. Organomet. Chem. 1996,512,197. (c) Ferreira, C. M. P.; Guedes da Silva, M. F.; Kukushkin, V. Y.; Frau sto da Silva, J. J. R.; Pombeiro, A. J. L. J. Chem. Soc., Dalton Trans.1998, 325.
    [11](a) Zippel, T.; Arndt, P.; Ohff, A.; Spannenberg, A.; Kempe, R.; Rosenthal, U. Organometallics 1998,17,4429.
    [12](a) Lefeber, C.; Arndt, P.; Tillack, A.; Baumann, W.; Kempe, R.;Burlakov, V. V. Rosenthal, U. Organometallics 1995,14,3090. (b) Hou, Z.; Yoda, C; Koizumi, T.; Nishiura, M.; Wakatsuki, Y.; Fukuzawa, S.; Takats, J. Organometallics 2003, 22,3586, and references therein.
    [13]Tsai, Y. C.; Stevens, F. H.; Meyer, K.; Mendiratta, A.; Gheorghiu, M. D.; Cummins, C. C. Organometallics 2003,22,2902.
    [14](a) Colquhoun, H. M.; Crease, A. E.; Taylor, S. A.; Williams, D. J. J. Chem. Soc., Dalton Trans.1988,2781. (b) Merzweiler, K.; Fenske, D.; Hartmann, E.; Dehnicke, K. Z. Naturforsch.1989,44b,1003. (c) Redshaw, C.; Wilkinson, G.; Hussain-Bates, B.; Hursthouse, M. B. J. Chem. Soc., Dalton Trans.1992,555. (d) Mommertz, A.; Leo, R.; Massa, W.; Dehnicke, K. Z. Naturforsch.1998,53b, 887. (e) Tanabe, Y.; Seino, H.; Ishii, Y.; Hidai, M. J. Am. Chem. Soc.2000,122, 1690.
    [15]Cramer, R. E.; Panchanatheswaran, K.; Gilje, J. W. J. Am Chem. Soc.1984,106, 1853.
    [16]Dormond, A.; Aaliti, A.; Elbouadili, A.; Moise, C. J. Organomet. Chem.1987, 329,187.
    [17]Dormond, A.; Aaliti, A.; El Bouadili, A.; Moise, C. Inorg. Chim. Acta 1987,139, 171.
    [18]Jantunen, K. C.; Burns, C. J.; Castro-Rodriguez, I.; Da Re, R. E.; Golden, J. T. Morris, D. E.; Scott, B. L.; Taw, F. L.; Kiplinger, J. L. Organometallics 2004,23, 4682.
    [19](a) Bercaw, J. E.; Davies, D. L.; Wolczanskit, P. T. Organometallics 1986,5, 443. (b) Hirabayashi, T.; Itoh, K.; Sakai, S.; Ishii, Y. J. Organomet. Chem.1910, 21,273.
    [20](a) Kunrath, F. A.; Casagrande, O. L.; Toupet, L.; Carpentier, J. F. Polyhedron 2004,23,2437. (b) Apostolidis, C.; Carvalho, A.; Domingos, A.; Kanellakopoulos, B.; Maier, R.; Marques, N.; Matos, A. P. D; Rebizant, J. Polyhedron.1999,18,263. (c) Long, D. P.; Chandrasekaran, A.; Day, R.O.; Bianconi, P. A.; Rheingold, A. Inorg. Chem.2000,39,4476.
    [21]Zhang, J.; Han, Y. N.; Han, F. Y.; Chen, Z. X.; Weng, L. H.; Zhou, X. G. Inorg. Chem.2008,47,5552.
    [22](a) Durfee, L. D.; Rothwell, I. P. Chem. Rev.1988,88,1059. (b) Scott, M. J.; Lippard, S. J. Organometallics 1997,16,5857.
    [23]Sumit, S.; Chandra, R. S. J. Org. Chem.2011,76,7229.
    [24]Sheldrick, G. M. SADABS, A Program for Empirical Absorption Correction, Gottingen, Germany,1998.
    [25]Sheldrick, G. M. SHELXL-97, Program for the refinement of the crystal structure, University of Gottingen, Germany,1997.
