基于介孔二氧化硅复合纳米粒子的制备、性能及药物控释研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着纳米生物技术的发展,智能型有机-无机复合纳米粒子受到了人们广泛的关注,纳米材料在生物标记、重大疾病的临床检测与治疗等诸多领域都体现出了巨大的优势。其中介孔二氧化硅纳米粒子(Mesoporous silica nanoparticles,简称MSNs)代表了一类极其重要的纳米材料,在过去的几十年的科学研究和实际应用中,都已经取得了非常显著的进展。MSNs材料具有生物相容性好、比表面积和孔容大、介孔孔径尺寸可调以及表面易于有机基团改性等优点,非常适合用作抗肿瘤药物分子的载体,有利于提高药效降低药物的毒副作用。
     在抗肿瘤的临床应用中,较为理想的可控药物传输系统不仅要求其自身具有良好的生物相容性以及对药物有较高的负载率,还必须满足在血液循环时药物分子的“零释放”,但到达病灶部位后药物分子却能够快速且完全地释放。在这种研究背景下,本论文以MSNs粒子为基本的出发点,制备了多种纳米尺度且稳定分散的功能性MSNs复合材料。由于MSNs对药物具有较高的负载能力,因此可将MSNs视为储存药物的“仓库”,再利用具有生物环境刺激响应性的聚合物壳层作为“开关”,实现对药物的可控释放。具体来说,有以下四个方面的结果:
     (1)基于阳离子表面活性剂CTAB稳定无机纳米粒子的思路,设计用MSNs基质包覆各种不同性质的无机纳米粒子,包括亲水性/疏水性、带正电/带负电、球形/棒状以及小尺寸/大尺寸等。研究发现,实验配方中的各种原料和反应条件对最终得到的介孔复合纳米粒子的影响程度明显不同:CTAB的用量越多得到的粒子的稳定性越好,体系的pH为12左右以及反应温度为40℃时得到的产物的核-壳结构最为完善且介孔有序性最为优异。
     (2)以第二章合成的Fe3O4@MSNs纳米粒子为基础,在其介孔孔道中修饰上各种有机官能团,以调节药物分子与MSNs基质之间的相互作用,以增强或者减弱药物分子的负载效率和释放速度。结果表明,在MSNs孔道表面引入上羧基基团后,DOX的释放速度呈现出明显的pH依赖性:pH越小释放速度越快;而对于疏水性的PTX,苯基基团改性后的MSNs孔道则能够明显地加快PTX在水溶液中的释放速度。
     (3)以第二章合成的Fe3O4@MSNs纳米粒子为基础,通过沉淀聚合法制备了以Fe3O4@MSNs为核、聚合物P(NIPAM-co-MAA)为壳的有机-无机复合纳米粒子。该复合纳米粒子Fe3O4@MSNs@P(NIPAM-co-MAA)在保留MSNs介孔性质的同时,呈现出明显的温度和pH耦合响应性。聚合物壳层P(NIPAM-co-MAA)能够作为“开关”,对DOX的释放起到有效地调控:在体积相转变之前,DOX的释放量仅仅只有7.2wt%;在发生体积相转变后,DOX的释放量则大幅度的增加到80.2wt%。
     (4)参照第四章Fe3O4@MSNs纳米粒子的改性方法,先在MSNs的孔道中修饰上羧基基团;再运用第五章的沉淀聚合技术制备出了以MSNs为核、聚合物P(VCL-s-s-MAA)为壳层的有机-无机复合纳米粒子,其中壳层聚合物用带二硫键的BACy进行有效的交联,最后在整体粒子的外表面接枝上适当数量的PEG链段。该复合纳米粒子MSNs-COOH@P(VCL-s-s-MAA)-PEG具有粒径均匀、结构完善、胶体分散以及介孔性质突出等优点,并能够对外界环境的变化做出灵敏的反应。在10mM谷胱甘肽还原性条件下,壳层中二硫键会完全断开,壳层聚合物发生明显的降解,导致复合纳米粒子的核-壳结构不复存在。药物释放结果表明,在体积相转变之前,DOX的释放量只有5.4wt%;在体积相转变发生之后,DOX的释放量则增加到64.0wt%;尤其是在还原性环境中,DOX实现了完全的释放。本章的研究发现证明,复合纳米粒子MSNs-COOH@P(VCL-s-s-MAA)-PEG中的MSNs核作为药物储存的“仓库”,而具有温度/pH耦合响应性且可还原敏感降解的聚合物壳层具备“开关阀门”的功能,能够非常高效率地调控药物分子的释放速度,是一类性质优异的药物控制释放载体。
The development of new nanomaterials for the diagnosis and/or treatment of different diseases has been receiving greater attention in recent years and has now become an important field in medical research. Dedicated nanomaterials can be used to monitor the progress of a therapy or disease, to determine the blood type of patients requiring transfusion, or for tissue typing when a transplant is required. The following unique properties of MSNs, such as tunable particle size, stable and rigid framework, uniform and tunable pore size, high surface area and large pore volume, two functional surfaces, unique porous structure and biocompatibility, have attracted a lot of research attention for various controlled release delivery applications.
     As outlined below, several perquisites need to be incorporated into such a material in order to serve as efficient drug delivery systems.(1) The carrier material should be biocompatible.(2) High loading/encapsulation of desired drug molecules.(3) Zero premature release of drug molecules.(4) Controlled release of drug molecules with a proper rate of release to achieve an effective local concentration. Based on the MSNs, several nano-sized drug carriers with uniform diameters were synthesized. A diversity of surface modification was subjected to systematic investigation using organic silanes, in order to study the drug loading capacity and sustained release behaviour of the modified M-MSNs for representative drugs. The polymer coated MSNs systems were used as "gatekeepers" to regulate the encapsulation and release of drug molecules. The main results were listed as follows:
     (1) A general and facile strategy was developed to coat hydrophilic nanoparticles directly with mesoporous silica nanoparticles (MSNs). The cationic surfactant of cetyltrimethylammonium bromide (CTAB) was adsorbed to various hydrophobic or hydrophilic inorganic nanoparticles, introducing the CTAB layer overcoating with positive charge. The subsequent sol-gel reaction of TEOS with the basic catalyst resulted in uniform nanocomposites. The relatively high CTAB concentration and proper pH value in the initial reaction system were the key factors for synthesizing uniform, colloidal nanocomposites with obvious core/shell-structure. The controlled preparation method of multifunctional silica nanocomposites provided the platform for designing multifunctional MSNs to assess biological effects.
     (2) The keystone in the development of MSNs as drug carriers is the modification or functionalization of the surface through organic groups. This process provides numerous possibilities to control drug adsorption and release. A diversity of surface modification was subjected to systematic investigation using organic silanes, eventually resulting in the decoration with the carboxyl (-COOH), methyl phosphonate (-PO3-), amino (-NH2) and phenyl (-Ph) groups on the surface of MSNs. The hydrophilically modified MSNs with-COOH and-PO3-were beneficial for loading the water-soluble doxorubicin hydrochloride (DOX) through electrostatic attraction. The results demonstrated that MSNs-PO3-achieved a higher loading content and MSNs-COOH presented a distinct pH-responsible release behavior. On the other hand, MSNs-Ph displayed a controlled release rate in a short term via the weakened hydrogen bonding interaction.
     (3) A kind of core-shell composite nanosphere was prepared based on poly(N-iso propylacrylamide-co-methacrylic acid) coated magnetic MSNs via precipitation polymerization. The composite nanoparticles presented a thermo/pH-coupling sensitivity and the volume phase transition could be precisely regulated by the molar ratio of MAA to NIP AM or the concentration of NaCl. At physiological conditions (37℃,0.15M NaCl), the P(NIPAM-co-MAA) shell underwent a distinct transition from a swollen state in pH7.4to a collapsed state in pH5.0, so that the polymer shell was active in moderating the diffusion of embedded drugs in-and-out of the pore channels of MSNs. DOX was applied as a model drug and the behaviors of drug storage/release were investigated. The drug loaded behavior was pH-dependent, and the composite nanoparticles had a drug embed efficiency of about91.3%under alkaline condition. The cumulative in vitro release of the DOX-loaded nanocomposite showed a low level of leakage below the volume phase transition temperature (VPTT) and was significantly enhanced above its VPTT, exhibiting an apparent thermo/pH-response controlled drug release. The cytotoxicity assay of a blank carrier to normal cells indicated that the composite microspheres were suitable as drug carriers, while the DOX-loaded composite microspheres had a similar cytotoxicity to HeLa cells compared with free DOX.
     (4) The nanocomposites was prepared with-COOH modified MSNs as core and poly(N-vinylcaprolactam-s-s-methacrylic acid)(P(VCL-s-s-MAA)) as shell, which comprised a polyethylene glycol (PEG) corona to stabilize the particles and the N,N'-bis (acryloyl) cystamine as a reversible cross-linker, while the mesostructure of the core was completely retained. The obtained core-shell nanospheres presented both temperature and pH sensitivity. The thermo-sensitive volume phase transition could be precisely regulated by the mass ratios of MAA to VCL. An increase in the pH value led to a significant increase in VPTT, which can be adjusted as desired close to human body temperature (37℃). The composite nanospheres, though sufficiently stable in water, were prone to fast disappearance for polymer shell in the presence of10mM glutathione (GSH), due to shedding of the reductive cleavage of the intermediate disulfide bonds in P(VCL-s-s-MAA) polymer shell. DOX was also applied as a model drug to evaluate the loading and release properties. Drug leakage can be avoided in MSNs@P(VCL-s-s-MAA) storage and significantly reduced in blood circulation, whereas a burst release of drug was triggered in an acidic and reductant-enriched environment such as in lysosomes. Therefore, the thermo/pH-sensitive nanocomposites with reductively sheddable polymer shell gate could, in principle, be used for in vivo cancer therapy with a low premature drug release during blood circulation whilst having a rapid release upon reaching tumor tissues.
引文
1. Kumar, C., Nanotechnologies for the life sciences, Wiley-VCH,2007, volume 7.
    2. Liu, Y. Y.; Miyoshi, H.; Nakamura, M., Nanomedicine for drug delivery and imaging:a promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles. International Journal of Cancer 2007,120, (12),2527-2537.
    3. Riehemann, K.; Schneider, S. W.; Luger, T. A.; Godin, B.; Ferrari, M.; Fuchs, H., Nanomedicine-Challenge and Perspectives. Angewandte Chemie-International Edition 2009,48, (5),872-897.
    4. De, M.; Ghosh, P. S.; Rotello, V. M., Applications of nanoparticles in biology. Advanced Materials 2008,20, (22),4225-4241.
    5. Ferrari, M., Cancer nanotechnology:opportunities and challenges. Nature Reviews Cancer 2005,5, (3),161-171.
    6. Allen, T. M.; Cullis, P. R., Drug delivery systems:entering the mainstream. Science 2004,303, (5665),1818-1822.
    7. Sanvicens, N.; Marco, M. P., Multifunctional nanoparticles-properties and prospects for their use in human medicine. Trends in Biotechnology 2008,26, (8), 425-433.