    [1]. Reviews:(a) Zhou, X. G.; Zhu, M. J. Organomet. Chem.2002,647,28. (b) Molander, G. A.; Romero, J. A. C. Chem. Rev.2002,102,2161. (c) Hong, S.; Marks, T. J. Acc. Chem. Res.2004,37,673. (d) Weiss, C. J.; Marks, T. J. Dalton Trans.2010,6576.
    [2](a) Roux, E. L.; Liang, Y.; Storz, M. P.; Anwander, R. J. Am. Chem. Soc.2010,132, 16368. (b) Seo, S.; Yu, X.; Marks, T. J. J. Am. Chem. Soc.2009,131,263. (c) Weiss, C. J.; Wobser, S. D.; Marks, T. J. J. Am. Chem. Soc.,2009,131,2062. (d) Zhang, W. X.; Nishiura, M.; Hou, Z. M. Angew. Chem. Ed. Int.2008,47,9700. (e) Yu, X.; Seo, S.; Marks, T. J. J. Am. Chem. Soc.2007,129,7244. (f) Zhang, W. X.; Nishiura, M.; Hou, Z. M. J. Am. Chem. Soc.2005,127,16788.
    [3](a) Schmiege, B. M.; Ziller, J. W.; Evans, W. J. Inorg. Chem.2010,49,10506. (b) Takenaka, Y.; Shima, T.; Baldamus, J.; Hou, Z. M. Angew. Chem. Int. Ed.2009,48, 7888. (c) Takenaka, Y.; Hou, Z. M. Organometallics 2009,28,5196. (d) Cui, D. M.; Nishiura, M.; Tardif, O.; Hou, Z. M. Organometallics 2008,27,2428. (e) Shima, T.; Hou, Z. M. J. Am. Chem. Soc.2006,128,8124. (f) Evans, W. J.; Hanusa, T. P.; Meadows J. H.; Hunter, W. E.; Atwood, J. L. Organometallics 1987,6,295. (g) Evans, W. J.; Grate, J. W.; Doedens, R. J. J. Am. Chem. Soc. 1985,107,1671. (h) Evans, W. J.; Meadows, J. H.; Hunter, W. E.; Atwood, J. L. J. Am. Chem. Soc.1984,106,1291. (i) Evans, W. J.; Meadows, J. H.; Hunter, W. E.; Atwood, J. L. Organometallics 1983,2,1252.
    [4](a) Zhang, Z. X.; Zhang, L. X.; Li, Y. R.; Hong, L. C.; Chen, Z. X.; Zhou, X. G. Inorg. Chem.2010,49,5715. (b) Evans, W. J.; Walensky, J. R.; Ziller, J. W. Inorg. Chem.2010,49,1743. (c) Pi, C. F.; Li, X. Q.; Zhang, L. L.; Liu, R. T.; Weng, L. H.; Zhou, X. G. Inorg. Chem.2010,49,7632. (d) Casely, I. J.; Suh, Y. S.; Ziller, J. W.; Evans, W. J. Organometallics 2010,29,5209. (f) Li, X. Q.; Liu, R. T.; Zhang, Z. X.; Mu, X. M.; Weng, L. H.; Zhou, X. G. Organometallics 2010, 29,3298. (g) Li, X. Q.; Hong, J. Q.; Liu, R. T.; Weng, L. H.; Zhou, X. G. Organometallics 2010,29,4606. (h) Sun, J. L.; Berg, D. J.; Twamley, B. Organometallics 2008,27,683. i) Norambuena, V. F. Q.; Heeres, A.; Heeres, H. J.; Meetsma, A.; Teuben, J. H.; Hessen, B. Organometallics 2008,27,5672. (j) Evans, W. J.; Rego, D. B.; Ziller, J. W.; Dipasquale, A. G.; Rheingold, A. L Organometallics 2007,26,4737. (k) Zhang, J.; Ruan, R. Y.; Shao, Z. H.; Cai, R. F.; Weng, L. H.; Zhou, X. G. Organometallics 2002, 21, 1420. (1) Zhou, X. G.; Zhang, L. B.; Zhu, M.; Cai, R. F.; Weng, L. H. Organometallics 2001, 20, 5700. (m) Evans, W. J.; Forrestal, K. J.; Ziller, J. W. J. Am. Chem. Soc. 1998, 120, 9273. (n) W. J. Evans, C. A. Seibel, J. W. Ziller, R. J. Doedens, Organometallics 1998, 17, 2103.