    8. Park, K.; Lee, S.; Kang, E.; Kim, K.; Choi, K.; Kwon, I. C., New generation of multifunctional nanoparticles for cancer imaging and therapy. Advanced Functional Materials 2009,19, (10),1553-1566.
    9. Mnneil, S. E., Nanotechnology for the biologist. Journal of Leukocyte Biology 2005,78, (3),585-594.
    10. Barreto, J. A.; O'Malley, W.; Kubeil, M.; Graham, B.; Stephan, H.; Spiccia, L., Nanomaterials:applications in cancer imaging and therapy. Advanced Materials 2011, 23, (12),H18-H40.
    11. Cho, K. J.; Wang, X.; Nie, S. M.; Chen, Z.; Shin, D. M., Therapeutic nanoparticles for drug delivery in cancer. Clinical Cancer Research 2008,14, (5), 1310-1316.
    12. Kumari, A.; Yadav, S. K.; Yadav, S. C., Biodegradable polymeric nanoparticles based drug delivery systems. Colloids and Surfaces B-Biointerfaces 2010,75, (1), 1-18.
    13. Vauthier, C.; Bouchemal, K., Methods for the preparation and manufacture of polymeric nanoparticles. Pharmaceutical Research 2009,26, (5),1025-1058.
    14. Davis, M. E.; Chen, Z.; Shin, D. M., Nanoparticle therapeutics:an emerging treatment modality for cancer. Nature Reviews Drug Discovery 2008,7, (9),771-782.
    15. Bawarski, W. E.; Chidlowsky, E.; Bharali, D. J.; Mousa, S. A., Emerging nanopharmaceuticals. Nanomedicine-Nanotechnology Biology and Medicine 2008,4, (4),273-282.
    16. Torchilin, V. P., Recent advances with liposomes as pharmaceutical carriers. Nature Reviews Drug Discovery 2005,4, (2),145-160.
    17. Caminade, A. M.; Laurent, R.; Majoral, J. P., Characterization of dendrimers. Advanced Drug Delivery Reviews 2005,57, (15),2130-2146.
    18. Villaraza, A. J. L.; Bumb, A.; Brechbiel, M. W., Macromolecules, dendrimers, and nanomaterials in magnetic resonance imaging:the interplay between size, function, and pharmacokinetics. Chemical Reviews 2010,110, (5),2921-2959.
    19. Lee, C. C; MacKay, J. A.; Frechet, J. M. J.; Szoka, F. C., Designing dendrimers for biological applications. Nature Biotechnology 2005,23, (12),1517-1526.
    20. Iijima, S., Helical microtubules of graphitic carbon. Nature 1991,354, (6348), 56-58.
    21. Bethune, D. S.; Kiang, C. H.; Devries, M. S.; Gorman, G.; Savoy, R.; Vazquez, J.; Beyers, R., Coblt-catalyzed growth of carbonb nanotubes with single-atomic layerwalls. Nature 1993,363, (6430),605-607.
    22. Polizu, S.; Savadogo, O.; Poulin, P.; Yahia, L., Applications of carbon nanotubes-based biomaterials in biomedical nanotechnology. Journal of Nanoscience and Nanotechnology 2006,6, (7),1883-1904.
    23. Mansur, H. S., Quantum dots and nanocomposites. Wiley Interdisciplinary Reviews-Nanomedicine and Nanobiotechnology 2010,2, (2),113-129.
    24. Giinter Schmid, Nanoparticles:from theory to application, Wiley-VCH,2005, page 1-50.
    25. Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H., Quantum dot bioconjugates for imaging, labelling and sensing. Nature Materials 2005,4, (6), 435-446.
    26. Tartaj, P.; Morales, M. P.; Gonzalez-Carreno, T.; Veintemillas-Verdaguer, S.; Serna, C. J., Advances in magnetic nanoparticles for biotechnology applications. Journal of Magnetism and Magnetic Materials 2005,290, (1-2),28-34.
    27. Gao, J. H.; Gu, H. W.; Xu, B., Multifunctional magnetic nanoparticles:design, synthesis, and biomedical applications. Accounts of Chemical Research 2009,42, (8), 1097-1107.
    28. Lu, A. H.; Salabas, E. L.; Schuth, F., Magnetic nanoparticles:Synthesis, protection, functionalization, and application. Angewandte Chemie-International Edition 2007,46, (8),1222-1244.
    29. Jun, Y. W.; Lee, J. H.; Cheon, J., Chemical design of nanoparticle probes for high-performance magnetic resonance imaging. Angewandte Chemie-International Edition 2008,47, (28),5122-5135.
    30. Glomm, W. R., Functionalized gold nanoparticles for applications in bionanotechnology. Journal of Dispersion Science and Technology 2005,26, (3), 389-414.
    31. Huang, X. H.; Jain, P. K.; El-Sayed, I. H.; El-Sayed, M. A., Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostic and therapy. Nanomedicine 2007,2, (5),681-693.
    32. Auzel, F., Upconversion and anti-stokes processes with f and d ions in solids. Chemical Reviews 2004,104, (1),139-173.
    33. Hu, H.; Xiong, L. Q.; Zhou, J.; Li, F. Y.; Cao, T. Y.; Huang, C. H., Multimodal-luminescence core-shell nanocomposites for targeted imaging of tumor cells. Chemistry-a European Journal 2009,15, (14),3577-3584.
    34. Slowing, I. I.; Vivero-Escoto, J. L.; Wu, C. W.; Lin, V. S. Y, Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Advanced Drug Delivery Reviews 2008,60, (11),1278-1288.
    35. Vallet-Regi, M.; Balas, F.; Arcos, D., Mesoporous materials for drug delivery. Angewandte Chemie-International Edition 2007,46, (40),7548-7558.
    36. Strassert, C. A.; Otter, M.; Albuquerque, R. Q.; Hone, A.; Vida, Y.; Maier, B.; De Cola, L., Photoactive hybrid nanomaterial for targeting, labeling, and killing antibiotic-resistant bacteria. Angewandte Chemie-International Edition 2009,48, (42), 7928-7931.
    37. Torchilin, V. P., Multifunctional nanocarriers. Advanced Drug Delivery Reviews 2006,58,(14),1532-1555.
    38. Birringer, R.; Gleiter, H.; Klein, H. P.; Marquardt, P., Nanocrystalline materials an approach to a novel solid structure with gas-like disorder. Physics Letters A 1984,102, (8),365-369.
    39. Thiaville, A.; Miltat, J., Magnetism-small is beautiful. Science 1999,284, (5422), 1939-1940.
    40. Bein, T.; Stucky, G. D., Nanostructured materials-preface to special issue. Chemistry of Materials 1996,8, (8),1569-1570.
    41. Wagner, V.; Dullaart, A.; Bock, A. K.; Zweck, A., The emerging nanomedicine landscape. Nature Biotechnology 2006,24, (10),1211-1217.
    42. Service, R. F., Nanotechnology takes aim at cancer. Science 2005,310, (5751), 1132-1134.
    43. Zhang, L.; Gu, F. X.; Chan, J. M.; Wang, A. Z.; Langer, R. S.; Farokhzad, O. C., Nanoparticles in medicine:therapeutic applications and developments. Clinical Pharmacology & Therapeutics 2008,83, (5),761-769.
    44. Husband JE, R. R., Cancer imaging 2000:principles, strategies, challenges. Cancer Imaging 2000,1, (5),1-4.
    45. Hanahan, D.; Weinberg, R. A., Hallmarks of cancer:the next generation. Cell 2011,144, (5),646-674.
    46. Carmeliet, P.; Jain, R. K., Angiogenesis in cancer and other diseases. Nature 2000, 407, (6801),249-257.
    47. Plank, M. J.; Sleeman, B. D., A reinforced random walk model of tumour angiogenesis and anti-angiogenic strategies. Mathematical Medicine and Biology-a Journal of the Ima 2003,20, (2),135-181.
    48. Plank, M. J.; Sleeman, B. D., Tumour-induced angiogenesis:a review. Journal of Theoretical Medicine 2003,5,137-153.
    49. Kerbel, R. S., Tumor angiogenesis:past, present and the near future. Carcinogenesis 2000,21, (3),505-515.
    50. Munoz-Chapuli, R.; Quesada, A. R.; Medina, M. A., Angiogenesis and signal transduction in endothelial cells. Cellular and Molecular Life Sciences 2004,61, (17), 2224-2243.
    51. Iyer, A. K.; Khaled, G.; Fang, J.; Maeda, H., Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discovery Today 2006,11, (17-18),812-818.
    52. Peer, D.; Karp, J. M.; Hong, S.; FaroKHzad, O. C.; Margalit, R.; Langer, R., Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology 2007,2,(12),751-760.
    53. Haag, R.; Kratz, F., Polymer therapeutics:concepts and applications. Angewandte Chemie-International Edition 2006,45, (8),1198-1215.
    54. Hobbs, S. K.; Monsky, W. L.; Yuan, F.; Roberts, W. G.; Griffith, L.; Torchilin, V. P.; Jain, R. K., Regulation of transport pathways in tumor vessels:role of tumor type and microenvironment. Proceedings of the National Academy of Sciences of the United States of America 1998,95, (8),4607-4612.
    55. Yamagata, M.; Hasuda, K.; Stamato, T.; Tannock, I. F., The contribution of lactic acid to acidification of tumours:studies of variant cells lacking lactate dehydrogenase. British Journal of Cancer 1998,77, (11),1726-1731.
    56. Schmaljohann, D., Thermo- and pH-responsive polymers in drug delivery. Advanced Drug Delivery Reviews 2006,58, (15),1655-1670.
    57. Aggarwal, P.; Hall, J. B.; McLeland, C. B.; Dobrovolskaia, M. A.; McNeil, S. E., Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Advanced Drug Delivery Reviews 2009,61, (6),428-437.
    58. Torchilin, V. P., Nanoparticulates as drug carriers. Imperial College Press, New York,2006, page 9-24.
    59. Gullotti, E.; Yeo, Y, Extracellularly activated nanocarriers:a new paradigm of tumor targeted drug delivery. Molecular Pharmaceutics 2009,6, (4),1041-1051.
    60. Rao, J. H., Shedding light on tumors using nanoparticles. Acs Nano 2008,2, (10), 1984-1986.
    61. Sunderland, C. J.; Steiert, M.; Talmadge, J. E.; Derfus, A. M.; Barry, S. E., Targeted nanoparticles for detecting and treating cancer. Drug Development Research 2006,67, (1),70-93.
    62. Chen, V. M. a. Y, Nanoparticles-a review. Tropical Journal of Pharmaceutical Research 2006,5, (1),561-573.
    63. Karakoti, A. S.; Das, S.; Thevuthasan, S.; Seal, S., PEGylated inorganic nanoparticles. Angewandte Chemie-International Edition 2011,50, (9),1980-1994.
    64. Knop, K.; Hoogenboom, R.; Fischer, D.; Schubert, U. S., Poly(ethylene glycol) in drug delivery:pros and cons as well as potential alternatives. Angewandte Chemie-International Edition 2010,49, (36),6288-6308.
    65. Owens, D. E.; Peppas, N. A., Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. International Journal of Pharmaceutics 2006,307, (1), 93-102.
    66. Minelli, C.; Lowe, S. B.; Stevens, M. M., Engineering nanocomposite materials for cancer therapy. Small 2010,6, (21),2336-2357.
    67. Slowing, I. I.; Trewyn, B. G.; Lin, V. S. Y, Mesoporous silica nanoparticles for intracellular delivery of membrane-impermeable proteins. Journal of the American Chemical Society 2007,129, (28),8845-8849.
    68. Wu, K. C. W.; Chiang, Y D.; Lian, H. Y.; Leo, S. Y.; Wang, S. G.; Yamauchi, Y., Controlling particle size and structural properties of mesoporous silica nanoparticles using the taguchi method. Journal of Physical Chemistry C 2011,115, (27), 13158-13165.
    69. Horcajada, P.; Ramila, A.; Gerard, F.; Vallet-Regi, M., Influence of superficial organic modification of MCM-41 matrices on drug delivery rate. Solid State Sciences 2006,8, (10),1243-1249.
    70. Xu, R. R. P., W. Q.; Yu, J. H.; Huo, Q. S.; Chen, J. S. Chemistry of Zeolites and Related Porous Materials:Synthesis and Structure, John Wiley & Sons:New York, 2007, page 150-178.
    71. Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W.; Mccullen, S. B.; Higgins, J. B.; Schlenker, J. L., A new family of mesoporous molecular-sieves prepared with liquid-crystal templates. Journal of the American Chemical Society 1992,114, (27), 10834-10843.
    72. Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S., Ordered mesoporous molecular-sieves synthesized by a liquid crystal template mechanism. Nature 1992,359, (6397),710-712.
    73. Vallet-Regi, M.; Ramila, A.; del Real, R. P.; Perez-Pariente, J., A new property of MCM-41:Drug delivery system. Chemistry of Materials 2001,13, (2),308-311.
    74. Fowler, C. E.; Khushalani, D.; Lebeau, B.; Mann, S., Nanoscale materials with mesostructured interiors. Advanced Materials 2001,13, (9),649-652.
    75. Cai, Q.; Luo, Z. S.; Pang, W. Q.; Fan, Y. W.; Chen, X. H.; Cui, F. Z., Dilute solution routes to various controllable morphologies of MCM-41 silica with a basic medium. Chemistry of Materials 2001,13, (2),258-263.
    76. Lin, Y. S.; Hurley, K. R.; Haynes, C. L., Critical considerations in the biomedical use of mesoporous silica nanoparticles. Journal of Physical Chemistry Letters 2012,3, (3),364-374.
    77. Lai, C. Y.; Trewyn, B. G.; Jeftinija, D. M.; Jeftinija, K.; Xu, S.; Jeftinija, S.; Lin, V. S. Y., A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. Journal of the American Chemical Society 2003,125,(15),4451-4459.
    78. Radu, D. R.; Lai, C. Y.; Jeftinija, K.; Rowe, E. W.; Jeftinija, S.; Lin, V. S. Y., A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent. Journal of the American Chemical Society 2004,126, (41), 13216-13217.
    79. Giri, S.; Trewyn, B. G.; Stellmaker, M. P.; Lin, V. S. Y., Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles. Angewandte Chemie-International Edition 2005,44, (32), 5038-5044.
    80. Hernandez, R.; Tseng, H. R.; Wong, J. W.; Stoddart, J. F.; Zink, J. I., An operational supramolecular nanovalve. Journal of the American Chemical Society 2004,126, (11),3370-3371.
    81. Kim, J.; Lee, J. E.; Lee, J.; Yu, J. H.; Kim, B. C.; An, K.; Hwang, Y.; Shin, C. H.; Park, J. G.; Kim, J.; Hyeon, T., Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals. Journal of the American Chemical Society 2006,128, (3),688-689.
    82. Kim, J.; Kim, H. S.; Lee, N.; Kim, T.; Kim, H.; Yu, T.; Song, I. C.; Moon, W. K.; Hyeon, T., Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angewandte Chemie-International Edition 2008,47, (44),8438-8441.
    83. Lee, J. E.; Lee, N.; Kim, T.; Kim, J.; Hyeon, T., Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications. Accounts of Chemical Research 2011,44, (10),893-902.
    84. Liu, C. Y.; Guo, J.; Yang, W. L.; Hu, J. H.; Wang, C. C.; Fu, S. K., Magnetic mesoporous silica microspheres with thermo-sensitive polymer shell for controlled drug release. Journal of Materials Chemistry 2009,19, (27),4764-4770.
    85. He, Q. J.; Shi, J. L., Mesoporous silica nanoparticle based nano drug delivery systems:synthesis, controlled drug release and delivery, pharmacokinetics and biocompatibility. Journal of Materials Chemistry 2011,21, (16),5845-5855.
    86. Wu, S. H.; Lin, Y. S.; Hung, Y.; Chou, Y. H.; Hsu, Y H.; Chang, C.; Mou, C. Y., Multifunctional mesoporous silica nanoparticles for intracellular labeling and animal magnetic resonance imaging studies. Chembiochem 2008,9, (1),53-57.
    87. Yi Lu and Ram I. Mahato, Pharmaceutical Perspectives of Cancer Therapeutics. Springer,2005, page 207-244.
    88. Wang, S. B., Ordered mesoporous materials for drug delivery. Microporous and Mesoporous Materials 2009,117, (1-2),1-9.
    89. Lin, Y S.; Haynes, C. L., Impacts of mesoporous silica nanoparticle size, pore ordering, and pore integrity on hemolytic activity. Journal of the American Chemical Society 2010,132, (13),4834-4842.
    90. He, Q. J.; Zhang, J. M.; Shi, J. L.; Zhu, Z. Y.; Zhang, L. X.; Bu, W. B.; Guo, L. M; Chen, Y., The effect of PEGylation of mesoporous silica nanoparticles on nonspecific binding of serum proteins and cellular responses. Biomaterials 2010,31, (6),1085-1092.
    91. Lu, J.; Liong, M.; Li, Z. X.; Zink, J. I.; Tamanoi, F., Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small 2010,6, (16),1794-1805.
    92. Lee, C. H.; Cheng, S. H.; Wang, Y J.; Chen, Y C.; Chen, N. T.; Souris, J.; Chen, C. T.; Mou, C. Y.; Yang, C. S.; Lo, L. W., Near-infrared mesoporous silica nanoparticles for optical imaging:characterization and in vivo biodistribution. Advanced Functional Materials 2009,19, (2),215-222.
    93. He, Q. J.; Zhang, Z. W.; Gao, F.; Li, Y. P.; Shi, J. L., In vivo biodistribution and urinary excretion of mesoporous silica nanoparticles:effects of particle size and PEGylation. Small 2011,7, (2),271-280.
    94. Cauda, V.; Schlossbauer, A.; Bein, T., Bio-degradation study of colloidal mesoporous silica nanoparticles:Effect of surface functionalization with organo-silanes and poly(ethylene glycol). Microporous and Mesoporous Materials 2010,132, (1-2),60-71.
    95. Mortera, R.; Fiorilli, S.; Garrone, E.; Verne, E.; Onida, B., Pores occlusion in MCM-41 spheres immersed in SBF and the effect on ibuprofen delivery kinetics:a quantitative model. Chemical Engineering Journal 2010,156, (1),184-192.
    96. Martin, K. R., The chemistry of silica and its potential health benefits. Journal of Nutrition Health and Aging 2007,11, (2),94-98.
    1. Salgueirino-Maceira, V.; Correa-Duarte, M. A., Increasing the complexity of magnetic core/shell structured nanocomposites for biological applications. Advanced Materials 2007,19, (23),4131-4144.
    2. Schartl, W., Current directions in core-shell nanoparticle design. Nanoscale 2010, 2. (6),829-843.
    3. Guerrero-Martinez, A.; Perez-Juste, J.; Liz-Marzan, L. M., Recent progress on silica coating of nanoparticles and related nanomaterials. Advanced Materials 2010, 22,(11),1182-1195.
    4. Nel, A.; Xia, T.; Madler, L.; Li, N., Toxic potential of materials at the nanolevel. Science 2006,311, (5761),622-627.
    5. Kim, J.; Grate, J. W.; Wang, P., Nanostructures for enzyme stabilization. Chemical Engineering Science 2006,61, (3),1017-1026.
    6. Majewski, P.; Thierry, B., Functionalized magnetite nanoparticles-synthesis, properties, and bio-applications. Critical Reviews in Solid State and Materials Sciences 2007,32, (3-4),203-215.
    7. Tallury, P.; Payton, K.; Santra, S., Silica-based multimodal/multifunctional nanoparticles for bioimaging and biosensing applications. Nanomedicine 2008,3, (4), 579-592.
    8. Kim, J.; Piao, Y.; Hyeon, T., Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. Chemical Society Reviews 2009,38, (2),372-390.
    9. Liu, J.; Qiao, S. Z.; Hu, Q. H.; Lu, G. Q., Magnetic nanocomposites with mesoporous structures:synthesis and applications. Small 2011,7, (4),425-443.
    10. Lu, A. H.; Salabas, E. L.; Schuth, F., Magnetic nanoparticles:synthesis, protection, functionalization, and application. Angewandte Chemie-International Edition 2007,46, (8),1222-1244.
    11. Tartaj, P.; Morales, M. P.; Gonzalez-Carreno, T.; Veintemillas-Verdaguer, S.; Serna, C. J., The iron oxides strike back:from biomedical applications to energy storage devices and photoelectrochemical water splitting. Advanced Materials 2011, 23, (44),5243-5249.
    12. Gao, J. H.; Gu, H. W.; Xu, B., Multifunctional magnetic nanoparticles:design, synthesis, and biomedical applications. Accounts of Chemical Research 2009,42, (8), 1097-1107.
    13. Shylesh, S.; Schunemann, V.; Thiel, W. R., Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis. Angewandte Chemie-International Edition 2010,49, (20),3428-3459.
    14. Frey, N. A.; Peng, S.; Cheng, K.; Sun, S. H., Magnetic nanoparticles:synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chemical Society Reviews 2009,38, (9),2532-2542.
    15. Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Elst, L. V.; Muller, R. N., Magnetic iron oxide nanoparticles:synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical Reviews 2008,110, (4),2574-2574.
    16. Gupta, A. K.; Gupta, M., Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005,26, (18),3995-4021.
    17. Corma, A., From microporous to mesoporous molecular sieve materials and their use in catalysis. Chemical Reviews 1997,97, (6),2373-2419.
    18. Lu, A. H.; Schuth, F., Nanocasting:a versatile strategy for creating nanostructured porous materials. Advanced Materials 2006,18, (14),1793-1805.
    19. Ying, J. Y.; Mehnert, C. P.; Wong, M. S., Synthesis and applications of supramolecular-templated mesoporous materials. Angewandte Chemie-International Edition 1999,38, (1-2),56-77.