    [5](a) Sun, Y.; Zhang, Z. X.; Wang, X.; Li, X. Q.; Weng, L. H.; Zhou X. G. Dalton Trans. 2010, 39, 221. (b) Zhu, X. C.; Fan, J. X.; Wu, Y. J.; Wang, S. W.; Zhang, L, J.; Yang, G. S.; Wei, Y.; Yin, C. W.; Zhu, H.; Wu, S. H.; Zhang, H. T. Organometallics 2009 28, 3882. (c) Han, Y. N.; Zhang, J.; Han, F. Y.; Zhang, Z. X.; Weng, L. H.; Zhou, X. G. Organometallics 2009, 28, 3916. (d) Sun, Y.; Zhang, Z. X.; Wang, X.; Li, X. Q.; Weng, L. H.; Zhou, X. G. Organometallics 2009, 28, 6320. (e) Zhang, J.; Han, Y N.; Han, F. Y; Chen, Z. X.; Weng, L. H.; Zhou, X. G. Inorg. Chem. 2008, 47, 5552. (f) Pi, C. F.; Zhang, Z. X.; Pang, Z.; Luo, J.; Chen, Z. X.; Weng, L. H.; Zhou, X. G. Organometallics 2007, 26, 1934. (g) Ma, L. P. Zhang, J.; Cai, R. F. ; Chen, Z. X. ; Zhou, X. G. Dalton Trans. 2007, 2718. (h) Liu, R. T.; Zhang, C. M.; Zhu, Z. Y.; Luo, J.; Zhou, X. G.; Weng, L. H. Chem. Eur. J 2006, 12, 6940. (i) Ma, L. P.; Zhang, J.; Zhang, Z. X.; Cai, R. F.; Chen, Z. X.; Zhou, X. G. Organometallics 2006, 25, 4571. (j) Zhang, J.; Cai, R. F.; Weng, L. H.; Zhou, X. G. Dalton Trans. 2006, 1168. (k) Cui, D.; Nishiura, M.; Hou, Z. M. Angew. Chem. Int. Ed. 2005, 44, 959. (1) Zhang, J.; Zhou, X. G.; Cai, R. F.; Weng, L. H. Inorg. Chem. 2005, 44, 716. (m) Ma, L. P.; Zhang, J.; Cai, R. F.; Chen, Z. X.; Weng, L. H.; Zhou, X. G. J. Organomet. Chem. 2005, 690, 4926. (n) Zhang, J.; Cai, R. F.; Weng, L. H.; Zhou, X. G. Organometallics 2004, 23, 3303. (o) Zhang, J.; Cai, R. F.; Weng, L. H.; Zhou, X. G. Organometallics 2003, 22, 5385. (p) Li, H. R.; Yao, Y. M.; Shen, Q. Weng, L. H. Organometallics 2002, 21, 2529. (q) Evans, W. J.; Fujimoto, C. H.; Ziller, J. W. Organometallics 2001, 20, 4529. (r) Zhou, X. G.; Huang, Z. E.; Cai, R. F.; Zhang, L. B.; Zhang, L. X.; Huang, X. Y. Organometallics 1999, 18, 4128. (s) Mao, L. S.; Shen, Q.; Xue, M. Q.; Sun, J. Organometallics 1997, 16, 3711.
    [6](a) Evans, W. J.; Miller, K. A.; Ziller J. W. Inorg. Chem. 2006, 45,424. (b) Zhang, J.; Ma, L. P.; Cai, R. F.; Weng, L. H.; Zhou, X. G. Organometallics 2005, 24, 738. (c) Zhang, C. M.; Liu, R. T.; Zhou, X. G.; Chen, Z. X.; Weng, L. H.; Lin Y. H. Organometallics 2004, 23, 3246.
    [7](a) Zhang, W. X.; Nishiura, M.; Mashiko, T.; Hou, Z. M. Chem. Eur J. 2008, 14, 2167. (b) Douglass, M. R.; Marks, T. J. J. Am. Chem. Soc.2000,122,1824. (c) Douglass, M. R.; Stern, C. L.; Marks, T. J. J. Am. Chem. Soc.2001,123,10221.