    20. Wan, Y.; Zhao, D. Y, On the controllable soft-templating approach to mesoporous silicates. Chemical Reviews 2007,107, (7),2821-2860.
    21. Hoffmann, F.; Cornelius, M.; Morell, J.; Froba, M., Silica-based mesoporous organic-inorganic hybrid materials. Angewandte Chemie-International Edition 2006, 45,(20),3216-3251.
    22. Yang, Q. H.; Liu, J.; Zhang, L.; Li, C., Functionalized periodic mesoporous organosilicas for catalysis. Journal of Materials Chemistry 2009,19, (14),1945-1955.
    23. Yiu, H. H. P.; Niu, H. J.; Biermans, E.; van Tendeloo, G.; Rosseinsky, M. J., Designed multifunctional nanocomposites for biomedical applications. Advanced Functional Materials 2010,20, (10),1599-1609.
    24. Zhu, S. M.; Zhou, Z. Y.; Zhang, D.; Jin, C.; Li, Z. Q., Design and synthesis of delivery system based on SBA-15 with magnetic particles formed in situ and thermo-sensitive PNIPA as controlled switch. Microporous and Mesoporous Materials 2007,106, (1-3),56-61.
    25. Lin, Y S.; Abadeer, N.; Hurley, K. R.; Haynes, C. L., Ultrastable, redispersible, small, and highly organomodified mesoporous silica nanotherapeutics. Journal of the American Chemical Society 2011,133, (50),20444-20457.
    26. Fang Lu, S.-H. W., Yann Hung, and Chung-Yuan Mou, Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. Small 2009,5, (12), 1408-1413.
    27. Schulz-Ekloff, G.; Rathousky, J.; Zukal, A., Controlling of morphology and characterization of pore structure of ordered mesoporous silicas. Microporous and Mesoporous Materials 1999,27, (2-3),273-285.
    28. Xing, R.; Rankin, S. E., Use of the ternary phase diagram of a mixed cationic/glucopyranoside surfactant system to predict mesostructured silica synthesis. Journal of Colloid and Interface Science 2007,316, (2),930-938.
    29. Trewyn, B. G.; Whitman, C. M.; Lin, V. S. Y., Morphological control of room-temperature ionic liquid templated mesoporous silica nanoparticles for controlled release of antibacterial agents. Nano Letters 2004,4, (11),2139-2143.
    30. Wu, K. C. W.; Chiang, Y. D.; Lian, H. Y.; Leo, S. Y.; Wang, S. G.; Yamauchi, Y., Controlling particle size and structural properties of mesoporous silica nanoparticles using the taguchi method. Journal of Physical Chemistry C 2011,115, (27), 13158-13165.
    31. Kim, J.; Lee, J. E.; Lee, J.; Yu, J. H.; Kim, B. C.; An, K.; Hwang, Y.; Shin, C. H.; Park, J. G.; Kim, J.; Hyeon, T., Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals. Journal of the American Chemical Society 2006,128, (3),688-689.
    32. Kim, J.; Kim, H. S.; Lee, N.; Kim, T.; Kim, H.; Yu, T.; Song, I. C.; Moon, W. K.; Hyeon, T., Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angewandte Chemie-International Edition 2008,47, (44),8438-8441.
    33. Tartaj, P.; Morales, M. P.; Gonzalez-Carreno, T.; Veintemillas-Verdaguer, S.; Serna, C. J., Advances in magnetic nanoparticles for biotechnology applications. Journal of Magnetism and Magnetic Materials 2005,290, (1-2),28-34.
    34. Wang, S. G.; Wu, C. W.; Chen, K. M.; Lin, V. S. Y., Fine-tuning mesochannel orientation of organically functionalized mesoporous silica nanoparticles. Chemistry-an Asian Journal 2009,4, (5),658-661.
    35. Zheng, W. M.; Gao, F.; Gu, H. C., Magnetic polymer nanospheres with high and uniform magnetite content. Journal of Magnetism and Magnetic Materials 2005,288, (5),403-410.
    36. Fan, H. Y., Nanocrystal-micelle:synthesis, self-assembly and application. Chemical Communications 2008,7345, (12),1383-1394.
    37. Yano, K.; Suzuki, N.; Akimoto, Y.; Fukushima, Y., Synthesis of mono-dispersed mesoporous silica spheres with hexagonal symmetry. Bulletin of the Chemical Society of Japan 2002,75, (9),1977-1982.
    38. Lapeyre, V.; Renaudie, N.; Dechezelles, J. F.; Saadaoui, H.; Ravaine, S.; Ravaine, V., Multiresponsive hybrid microgels and hollow capsules with a layered structure. Langmuir 2009,25, (8),4659-4667.
    39. Bagwe, R. P.; Hilliard, L. R.; Tan, W. H., Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding. Langmuir 2006,22, (9), 4357-4362.
    40. Zanetti-Ramos, B. G.; Fritzen-Garcia, M. B.; Creczynski-Pasa, T. B.; De Oliveira, C. S.; Pasa, A. A.; Soldi, V.; Borsali, R., Characterization of polymeric particles with electron microscopy, dynamic light scattering, and atomic force microscopy. Particulate Science and Technology 2001,28, (5),472-484.
    41. Shen, S. C.; Chow, P. S.; Kim, S. G.; Zhu, K. W.; Tan, R. B. H., Synthesis of carboxyl-modified rod-like SBA-15 by rapid co-condensation. Journal of Colloid and Interface Science 2008,321, (2),365-372.
    42. Cai, Q.; Luo, Z. S.; Pang, W. Q.; Fan, Y. W.; Chen, X. H.; Cui, F. Z., Dilute solution routes to various controllable morphologies of MCM-41 silica with a basic medium. Chemistry of Materials 2001,13, (2),258-263.
    43. He, Q. J.; Shi, J. L.; Chen, F.; Zhu, M.; Zhang, L. X., An anticancer drug delivery system based on surfactant-templated mesoporous silica nanoparticles. Biomaterials 2010,31,(12),3335-3346.
    44. Hench, L. L.; West, J. K., The sol-gel process. Chemical Reviews 1990,90, (1), 33-72.
    45. Wang, J. Z.; Sugawara-Narutaki, A.; Fukao, M.; Yokoi, T.; Shimojima, A.; Okubo, T., Two-phase synthesis of monodisperse silica nanospheres with amines or ammonia catalyst and their controlled self-assembly. Acs Applied Materials & Interfaces 2011, 3,(5),1538-1544.
    46. Aelion, R.; Loebel, A.; Eirich, F., Hydrolysis of ethyl silicate. Journal of the American Chemical Society 1950,72, (12),5705-5712.
    47. Qiao, Z. A.; Zhang, L.; Guo, M. Y.; Liu, Y. L.; Huo, Q. S., Synthesis of mesoporous silica nanoparticles via controlled hydrolysis and condensation of silicon alkoxide. Chemistry of Materials 2009,21, (16),3823-3829.
    48. Bourgeat-Lami, E.; Insulaire, M.; Reculusa, S.; Perro, A.; Ravaine, S.; Duguet, E., Nucleation of polystyrene latex particles in the presence of gamma-methacryloxypropyl-trimethoxysilane:functionalized silica particles. Journal ofNanoscience and Nanotechnology 2006,6, (2),432-444.
    49. Nooney, R. I.; Dhanasekaran, T.; Chen, Y. M; Josephs, R.; Ostafin, A. E., Self-assembled highly ordered spherical mesoporous silica/gold nanocomposites. Advanced Materials 2002,14, (7),529-532.
    50. Lin, Y. S.; Tsai, C. P.; Huang, H. Y.; Kuo, C. T.; Hung, Y.; Huang, D. M.; Chen, Y. C.; Mou, C. Y, Well-ordered mesoporous silica nanoparticles as cell markers. Chemistry of Materials 2005,17, (18),4570-4573.
    51. Yano, K.; Fukushima, Y., Particle size control of mono-dispersed super-microporous silica spheres. Journal of Materials Chemistry 2003,13, (10), 2577-2581.
    52. Yano, K.; Fukushima, Y., Synthesis of mono-dispersed mesoporous silica spheres with highly ordered hexagonal regularity using conventional alkyltrimethylammonium halide as a surfactant. Journal of Materials Chemistry 2004, 14,(10),1579-1584.
    53. Lin, Y. S.; Haynes, C. L., Synthesis and characterization of biocompatible and size-tunable multifunctional porous silica nanoparticles. Chemistry of Materials 2009, 21, (17),3979-3986.
    54. Baeza, A.; Guisasola, E.; Ruiz-Hernandez, E.; Vallet-Regi, M., Magnetically triggered multidrug release by hybrid mesoporous silica nanoparticles. Chemistry of Materials 2012,24, (3),517-524.
    55. Karla K. C.; Matthew E. B.; Monty L.; Michael W. A.; Yuen A. L.; Hussam A. K.; Jeffrey I. Z.; Niveen M. K.; Stoddart J. F., Mechanised nanoparticles for drug delivery. Nanoscale 2009,1, (1),16-39.
    56. Zhu, Y. F.; Kaskel, S.; Ikoma, T.; Hanagata, N., Magnetic SBA-15/poly(N-isopropylacrylamide) composite:preparation, characterization and temperature-responsive drug release property. Microporous and Mesoporous Materials 2009,123, (1-3),107-112.
    57. Lin, Y. S.; Abadeer, N.; Haynes, C. L., Stability of small mesoporous silica nanoparticles in biological media. Chemical Communications 2011,47, (1),532-534.
    58. Wu, S. H.; Lin, Y. S.; Hung, Y.; Chou, Y. H.; Hsu, Y. H.; Chang, C.; Mou, C. Y., Multifunctional mesoporous silica nanoparticles for intracellular labeling and animal magnetic resonance imaging studies. Chembiochem 2008,9, (1),53-57.
    59. Zhang, L.; Qiao, S. Z.; Jin, Y. G.; Yang, H. G.; Budihartono, S.; Stahr, F.; Yan, Z. F.; Wang, X. L.; Hao, Z. P.; Lu, G. Q., Fabrication and size-selective bioseparation of magnetic silica nanospheres with highly ordered periodic mesostructure. Advanced Functional Materials 2008,18, (20),3203-3212.
    60. Tang, F. Q.; Huang, X. L.; Li, L. L.; Liu, T. L.; Hao, N. J.; Liu, H. Y.; Chen, D., The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo. Acs Nano 2011,5, (7),5390-5399.
    61. Cha, J.; Cui, P.; Lee, J.-K., A simple method to synthesize multifunctional silica nanocomposites, NPs@SiO2, using polyvinylpyrrolidone (PVP) as a mediator. Journal of Materials Chemistry 2010,20, (26),5533-5537.
    62. Peng, Y. K.; Lai, C. W.; Liu, C. L.; Chen, H. C.; Hsiao, Y. H.; Liu, W. L.; Tang, K. C.; Chi, Y.; Hsiao, J. K.; Lim, K. E.; Liao, H. E.; Shyue, J. J.; Chou, P. T., A new and facile method to prepare uniform hollow MnO/functionalized mSiO2 core/shell nanocomposites. Acs Nano 2011,5, (5),4177-4187.
    63. Zhang, X. L.; Niu, H. Y.; Li, W. H.; Shi, Y. L.; Cai, Y. Q., A core-shell magnetic mesoporous silica sorbent for organic targets with high extraction performance and anti-interference ability. Chemical Communications 2011,47, (15),4454-4456.
    1. Guerrero-Martinez, A.; Perez-Juste, J.; Liz-Marzan, L. M., Recent progress on silica coating of nanoparticles and related nanomaterials. Advanced Materials 2010, 22, (11),1182-1195.
    2. Liu, S. H.; Han, M. Y., Silica-coated metal nanoparticles. Chemistry-an Asian Journal 2010,5,(1),36-45.
    3. Piao, Y.; Burns, A.; Kim, J.; Wiesner, U.; Hyeon, T., Designed fabrication of silica-based nanostructured particle systems for nanomedicine applications. Advanced Functional Materials 2008,18, (23),3745-3758.
    4. Taylor-Pashow, K. M. L.; Della Rocca, J.; Huxford, R. C.; Lin, W. B., Hybrid nanomaterials for biomedical applications. Chemical Communications 2010,46, (32), 5832-5849.
    5. Lee, J. E.; Lee, N.; Kim, T.; Kim, J.; Hyeon, T., Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications. Accounts of Chemical Research 2011,44, (10),893-902.
    6. Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W.; Mccullen, S. B.; Higgins, J. B.; Schlenker, J. L., A new family of mesoporous molecular-sieves prepared with liquid-crystal templates. Journal of the American Chemical Society 1992,114, (27), 10834-10843.
    7. Slowing, I. I.; Vivero-Escoto, J. L.; Wu, C. W.; Lin, V. S. Y, Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Advanced Drug Delivery Reviews 2008,60, (11),1278-1288.
    8. Vallet-Regi, M.; Balas, F.; Arcos, D., Mesoporous materials for drug delivery. Angewandte Chemie-International Edition 2007,46, (40),7548-7558.
    9. Lu, J.; Liong, M.; Li, Z. X.; Zink, J. I.; Tamanoi, F., Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small 2010,6, (16),1794-1805.
    10. Vallet-Regi, M.; Ramila, A.; del Real, R. P.; Perez-Pariente, J., A new property of MCM-41:drug delivery system. Chemistry of Materials 2001,13, (2),308-311.
    11. Kim, J.; Lee, J. E.; Lee, J.; Yu, J. H.; Kim, B. C.; An, K.; Hwang, Y.; Shin, C. H.; Park, J. G.; Kim, J.; Hyeon, T., Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals. Journal of the American Chemical Society 2006,128, (3),688-689.
    12. Wang, C. G.; Wang, T. W., T. T.; Chai, F.; Li, L.; Liu, H. Y.; Zhang, L. Y.; Su, Z. M.; Liao, Y., Fluorescent hollow/rattle-type mesoporous Au@SiO2 nanocapsules for drug delivery and fluorescence imaging of cancer cells. Journal of Colloid and Interface Science 2011,358, (1),109-115.
    13. Liu, J.; Qiao, S. Z.; Hu, Q. H.; Lu, G. Q., Magnetic nanocomposites with mesoporous structures:synthesis and applications. Small 2011,7, (4),425-443.
    14. Arruebo, M.; Galan, M.; Navascues, N.; Tellez, C.; Marquina, C.; Ibarra, M. R.; Santamaria, J., Development of magnetic nanostructured silica-based materials as potential vectors for drug-delivery applications. Chemistry of Materials 2006,18, (7), 1911-1919.
    15. Liu, H. M.; Wu, S. H.; Lu, C. W.; Yao, M.; Hsiao, J. K.; Hung, Y.; Lin, Y. S.; Mou, C. Y.; Yang, C. S.; Huang, D. M.; Chen, Y. C., Mesoporous silica nanoparticles improve magnetic labeling efficiency in human stem cells. Small 2008,4, (5), 619-626.
    16. Lin, K. J.; Chen, L. J.; Prasad, M. R.; Cheng, C. Y., Core-shell synthesis of a novel, spherical, mesoporous silica/platinum nanocomposite:Pt/PVP@MCM-41. Advanced Materials 2004,16, (20),1845-1849.
    17. Gorelikov, I.; Matsuura, N., Single-step coating of mesoporous silica on cetyltrimethyl ammonium bromide-capped nanoparticles. Nano Letters 2008,8, (1), 369-373.
    18. Cheon, J.; Lee, J. H., Synergistically integrated nanoparticles as multimodal probes for nanobiotechnology. Accounts of Chemical Research 2008,41, (12), 1630-1640.
    19. Thanh, N. T. K.; Green, L. A. W., Functionalisation of nanoparticles for biomedical applications. Nano Today 2010,5, (3),213-230.
    20. Mansur, H. S., Quantum dots and nanocomposites. Wiley Interdisciplinary Reviews-Nanomedicine and Nanobiotechnology 2010,2, (2),113-129.
    21. Wu, K. C. W.; Chiang, Y. D.; Lian, H. Y.; Leo, S. Y.; Wang, S. G.; Yamauchi, Y., Controlling particle size and structural properties of mesoporous silica nanoparticles using the taguchi method. Journal of Physical Chemistry C 2011,115, (27), 13158-13165.
    22. Lang, N.; Tuel, A., A fast and efficient ion-exchange procedure to remove surfactant molecules from MCM-41 materials. Chemistry of Materials 2004,16, (10), 1961-1966.
    23. Sauzedde, F.; Elaissari, A.; Pichot, C., Hydrophilic magnetic polymer latexes.1. Adsorption of magnetic iron oxide nanoparticles onto various cationic latexes. Colloid and Polymer Science 1999,277, (9),846-855.
    24. Nooney, R. I.; Thirunavukkarasu, D.; Chen, Y. M.; Josephs, R.; Ostafin, A. E., Self-assembly of mesoporous nanoscale silica/gold composites. Langmuir 2003,19, (18),7628-7637.
    25. Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S., Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005,307, (5709),538-544.
    26. Guo, J.; Yang, W. L.; Wang, C. C; He, J.; Chen, J. Y, Poly(N-isopropylacrylamide)-coated luminescent/magnetic silica microspheres: preparation, characterization, and biomedical applications. Chemistry of Materials 2006,18, (23),5554-5562.
    27. Zhang, Y., Ultrafine biocompatible chitosan nanoparticles encapsulating multi-coloured quantum dots for bioapplications. Journal of Colloid and Interface Science 2007,310, (2),464-470.
    28. Fan, H. Y., Nanocrystal-micelle:synthesis, self-assembly and application. Chemical Communications 2008,7345, (12),1383-1394.
    29. Wan, Y.; Zhao, D. Y., On the controllable soft-templating approach to mesoporous silicates. Chemical Reviews 2007,107, (7),2821-2860.
    30. Saunders, B. R.; Laajam, N.; Daly, E.; Teow, S.; Hu, X. H.; Stepto, R., Microgels: from responsive polymer colloids to biomaterials. Advances in Colloid and Interface Science 2009,147-148,251-262.
    31. Li, J.; Liu, B.; Li, J. H., Controllable self-assembly of CdTe/poly(N-isopropylacrylamide acrylic acid) microgels in response to pH stimuli. Langmuir 2006,22, (2),528-531.
    32. Alkilany, A. M.; Frey, R. L.; Ferry, J. L.; Murphy, C. J., Gold nanorods as nanoadmicelles:1-naphthol partitioning into a nanorod-bound surfactant bilayer. Langmuir 2008,24, (18),10235-10239.
    33. Kale, A.; Kale, S.; Yadav, P.; Gholap, H.; Pasricha, R.; Jog, J. P.; Lefez, B.; Hannoyer, B.; Shastry, P.; Ogale, S., Magnetite/CdTe magnetic-fluorescent composite nanosystem for magnetic separation and bio-imaging. Nanotechnology 2011,22, (22), 225101.
    34. Kobler, J.; Moller, K; Bein, T., Colloidal suspensions of functionalized mesoporous silica nanoparticles. Acs Nano 2008,2, (4),791-799.
    35. Yang, P.; Ando, M.; Murase, N., Highly luminescent SiO2 beads with multiple QDs:Preparation conditions and size distributions. Journal of Colloid and Interface Science 2011,354, (2),455-460.
    36. Cha, J.; Cui, P.; Lee, J. K., A simple method to synthesize multifunctional silica nanocomposites, NPs@SiO2, using polyvinylpyrrolidone (PVP) as a mediator. Journal of Materials Chemistry 2010,20, (26),5533-5537.
    37. Darbandi, M.; Urban, G.; Kruger, M., Bright luminescent, colloidal stable silica coated CdSe/ZnS nanocomposite by an in situ, one-pot surface functionalization. Journal of Colloid and Interface Science 2012,365, (1),41-45.
    38. Lapeyre, V.; Renaudie, N.; Dechezelles, J. F.; Saadaoui, H.; Ravaine, S.; Ravaine, V., Multiresponsive hybrid microgels and hollow capsules with a layered structure. Langmuir 2009,25, (8),4659-4667.
    39. He, Q. J.; Shi, J. L.; Chen, F.; Zhu, M.; Zhang, L. X., An anticancer drug delivery system based on surfactant-templated mesoporous silica nanoparticles. Biomaterials 2010,31, (12),3335-3346.
    40. Fan, H. Y.; Yang, K.; Boye, D. M.; Sigmon, T.; Malloy, K. J.; Xu, H. F.; Lopez, G. P.; Brinker, C. J., Self-assembly of ordered, robust, three-dimensional gold nanocrystal/silica arrays. Science 2004,304, (5670),567-571.
    41. Hiratani, T.; Konishi, K., Surface-cap-mediated host-guest chemistry of semiconductor CdS:Intercalative cation accumulation around a phenyl-capped CdS cluster and its notable effects on the cluster photoluminescence. Angewandte Chemie-International Edition 2004,43, (44),5943-5946.
    42. Kagan, C. R.; Murray, C. B.; Bawendi, M. G., Long-range resonance transfer of electronic excitations in close-packed CdSe quantum-dot solids. Physical Review B 1996,54, (12),8633-8643.
    43. Zhan, Q. Q.; Qian, J.; Li, X.; He, S. L., A study of mesoporous silica-encapsulated gold nanorods as enhanced light scattering probes for cancer cell imaging. Nanotechnology 2010,21, (5),055704.
    44. Lin, Y. S.; Haynes, C. L., Synthesis and characterization of biocompatible and size-tunable multifunctional porous silica nanoparticles. Chemistry of Materials 2009, 21,(17),3979-3986.
    45. Hench, L. L.; West, J. K., The Sol-Gel Process. Chemical Reviews 1990,90, (1), 33-72.
    46. Nooney, R. I.; Thirunavukkarasu, D.; Chen, Y. M.; Josephs, R.; Ostafin, A. E., Synthesis of nanoscale mesoporous silica spheres with controlled particle size. Chemistry of Materials 2002,14, (11),4721-4728.