    [8](a) Schumann, H.; Jarosch, H. Z. Z. Anorg. Alllg. Chem.1976,426,127. (b) Schumann, H.; Frisch, G. M. Z. Naturforsch.1981,36b,1244. (c) Schumann, H.; Palamidis, E.; Schmid, G.; Boese, R. Angew. Chem. Int. Ed. Engl.1986,25,718.
    [9](a) Izod, K.; O'Shaughnessy, P.; Sheffield, J. M.; Clegg, W.; Liddle, S. T. Inorg. Chem.2000,39, 4741. (b) Clegg, W.; Izod, K.; Liddle, S. T. J. Organomet. Chem. 2000,613,128. (c) Rabe, G. W.; Yap, G. P. A.; Rheingold, A. L. Inorg. Chem. Acta.1998,267,309. (d) Rabe, G. W.; Guzei, I. A.; Rheingold, A. L. Inorg. Chem. 1997,36,4914. (e) Rabe, G. W.; Yap, G. P. A.; Rheingold, A. L. Inorg. Chem. 1997,36,3212.
    [10]Organic Phosphorus Compounds (Eds.:D. M. Kosolapoff, L.Maier), Wiley, New York,1973.
    [11](a) S. J. Berners-Price, R. E. Norman, P. J. Sadler, J. Inorg. Biochem.1987,31, 197. (b) Popescu, A. R.; Laromaine, A.; Teixidor, F.; Sillanpaa, R. J.; Kivekas, R.; Llambias, J. I.; Vinas, C. Chem. Eur. J.2011,17,4429.
    [12](a) Han, F.; Zhang, J.; Yi, W.; Zhang, Z.; Yu, J.; Weng, L.; Zhou, X. Inorg. Chem. 2010,49,2793. (b) Marques, N.; Sella, A.; Takats, J. Chem. Rev.2002,102, 2137.
    [13]Yi, Weiyin.; Zhang, Jie.; Li, Meng.; Zhou, Xigeng. Inorg Chem 2011,50,11813.
    [14]Shannon, R. D. Acta Crystal.1976, A32,751.
    [15]Mizutu, T.; Miyaji, C.; Katayama, T.; Ushio, J.; Kubo, K.; Miyoshi, K. Organometallics 2009,28,539.
    [16](a) Wang, H. P.; Li, H. Y.; Xie, Z. W. Inorg. Chem.2003,22,4522.(b) Li, H. X.; Cheng, M. L.; Wang, H. M.; Yang, X. J.; Ren, Z. G.; Lang J. P. Organometallics 2011,30,208.
    [17]Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A. G. J. Chem. Soc., Perkin Trans.1987, S1.
    [18]Sheldrick, G. M. SADABS, A Program for Empirical Absorption Correction, Gottingen, Germany,1998.
    [19]Sheldrick, G. M. SHELXL-97, Program for the refinement of the crystal structure, University of Gottingen, Germany,1997.
    [1](a) Westerhausen, M. Coord Chem. Rev. 1998, 176, 157. (b) Williard, P. G.;Nichols, M. A. J. Am. Chem. Soc. 1991, 113, 967L(c) Evans, W. J.; Lee, D. S.; Rego, D. B.; Perotti, J. M.; Kozimor, S. A.; Moore, E. K.; Ziller, J. W. J. Am. Chem. Soc. 2004, 126, 14574. (d) Evans, W. J.; Fang, M.; Zucchi, Z.; Furche, F. Ziller, J. W.; Hoekstra, R. M.; Zink, J. 1. J. Am. Chem. Soc. 2009, 131, 11195. (e) Layfield, R. A.; McDouall, J. J. W.; Scheer, M.; Schwarzmaier, C.; Tuna, F. Chem. Commun., 2011, 10623.