    47. Qiao, Z. A.; Zhang, L.; Guo, M. Y.; Liu, Y. L.; Huo, Q. S., Synthesis of mesoporous silica nanoparticles via controlled hydrolysis and condensation of silicon alkoxide. Chemistry of Materials 2009,21, (16),3823-3829.
    48. Wang, J. Z.; Sugawara-Narutaki, A.; Fukao, M.; Yokoi, T.; Shimojima, A.; Okubo, T., Two-Phase Synthesis of Monodisperse Silica Nanospheres with Amines or Ammonia Catalyst and Their Controlled Self-Assembly. Acs Applied Materials & Interfaces 2011,3, (5),1538-1544.
    49. Fang Lu, S.-H. W., Yann Hung, and Chung-Yuan Mou, Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. Small 2009,5, (12), 1408-1413.
    50. Yang, Y. H.; Gao, M. Y., Preparation of fluorescent SiO2 particles with single CdTe nanocrystal cores by the reverse microemulsion method. Advanced Materials 2005,17,(19),2354-2357.
    51. Bhatia, S. N.; Derfus, A. M.; Chan, W. C. W., Probing the cytotoxicity of semiconductor quantum dots. Nano Letters 2004,4, (1),11-18.
    52. Lee, J. E.; Lee, N.; Kim, H.; Kim, J.; Choi, S. H.; Kim, J. H.; Kim, T.; Song, I. C.; Park, S. P.; Moon, W. K.; Hyeon, T., Uniform mesoporous dye-doped silica nanoparticles decorated with multiple magnetite nanocrystals for simultaneous enhanced magnetic resonance imaging, fluorescence imaging, and drug delivery. Journal of the American Chemical Society 2010,132, (2),552-557.
    53. Stober, W.; Fink, A.; Bohn, E., Controlled growth of monodisperse silica spheres in micron size range. Journal of Colloid and Interface Science 1968,26, (1),62-69.
    1. Maeda, H.; Wu, J.; Sawa, T.; Matsumura, Y.; Hori, K., Tumor vascular permeability and the EPR effect in macromolecular therapeutics:a review. Journal of Controlled Release 2000,65, (1-2),271-284.
    2. Kim, J.; Piao, Y.; Hyeon, T., Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. Chemical Society Reviews 2009,38, (2),372-390.
    3. Duncan, R., The dawning era of polymer therapeutics. Nature Reviews Drug Discovery 2003,2, (5),347-360.
    4. Patri, A. K.; Kukowska-Latallo, J. F.; Baker, J. R., Targeted drug delivery with dendrimers:Comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex. Advanced Drug Delivery Reviews 2005,57, (15),2203-2214.
    5. Torchilin, V. P., Recent advances with liposomes as pharmaceutical carriers. Nature Reviews Drug Discovery 2005,4, (2),145-160.
    6. Davis, M. E.; Chen, Z.; Shin, D. M., Nanoparticle therapeutics:an emerging treatment modality for cancer. Nature Reviews Drug Discovery 2008,7, (9),771-782.
    7. Salonen, J.; Laitinen, L.; Kaukonen, A. M.; Tuura, J.; Bjorkqvist, M.; Heikkila, T.; Vaha-Heikkila, K.; Hirvonen, J.; Lehto, V. P., Mesoporous silicon microparticles for oral drug delivery:Loading and release of five model drugs. Journal of Controlled Release 2005,108, (2-3),362-374.
    8. Bromberg, L.; Temchenko, M.; Hatton, T. A., Dually responsive microgels from polyether-modified poly(acrylic acid):swelling and drug loading. Langmuir 2002,18, (12),4944-4952.
    9. Slowing, I. I.; Vivero-Escoto, J. L.; Wu, C. W.; Lin, V. S. Y., Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Advanced Drug Delivery Reviews 2008,60, (11),1278-1288.
    10. Vallet-Regi, M.; Balas, F.; Arcos, D., Mesoporous materials for drug delivery. Angewandte Chemie-International Edition 2007,46, (40),7548-7558.
    11. Lu, J.; Liong, M.; Zink, J. I.; Tamanoi, F., Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs. Small 2007,3, (8),1341-1346.
    12. Liong, M.; Angelos, S.; Choi, E.; Patel, K.; Stoddart, J. F.; Zink, J. I., Mesostructured multifunctional nanoparticles for imaging and drug delivery. Journal of Materials Chemistry 2009,19, (35),6251-6257.
    13. Huh, S.; Wiench, J. W.; Yoo, J. C.; Pruski, M.; Lin, V. S. Y., Organic functionalization and morphology control of mesoporous silicas via a co-condensation synthesis method. Chemistry of Materials 2003,15, (22),4247-4256.
    14. Kecht, J.; Schlossbauer, A.; Bein, T., Selective functionalization of the outer and inner surfaces in mesoporous silica nanoparticles. Chemistry of Materials 2008,20, (23),7207-7214.
    15. Doadrio, J. C.; Sousa, E. M. B.; Izquierdo-Barba, I.; Doadrio, A. L Perez-Pariente, J.; Vallet-Regi, M., Functionalization of mesoporous materials with long alkyl chains as a strategy for controlling drug delivery pattern. Journal of Materials Chemistry 2006,16, (5),462-466.
    16. Horcajada, P.; Ramila, A.; Gerard, F.; Vallet-Regi, M., Influence of superficial organic modification of MCM-41 matrices on drug delivery rate. Solid State Sciences 2006,8, (10),1243-1249.
    17. Hoffmann, F.; Cornelius, M.; Morell, J.; Froba, M., Silica-based mesoporous organic-inorganic hybrid materials. Angewandte Chemie-International Edition 2006, 45, (20),3216-3251.
    18. Munoz, B.; Ramila, A.; Perez-Pariente, J.; Diaz, I.; Vallet-Regi, M., MCM-41 organic modification as drug delivery rate regulator. Chemistry of Materials 2003,15, (2),500-503.
    19. Zheng, W. M.; Gao, F.; Gu, H. C., Magnetic polymer nanospheres with high and uniform magnetite content. Journal of Magnetism and Magnetic Materials 2005,288, 403-410.
    20.徐如人,庞文琴,屠昆岗.沸石分子筛的结构与合成.吉林大学出版社[M].1987.
    21. Alba, M. D.; Luan, Z. H.; Klinowski, J., Titanosilicate mesoporous molecular sieve MCM-41:Synthesis and characterization. Journal of Physical Chemistry 1996, 100, (6),2178-2182.
    22. Davis, M. E., Organizing for better synthesis. Nature 2003,364, (6436),391-393.
    23. Corma, A.; Navarro, M. T.; Pariente, J. P., Synthesis of an ultralarge pore titanium silicate isomorphous to MCM-41 and its application as a catalyst for selective oxidation of hydrocarbons. Journal of the Chemical Society Chemical Communications 1994,4, (2),147-148.
    24. Shen, S. C.; Chow, P. S.; Kim, S. G.; Zhu, K. W.; Tan, R. B. H., Synthesis of carboxyl-modified rod-like SBA-15 by rapid co-condensation. Journal of Colloid and Interface Science 2008,321, (2),365-372.
    25. Gordijo, C. R.; Barbosa, C. A. S.; Ferreira, A.; Constantino, V. R. L.; Silva, D. D., Immobilization of ibuprofen and copper-ibuprofen drugs on layered double hydroxides. Journal of Pharmaceutical Sciences 2005,94, (5),1135-1148.
    26. Fiorilli, S.; Onida, B.; Bonelli, B.; Garrone, E., In situ infrared study of SBA-15 functionalized with carboxylic groups incorporated by a co-condensation route. Journal of Physical Chemistry B 2005,109, (35),16725-16729.
    27. Ambrogi, V.; Fardella, G.; Grandolini, G.; Perioli, L., Intercalation compounds of hydrotalcite-like anionic clays with antiinflammatory agents-Ⅰ. Intercalation and in vitro release of ibuprofen. International Journal of Pharmaceutics 2001,220, (1-2), 23-32.
    28. Trinchero, A.; Bonora, S.; Tinti, A.; Fini, G, Spectroscopic behavior of copper complexes of nonsteroidal anti-inflammatory drugs. Biopolymers 2004,74, (1-2), 120-124.
    29. Chollet, P. A., Determination by infrared absorption of the orientation of molecules in monomolecular layers. Thin Solid Films 1978,52, (3),343-360.
    30. Moller, K.; Kobler, J.; Bein, T., Colloidal suspensions of nanometer-sized mesoporous silica. Advanced Functional Materials 2007',17, (4),605-612.
    31. Kobler, J.; Moller, K.; Bein, T., Colloidal suspensions of functionalized mesoporous silica nanoparticles. Acs Nano 2008,2, (4),791-799.
    32. Cheon, J.; Lee, J. H., Synergistically integrated nanoparticles as multimodal probes for nanobiotechnology. Accounts of Chemical Research 2008,41, (12), 1630-1640.
    33. Vallet-Regi, M., Revisiting ceramics for medical applications. Dalton Transactions 2006, (44),5211-5220.
    34. Lin, V. S. Y.; Lai, C. Y.; Huang, J. G.; Song, S. A.; Xu, S., Molecular recognition inside of multifunctionalized mesoporous silicas:Toward selective fluorescence detection of dopamine and glucosamine. Journal of the American Chemical Society 2001,123, (46),11510-11511.
    35. Mal, N. K.; Fujiwara, M.; Tanaka, Y., Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica. Nature 2003,421, (6921), 350-353.
    36. Horcajada, P.; Ramila, A.; Gerard, F.; Vallet-Regi, M., Influence of superficial organic modification of MCM-41 matrices on drug delivery rate. Solid State Sciences 2006,8,(10),1243-1249.
    37. Wang, S. B., Ordered mesoporous materials for drug delivery. Microporous and Mesoporous Materials 2009,117, (1-2),1-9.
    38. Manzano, M.; Vallet-Regi, M., New developments in ordered mesoporous materials for drug delivery. Journal of Materials Chemistry 2010,20, (27), 5593-5604.
    39. Lee, E. S.; Na, K.; Bae, Y. H., Super pH-sensitive multifunctional polymeric micelle. Nano Letters 2005,5, (2),325-329.
    40. Choucair, A.; Soo, P. L.; Eisenberg, A., Active loading and tunable release of doxorubicin from block copolymer vesicles. Langmuir 2005,21, (20),9308-9313.
    41. Liggins, R. T.; Hunter, W. L.; Burt, H. M., Solid-state characterization of paclitaxel. Journal of Pharmaceutical Sciences 1997,86, (12),1458-1463.
    42. Hata, H.; Saeki, S.; Kimura, T.; Sugahara, Y.; Kuroda, K., Adsorption of taxol into ordered mesoporous silicas with various pore diameters. Chemistry of Materials 1999,11,(4),1110-1119.
    43. Chen, L. B.; Zhang, F.; Wang, C. C., Rational Synthesis of magnetic thermosensitive microcontainers as targeting drug carriers. Small 2009,5, (5), 621-628.
    44. Ganta, S.; Devalapally, H.; Shahiwala, A.; Amiji, M., A review of stimuli-responsive nanocarriers for drug and gene delivery. Journal of Controlled Release 2008,126, (3),187-204.
    1. Farokhzad, O. C.; Langer, R., Impact of nanotechnology on drug delivery. Acs Nano 2009,3, (1),16-20.
    2. Riehemann, K.; Schneider, S. W.; Luger, T. A.; Godin, B.; Ferrari, M.; Fuchs, H., Nanomedicine-challenge and perspectives. Angewandte Chemie-International Edition 2009,48, (5),872-897.
    3. Davis, M. E.; Chen, Z.; Shin, D. M., Nanoparticle therapeutics:an emerging treatment modality for cancer. Nature Reviews Drug Discovery 2008,7, (9),771-782.
    4. Slowing, I. I.; Vivero-Escoto, J. L.; Wu, C. W.; Lin, V. S. Y., Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Advanced Drug Delivery Reviews 2008,60, (11),1278-1288.
    5. Vallet-Regi, M.; Balas, F.; Arcos, D., Mesoporous materials for drug delivery. Angewandte Chemie-International Edition 2007,46, (40),7548-7558.
    6. Manzano, M.; Vallet-Regi, M., New developments in ordered mesoporous materials for drug delivery. Journal of Materials Chemistry 2010,20, (27), 5593-5604.
    7. Lu, J.; Liong, M.; Li, Z. X.; Zink, J. I.; Tamanoi, F., Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small 2010,6, (16),1794-1805.
    8. Lai, C. Y.; Trewyn, B. G.; Jeftinija, D. M.; Jeftinija, K.; Xu, S.; Jeftinija, S.; Lin, V. S. Y, A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. Journal of the American Chemical Society 2003,125, (15),4451-4459.
    9. Slowing, Ⅱ; Vivero-Escoto, J. L.; Trewyn, B. G.; Lin, V. S. Y., Mesoporous silica nanoparticles:structural design and applications. Journal of Materials Chemistry 20, (37),7924-7937.
    10. Schmaljohann, D., Thermo-and pH-responsive polymers in drug delivery. Advanced Drug Delivery Reviews 2006,58, (15),1655-1670.
    11. Torchilin, V., Multifunctional and stimuli-sensitive pharmaceutical nanocarriers. European Journal of Pharmaceutics and Biopharmaceutics 2009,71, (3),431-444.
    12. Yang, Q.; Wang, S. H.; Fan, P. W.; Wang, L. F.; Di, Y; Lin, K. F.; Xiao, F. S., pH-responsive carrier system based on carboxylic acid modified mesoporous silica and polyelectrolyte for drug delivery. Chemistry of Materials 2005,17, (24), 5999-6003.
    13. Zhou, Z. Y.; Zhu, S. M.; Zhang, D., Grafting of thermo-responsive polymer inside mesoporous silica with large pore size using ATRP and investigation of its use in drug release. Journal of Materials Chemistry 2007,17, (23),2428-2433.
    14. Hong, C. Y.; Li, X.; Pan, C. Y., Fabrication of smart nanocontainers with a mesoporous core and a pH-responsive shell for controlled uptake and release. Journal of Materials Chemistry 2009,19, (29),5155-5160.
    15. Yan, C.; Elaissari, A.; Pichot, C., Loading and release studies of proteins using Pory(N-isopropylacrylamide) based nanogels. Journal of Biomedical Nanotechnology 2006,2, (3-4),208-216.
    16. Liu, C. Y; Guo, J.; Yang, W. L.; Hu, J. H.; Wang, C. C.; Fu, S. K., Magnetic mesoporous silica microspheres with thermo-sensitive polymer shell for controlled drug release. Journal of Materials Chemistry 2009,19, (27),4764-4770.
    17. Moller, K.; Kobler, J.; Bein, T., Colloidal suspensions of nanometer-sized mesoporous silica. Advanced Functional Materials 2007,17, (4),605-612.
    18. Jiang, L. Z.; Gao, Q.; Yu, Y.; Wu, D. Z.; Wu, Z. P.; Wang, W. C.; Yang, W. T.; Jin, R. G, Synthesis and characterization of stimuli-responsive poly (acrylic acid) grafted silica nanoparticles. Smart Materials & Structures 2007,16, (6),2169-2174.
    19. Tian, B. S.; Yang, C., Temperature-responsive nanocomposites based on mesoporous SBA-15 silica and PNIPAAm:synthesis and characterization. Journal of Physical Chemistry C 2009,113, (12),4925-4931.
    20. Nayak, S.; Lyon, L. A., Soft nanotechnology with soft nanoparticles. Angewandte Chemie-International Edition 2005,44, (47),7686-7708.
    21. Saunders, B. R.; Laajam, N.; Daly, E.; Teow, S.; Hu, X. H.; Stepto, R., Microgels: from responsive polymer colloids to biomaterials. Advances in Colloid and Interface Science 2009,147-48,251-262.
    22. Zhou, S. Q.; Chu, B., Synthesis and volume phase transition of poly(methacrylic acid-co-N-isopropylacrylamide) microgel particles in water. Journal of Physical Chemistry B 1998,102, (8),1364-1371.
    23. Snowden, M. J.; Chowdhry, B. Z.; Vincent, B.; Morris, G. E., Colloidal copolymer microgels of N-isopropylacrylamide and acrylic acid:pH, ionic strength and temperature effects. Journal of the Chemical Society-Faraday Transactions 1996, 92, (24),5013-5016.
    24. Kratz, K.; Hellweg, T.; Eimer, W., Influence of charge density on the swelling of colloidal poly(N-isopropylacrylamide-co-acrylic acid) microgels. Colloids and Surfaces a-Physicochemical and Engineering Aspects 2000,170, (2-3),137-149.
    25. Zhang, F.; Wang, C. C., Preparation of P(NIPAM-co-AA) microcontainers surface-anchored with magnetic nanoparticles. Langmuir 2009,25, (14),8255-8262.
    26. Jones, C. D.; Lyon, L. A., Synthesis and characterization of multiresponsive core-shell microgels. Macromolecules 2000,33, (22),8301-8306.
    27. Sobczak, A.; Jelinska, A.; Lesniewska, M.; Firlej, A.; Oszczapowicz, I., Stability of epidoxorubicin in solid state. Journal of Pharmaceutical and Biomedical Analysis 54, (4),869-872.
    28. Arcamone, F.; Francesc.G; Penco, S.; Selva, A., Adriamycin (14-hydroxydaunomycin) a novel antitumor antibiotic. Tetrahedron Letters 1969,13, (13),1007-1010.
    29. Cielecka-Piontek, J.; Jelinska, A.; Zajac, M.; Sobczak, M.; Bartold, A.; Oszczapowicz, I., A comparison of the stability of doxorubicin and daunorubicin in solid state. Journal of Pharmaceutical and Biomedical Analysis 2009,50, (4), 576-579.
    30. Kataoka, K.; Matsumoto, T.; Yokoyama, M.; Okano, T.; Sakurai, Y.; Fukushima, S.; Okamoto, K.; Kwon, G. S., Doxorubicin-loaded poly(ethylene glycol)-poly(beta-benzyl-l-aspartate) copolymer micelles:their pharmaceutical characteristics and biological significance. Journal of Controlled Release 2000,64, (1-3),143-153.
    31. Choucair, A.; Soo, P. L.; Eisenberg, A., Active loading and tunable release of doxorubicin from block copolymer vesicles. Langmuir 2005,21, (20),9308-9313.
    32. Chen, L. B.; Zhang, F.; Wang, C. C., Rational synthesis of magnetic thermosensitive microcontainers as targeting drug carriers. Small 2009,5, (5), 621-628.
    33. Wang, Y. J.; Price, A. D.; Caruso, F., Nanoporous colloids:building blocks for a new generation of structured materials. Journal of Materials Chemistry 2009,19, (36), 6451-6464.
    34. Hoare, T.; Pelton, R., Impact of microgel morphology on functionalized microgel-drug interactions. Langmuir 2008,24, (3),1005-1012.
    35. Chen, A. M.; Zhang, M.; Wei, D. G.; Stueber, D.; Taratula, O.; Minko, T.; He, H. X., Co-delivery of doxorubicin and Bcl-2 siRNA by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug-resistant cancer cells. Small 2009, 5, (23),2673-2677.
    36. Karg, M.; Hellweg, T., Smart inorganic/organic hybrid microgels:Synthesis and characterisation. Journal of Materials Chemistry 2009,19, (46),8714-8727.
    37. Yan, E. Y.; Ding, Y.; Chen, C. J.; Li, R. T.; Hu, Y.; Jiang, X. Q., Polymer/silica hybrid hollow nanospheres with pH-sensitive drug release in physiological and intracellular environments. Chemical Communications 2009, (19),2718-2720.
    38. Lu, J.; Liong, M.; Zink, J. I.; Tamanoi, F., Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs. Small 2007,3, (8),1341-1346.
    1. Pelton, R., Temperature-sensitive aqueous microgels. Advances in Colloid and Interface Science 2000,85, (1),1-33.
    2. Saunders, B. R.; Laajam, N.; Daly, E.; Teow, S.; Hu, X. H.; Stepto, R., Microgels: from responsive polymer colloids to biomaterials. Advances in Colloid and Interface Science 2009,147-148,251-262.
    3. Saunders, B. R.; Vincent, B., Microgel particles as model colloids:theory, properties and applications. Advances in Colloid and Interface Science 1999,80, (1), 1-25.
    4. Alarcon, C. D. H.; Pennadam, S.; Alexander, C., Stimuli responsive polymers for biomedical applications. Chemical Society Reviews 2005,34, (3),276-285.
    5. Lyon, L. A.; Meng, Z. Y.; Singh, N.; Sorrell, C. D.; John, A. S., Thermoresponsive microgel-based materials. Chemical Society Reviews 2009,38, (4), 865-874.
    6. Yu, L.; Ding, J. D., Injectable hydrogels as unique biomedical materials. Chemical Society Reviews 2008,37, (8),1473-1481.
    7. Uludag, H.; Norrie, B.; Kousinioris, N.; Gao, T. J., Engineering temperature-sensitive poly(N-isopropylacrylamide) polymers as carriers of therapeutic proteins. Biotechnology and Bioengineering 2001,73, (6),510-521.
    8. Snowden, M. J., The use of poly(N-isopropylacrylamide) latices as novel release systems. Journal of the Chemical Society-Chemical Communications 1992, (11), 803-804.
    9. Vyas, I.; Lowndes, H. E.; Howland, R. D., Inhibition of glyceraldehyde-3-phosphate dehydrogenase in tissues of the rat by acrylamide and related compounds. Neurotoxicology 1985,6, (3),123-132.
    10. Tanii, H.; Hashimoto, K., In vitro neurotoxicity study with dorsal root ganglia for acrylamide and its derivatives. Toxicology Letters 1991,58, (2),209-213.
    11. Eisele, M.; Burchard, W., Hydrophobic water-soluble polymers,1. Dilute solution properties of poly(1-vinyl-2-piperidone) and poly(N-vinyl caprolactam). Makromolekulare Chemie-Macromolecular Chemistry and Physics 1990,191, (1), 169-184.