    [2]Some recent examples of metal bis(trimethylsilyl)amide complexes: (a) Sulway, S. A.; Collison, D.; McDouall, J. J. W.; Tuna, F.; Layfield, R. A. Inorg. Chem. 2011, 50,2521.(b) Hill, M. S.; Kociok-Kohn, G.; MacDougall, D. J. Inorg. Chem. 2011, 50, 5234. (c) Caballo, J.; Garcia-Castro, M.; Martin, A.; Mena, M.; Perez-Redondo, A.; Yelamos, C. Inorg. Chem. 2011, 50, 6798. (d) Johns, A. M.; Chmely, S. C.; Hanusa, T. P. Inorg. Chem. 2009, 48, 1380.(e) Barrett, A. G. M.; Casely, I. J.; Crimmin, M. R.; Hill, M. S.; Lachs, J. R.; Mahon, M. F.; Procopiou, P. A. Inorg. Chem. 2009, 48, 4445. (f) Barrett, A. G. M.; Crimmin, M. R.; Hill, M. S.; Kociok-Kohn, G.; MacDougall, D. J.; Mahon, M. F.; Procopiou, P. A. Organometallics 2008, 27, 3939. (g) Wetherby, Jr. A. E.; Goeller, L. R.; DiPasquale, A. G.; Rheingold, A. L.; Weinert, C. S. Inorg. Chem. 2008, 47, 2162. (h) Pryadun, R. Holm, R. H. Inorg. Chem. 2008, 47, 3366.
    [3]Some recent examples of organic reactions catalyzed by rare earth metal bis(trimethylsilyl)amide complexes: (a) Roux, E. L.; Liang, Y.; Storz, M. P.; Anwander, R. J. Am. Chem. Soc. 2010, 132, 16368.(b) Seo, S.-Y.; Yu, X.; Marks, T. J. J Am. Chem. Soc. 2009, 131, 263. (c) Seo, S.-Y.; Marks, T. J. Org. Lett. 2008, 10, 317. (d) Du, Z.; Li, W.-B.; Zhu, X.-H.; Xu, F.; Shen, Q. J Org. Chem. 2008, 73, 8966. (e) Shen, Q.-S.; Huang, W.; Wang, J.-L.; Zhou, X.-G. Organometallics 2008, 27, 301. (f) Holschumacher, D.; Hrib, C. G.; Jones, P. G.; Tamm, M. Chem. Commun. 2007, 3661.
    [4](a) Maile, E.; Frisher, R. A. Chem. Vap. Deposition 2005, 11, 409. (b) Triyoso, D. H.; Hegde, R. I.; Grant, J.; Fejes, P.; Liu, R.; Roan, D.; Ramon, M.; Werho, D.; Rai, R.; La, L. B.; Baker, J.; Garza, C.; Guenther, T.; White, Jr. B. E.; Tobin, P. J. J. Vac. Sci. Technol. B 2004, 22, 2121.(c) Pothiraja, R.; Milanov, A.; Parala, H.; Winter, M.; Fischer, R. A.; Devi, A. Dalton 2009, 654.
    [5](a) Niemeyer, M. Inorg. Chem.2006,45,9085. (b) Wang, J.; Gardiner, M. G. Chem. Commun.2005,1589. (c) Yu, X.; Bi, S.; Guzei, L. A.; Lin, Z.; Xue, Z. Inorg. Chem.2004,43,7111. (d) Deacon, G. B.; Forsyth, C. M. Chem. Commun. 2002,2522. (e) Moore, M. Gambarotta, S. Yap, G.; Liable-Sands, L. M.; Rheingold, A. L. Chem. Commun.1997,643.
    (6)Heeres, H. J.; Meetsma, A.; Teuben, J. H.; Rogers, R. D. Organometallics 1989,8, 2637.
    [7]Mukherjee, D.; Ellern, A.; Sadow, A. D. J. Am. Chem. Soc.2010,132,7582.
    [8](a) Itami, K.; Terakawa, K.; Yoshida, J.; Kajimoto, O. J. Am. Chem. Soc.2003, 125,6058. Also see a review:(b) Armitage, D. A. In Comprehensive Organometallic Chemistry; Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon:New York,1982; Vol.2, Chapter 9.1.
    [9](a) Rauf, W.; Brown, J. M. Angew. Chem., Int. Ed.2008,47,4228. (b) Tobisu, M.; Onoe, M.; Kita, Y.; Chatani, N. J. Am. Chem. Soc.2009,131,7506.
    [10](a) van Klink, G. P. M.; de Boer, H. J. R.; Schat, G.; Akkerman, O. S.; Bickelhaupt, F.; Spek, A. L. Organometallics 2002,21,2119. (b) Wang, C; Luo, Q.; Sun, H.; Guo, X.; Xi, Z. J. Am. Chem. Soc.2007,129,3094.