    12. Imaz, A.; Forcada, J.,N-Vinylcaprolactam-based microgels for biomedical applications. Journal of Polymer Science Part a-Polymer Chemistry 2010,48, (5), 1173-1181.
    13. Kozanoglu, S.; Ozdemir, T.; Usanmaz, A., Polymerization of N-vinylcaprolactam and characterization of poly(N-Vinylcaprolactam). Journal of Macromolecular Science Part a-Pure and Applied Chemistry 2011,48, (6),467-477.
    14. Jeong, B.; Kim, S. W.; Bae, Y. H., Thermosensitive sol-gel reversible hydrogels. Advanced Drug Delivery Reviews 2002,54, (1),37-51.
    15. Laukkanen, A.; Valtola, L.; Winnik, F. M.; Tenhu, H., Formation of colloidally stable phase separated poly(N-vinylcaprolactam) in water:A study by dynamic light scattering, microcalorimetry, and pressure perturbation calorimetry. Macromolecules 2004,37, (6),2268-2274.
    16. Gao, Y. B.; Au-Yeung, S. C. F.; Wu, C., Interaction between surfactant and poly(N-vinylcaprolactam) microgels. Macromolecules 1999,32, (11),3674-3677.
    17. Vihola, H.; Laukkanen, A.; Valtola, L.; Tenhu, H.; Hirvonen, J., Cytotoxicity of thermosensitive polymers poly(N-isopropylacrylamide), poly(N-vinylcaprolactam) and amphiphilically modified poly(N-vinyl caprolactam). Biomaterials 2005,26, (16), 3055-3064.
    18. Lee, J. E.; Lee,N.; Kim, H.; Kim, J.; Choi, S. H.; Kim, J. H.; Kim, T.; Song, I. C.; Park, S. P.; Moon, W. K.; Hyeon, T., Uniform mesoporous dye-doped silica nanoparticles decorated with multiple magnetite nanocrystals for simultaneous enhanced magnetic resonance imaging, fluorescence imaging, and drug delivery. Journal of the American Chemical Society 2010,132, (2),552-557.
    19. Lang, N.; Tuel, A., A fast and efficient ion-exchange procedure to remove surfactant molecules from MCM-41 materials. Chemistry of Materials 2004,16, (10), 1961-1966.
    20. Shah, S.; Pal, A.; Gude, R.; Devi, S., Synthesis and characterization of thermo-responsive copolymeric nanoparticles of poly(methyl methacrylate-co-N-vinylcaprolactam). European Polymer Journal 2010,46, (5),958-967.
    21. Boyko, V.; Pich, A.; Lu, Y.; Richter, S.; Arndt, K. F.; Adler, H. J. P., Thermo-sensitive poly(N-vinylcaprolactam-co-acetoacetoxyethyl methacrylate) microgels:1-synthesis and characterization. Polymer 2003,44, (26),7821-7827.
    22. Gordijo, C. R.; Barbosa, C. A. S.; Ferreira, A.; Constantino, V. R. L.; Silva, D. D., Immobilization of ibuprofen and copper-ibuprofen drugs on layered double hydroxides. Journal of Pharmaceutical Sciences 2005,94, (5),1135-1148.
    23. Fiorilli, S.; Onida, B.; Bonelli, B.; Garrone, E.; In situ infrared study of SBA-15 functionalized with carboxylic groups incorporated by a co-condensation route. Journal of Physical Chemistry B 2005,109, (35),16725-16729.
    24. Liu, D. F.; Wu, W.; Ling, J. J.; Wen, S.; Gu, N.; Zhang, X. Z., Effective PEGylation of iron oxide nanoparticles for high performance in vivo cancer imaging. Advanced Functional Materials 2011,21, (8),1498-1504.
    25. Zhu, Y. F.; Fang, Y.; Borchardt, L.; Kaskel, S., PEGylated hollow mesoporous silica nanoparticles as potential drug delivery vehicles. Microporous and Mesoporous Materials 2011,141, (1-3),199-206.
    26. Carniato, F.; Bisio, C.; Paul, G.; Gatti, G.; Bertinetti, L.; Coluccia, S.; Marchese, L., On the hydrothermal stability of MCM-41 mesoporous silica nanoparticles and the preparation of luminescent materials. Journal of Materials Chemistry 2010,20, (26), 5504-5509.
    27. Miyasaka, K.; Neimark, A. V.; Terasaki, O., Density functional theory of in situ synchrotron powder X-ray diffraction on mesoporous crystals:argon adsorption on MCM-41. Journal of Physical Chemistry C 2009,113, (3),791-794.
    28. Yang, Q.; Wang, S. H.; Fan, P. W.; Wang, L. F.; Di, Y.; Lin, K. F.; Xiao, F. S., pH-responsive carrier system based on carboxylic acid modified mesoporous silica and polyelectrolyte for drug delivery. Chemistry of Materials 2005, 17, (24), 5999-6003.
    29. Kobler, J.; Moller, K.; Bein, T., Colloidal suspensions of functionalized mesoporous silica nanoparticles. Acs Nano 2008, 2, (4), 791-799.
    30. You, Y. Z.; Kalebaila, K. K.; Brock, S. L.; Oupicky, D., Temperature-controlled uptake and release in PNIPAM-modified porous silica nanoparticles. Chemistry of Materials 2008, 20, (10), 3354-3359.
    31. Kirsh, Y. E.; Yanul, N. A.; Kalninsh, K. K., Structural transformations and water associate interactions in poly(N-vinylcaprolactam)-water system. European Polymer Journal 1999, 35, (2), 305-316.
    32. Lozinsky, V. I.; Simenel, I. A.; Kurskaya, E. A.; Kulakova, V. K.; Galaev, I. Y.; Mattiasson, B.; Grinberg, V. Y; Grinberg, N. V.; Khokhlov, A. R., Synthesis of N-vinylcaprolactam polymers in water-containing media. Polymer 2000, 41, (17), 6507-6518.
    33. Imaz, A.; Forcada, J., N-vinylcaprolactam-based microgels: synthesis and characterization. Journal of Polymer Science Part a-Polymer Chemistry 2008,46, (7), 2510-2524.
    34. Cheng. S.C., F. W., Pashikin. I.I., Yuan. L.H. , Deng. H.C. , Zhou. Y. , Radiation polymerization of thermo-sensitive poly (N-vinylcaprolactam). Radiation Physics and Chemistry 2002, 63, 517-519.
    35. Lau, A. C. W.; Wu, C, Thermally sensitive and biocompatible poly(iV-vinylcaprolactam): Synthesis and characterization of high molar mass linear chains. Macromolecules 1999, 32, (3), 581-584.
    36. Tan, B. H.; Tarn, K. C., Review on the dynamics and micro-structure of pH-responsive nano-colloidal systems. Advances in Colloid and Interface Science 2008,136, (1-2), 25-44.
    37. Nayak, S.; Lyon, L. A., Soft nanotechnology with soft nanoparticles. Angewandte Chemie-International Edition 2005, 44, (47), 7686-7708.
    38. Boyko, V.; Richter, S.; Pich, A.; Arndt, K. F., Poly(N-vmylcaprolactam) microgels. polymeric stabilization with poly(vinyl alcohol). Colloid and Polymer Science 2003, 282, (2), 127-132.
    39. Hoare, T.; Pelton, R., Titrametric characterization of pH-induced phase transitions in functionalized microgels. Langmuir 2006, 22, (17), 7342-7350.
    40. Schmaljohann, D., Thermo-and pH-responsive polymers in drug delivery. Advanced Drug Delivery Reviews 2006,58, (15),1655-1670.
    41. Pelton, R. H.; Chibante, P., Preparation of aqueous lattices with N-isopropylacrylamide. Colloids and Surfaces 1986,20, (3),247-256.
    42. McPhee, W.; Tam, K. C.; Pelton, R., Poly(N-isopropylacrylamide) latices prepared with sodium dodecyl sulfate. Journal of Colloid and Interface Science 1993, 156,(1),24-30.
    43. Kawaguchi, H.; Kawahara, M.; Yaguchi, N.; Hoshino, F.; Ohtsuka, Y., Hydrogel microspheres:preparation of monodisperse hydrogel microspheres of submicron or micron size. Polymer Journal 1988,20, (10),903-909.
    44. Wu, X.; Pelton, R. H.; Hamielec, A. E.; Woods, D. R.; McPhee, W., The kinetics of poly(N-isopropylacrylamide) microgel latex formation. Colloid and Polymer Science 1994,272, (4),467-477.
    45. Gao, J.; Frisken, B. J., Cross-linker-free N-isopropylacrylamide gel nanospheres. Langmuir 2003,19, (13),5212-5216.
    46. Gao, J.; Frisken, B. J., Influence of reaction conditions on the synthesis of self-cross-linked N-isopropylacrylamide microgels. Langmuir 2003,19, (13), 5217-5222.
    47. Sun, H. L.; Guo, B. N.; Cheng, R.; Meng, F. H.; Liu, H. Y.; Zhong, Z. Y., Biodegradable micelles with sheddable poly(ethylene glycol) shells for triggered intracellular release of doxorubicin. Biomaterials 2009,30, (31),6358-6366.
    48. Lapeyre, V.; Renaudie, N.; Dechezelles, J. F.; Saadaoui, H.; Ravaine, S.; Ravaine, V., Multiresponsive hybrid microgels and hollow capsules with a layered structure. Langmuir 2009,25, (8),4659-4667.
    49. Karg, M.; Pastoriza-Santos, I.; Liz-Marzan, L. M.; Hellweg, T., A versatile approach for the preparation of thermosensitive PNIPAM core-shell microgels with nanoparticle cores. Chemphyschem 2006,7, (11),2298-2301.
    50. Haag, R.; Kratz, F., Polymer therapeutics:concepts and applications. Angewandte Chemie-International Edition 2006,45, (8),1198-1215.
    51. Choucair, A.; Soo, P. L.; Eisenberg, A., Active loading and tunable release of doxorubicin from block copolymer vesicles. Langmuir 2005,21, (20),9308-9313.
    52. Hoare, T.; Pelton, R., Impact of microgel morphology on functionalized microgel-drug interactions. Langmuir 2008,24, (3),1005-1012.
    53. Ma, M.; Chen, H. R.; Chen, Y.; Wang, X.; Chen, F.; Cui, X. Z.; Shi, J. L., Au capped magnetic core/mesoporous silica shell nanoparticles for combined photothermo-/chemo-therapy and multimodal imaging. Biomaterials 2011,33, (3), 989-998.
    54. Yan, E. Y.; Ding, Y.; Chen, C. J.; Li, R. T.; Hu, Y.; Jiang, X. Q., Polymer/silica hybrid hollow nanospheres with pH-sensitive drug release in physiological and intracellular environments. Chemical Communications 2009, (19),2718-2720.
    55. Manzano, M.; Vallet-Regi, M., New developments in ordered mesoporous materials for drug delivery. Journal of Materials Chemistry 2010,20, (27), 5593-5604.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700