    [11]Sen, S. S.; Hey, J.; Herbst-Irmer, R.; Roesky, H. W.; Stalke, D. J. Am. Chem. Soc. 2011,133,12311.
    [12](a) Li, S.-H.; Cheng, J.-H.; Chen, Y-H.; Nishiura, M.; Hou, Z.-M. Angew. Chem., Int. Ed.2011,50,6360. (b) Arnold, P. L.; Turner, Z. R.; Bellabarba, R.; Tooze, R. P. J. Am. Chem. Soc.2011,133,12311.
    [13](a) Han, F.-Y.; Zhang, J.; Han, Y.-N.; Zhang, Z.-X.; Chen, Z.-X.; Weng,L.-H.; Zhou, X.-G. Inorg. Chem.2009,48,1774. (b) Han, F.-Y; Zhang, J.; Yi, W.-Y. Zhang, Z.-X.; Yu, J.-Y; Weng, L.-H.; Zhou, X.-G. Inorg. Chem.2010,49,2793. (c) Yi, W.-Y.; Zhang, J.; Li, M.; Chen, Z.-X.; Zhou, X.-G. Inorg, Chem.2011, 50,11813.
    [14](a) Graves, C. R.; Schelter, E. J.; Cantat, T.; Scott, B. L.; Kiplinger, J. L, Organometallics 2008,27,5371. (b) Karl, M.; Harms, K.; Seybert, G.; Massa, W.; Fan, S.; Frenking, F. G.; Dehnicke, K. Z. Anorg. Allg. Chem.1999,625, 2055. (c) Moore, M. Gambarotta, S.; Bensimon, C. Organometallics 1997,16, 1086.
    [15](a) Planalp, R. P.; Anderson, R. A.; Zalkin, A. Organometallics 1983,2,16. (b) Simpson, S. J. Anderson, R. A. J. Am. Chem. Soc.1981,103,4063.
    [16]Luo, B.; Young, Jr. V. G.; Gladfelter, W. L. J. Organomet. Chem.2002,649,268.
    [17]a) Yi, W. Y.; Zhang, J.; Li, M.; Chen, Z. X.; Zhou, X. G. Inorg. Chem.2011,50, 11813; b) Zhang, J.; Ruan, R. Y.; Shao, Z. H.; Cai, R. F.; Weng, L. H.; Zhou, X. G. Organometallics 2002,21,1420.
    [18](a) Shen, H.; Chan, H. S.; Xie, Z. J. Am. Chem. Soc.2007,129,12934; (b) Brazeau, A. L.; Wang, Z.; Rowley, C. N.; Barry, S. T. Inorg. Chem.2006,45, 2276; (c) Coyle, J. P.; Monillas, W. H.; Yap, G. P. A.; Barry, S. T. Inorg. Chem. 2008,47,683; (d) Shen, H.; Xie, Z. Organometallics 2008,27,2685; (e) Coyle, J. P.; Johnson, P. A.; Dilabio, G. A.; Barry, S. T.; Muller, J. Inorg. Chem.2010, 47,2844.
    [19]Han, F.Y.; Zhang, J.; Yi, W. Y.; Zhang, Z. X.; Yu, J. Y.; Weng, L. H.; Zhou, X. G. Inorg. Chem.2010,49,2793.
    [20]Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A. G. J. Chem. Soc, Perkin Trans.1987, S1.
    [21](a) Deacon, G. B.; Delbridge, E. E.; Forsyth C. M. Angew. Chem., Int. Ed.1999, 38,1766. (b) Hevia, E.; Honeyman, G. W; Kennedy, A. R.; Mulvey, R. E.; Sherrington D. C. Angew. Chem., Int. Ed.2005,44,68.
    [22]Long, D. P.; Chandrasekaran, A.; Day,R. O.; Bianconi, P. A.; Rheingold, A. L. Inorg. Chem.2000,39,4476.
    [23]Sheldrick, G. M. SADABS, A Program for Empirical Absorption Correction, Gottingen, Germany,1998.
    [24]Sheldrick, G. M. SHELXL-97, Program for the refinement of the crystal structure, University of Gottingen, Germany,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700