可见光活性二氧化钛的制备及氧空位与掺杂的N(或修饰的金属)之间的协同作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对TiO_2进行N掺杂可以有效拓展TiO_2的光谱响应从紫外光区到可见光区,并实现可见光催化活性。但是人们对于N掺杂TiO_2的可见光响应机理以及N的掺杂状态至今仍存在争议,目前关于N掺杂TiO_2的可见光响应机理主要存在四种观点:(1)禁带变窄理论,N2p轨道与O2p轨道重叠;(2)局域能级理论,价带上方形成N2p局域能级;(3)氧空位理论,氧空位产生可见光响应,掺杂的N稳定氧空位;(4)是一种中和理论,氧空位和N2p局域能级协同作用产生可见光响应。四种理论各有其合理的一面,但同时也存在一些争议问题,前两种理论忽略了氧空位的可见光响应作用,后两种理论则没有阐述清楚氧空位及掺杂的N如何作用。在样品制备过程中常常伴随着氧空位的生成,因此有必要进一步弄清楚氧空位在N掺杂TiO_2可见光响应中的作用及氧空位和掺杂元素之间的协同作用,弄清楚N掺杂TiO_2样品的可见光响应机理对于设计、制备高可见光催化活性的光催化剂具有十分重要的意义。
     在这一研究背景条件下,本文围绕着掺氮TiO_2的制备、物理化学性质表征、可见光催化性能评价及其可见光催化作用机理开展了一系列的工作。针对掺氮TiO2的可见光催化作用机理这一关键问题,以最普遍的P25-TiO_2为前驱体,在氨气气氛中热处理制备得到不同温度处理的N掺杂TiO_2,重点研究了掺氮过程中生成的氧空位、掺杂的氮元素、可见光吸收与掺氮TiO_2的可见光催化活性之间的内在联系,提出了一种与以上4种观点不完全相同的、新的可见光催化作用机理。随后,以novel-TiO_2(一种自制的锐钛矿TiO_2)、P25-TiO_2和纳米管钛酸(Nanotubular Titanic Acid,简写为NTA)为前驱体,同样在氨气气氛中热处理制备得到三类N掺杂TiO_2。通过研究它们的物理化学性质与可见光催化活性的关系,不但验证了我们提出的可见光催化作用机理,还确定了NTA在制备高效可见光催化剂方面具有重要潜力。在这些研究的基础上,进一步研究了金属离子修饰的掺氮TiO_2的制备、表征及其可见光催化作用机理,发现金属离子的修饰可以进一步提高光生电子空穴对的分离效率,从而表现出比单一掺氮或单一修饰金属的TiO_2更好的可见光催化活性性能,并描绘出了金属离子修饰的TiO_2-xNx样品的可见光催化作用机理图。通过这些研究,本文主要得到以下几点结论:
     1、氨气热处理P25-TiO_2制备N掺杂TiO_2的过程中,生成大量束缚单电子的氧空位,在ESR图上出现一个以g=2.004为中心的三重信号峰。可见光照下,束缚单电子的氧空位浓度增大,表明N掺杂TiO_2含有三种类型的氧空位:束缚单电子的氧空位、束缚两个电子的氧空位和不束缚电子的氧空位,后两种氧空位是反磁性物种不能被ESR检测到。掺杂的N处于间隙位置,直接与晶格氧或氧空位连接,XPS结果得到一个结合能为400eV的信号。研究发现,束缚单电子的氧空位浓度与N掺杂TiO_2的可见光吸收和可见光催化活性具有内在的线性关系。基于此,提出了一种新的可见光催化作用机理,即N掺杂TiO_2的可见光催化活性由束缚单电子的氧空位和掺杂的N元素两个因素共同决定,束缚单电子的氧空位决定N掺杂TiO_2的可见光响应,同时掺杂的N元素在氧空位附近阻止光生电子空穴对的复合,提高光生电子空穴对的分离效率,两者协同作用,共同决定可见光催化活性。在有效N掺杂的前提下,束缚单电子的氧空位浓度与N掺杂TiO_2的可见光催化活性成线性关系,氧空位浓度越高,可见光催化活性越好。
     2、作为承上启下的一部分,也是为了验证氧空位与掺杂的N元素之间的协同效应,以novel-TiO_2、P25-TiO_2和NTA三种不同结构的物种为前驱体,同样在氨气气氛中热处理制备得到三类N掺杂TiO_2。结果表明,三类N掺杂TiO_2的可见光吸收和可见光催化活性与它们所含的氧空位浓度成线性关系;根据DRS结果,提出并计算了N掺杂TiO_2的能带结构模型,大量束缚单电子的氧空位在TiO_2价带上方2.34eV和导带下方0.57eV处形成一个带隙宽度为0.19eV的氧空位能级,氧空位能级的带隙宽度决定于氧空位浓度的大小;氧空位能级作为中间桥梁使得价带电子可以被可见光激发跃迁到氧空位能级再跃迁到导带,导带上电子再跳回氧空位能级的时候,氧空位和掺杂的N元素与光生电子之间发生了电荷传输反应:
     V_o+N→V_o+N~-(I)
     N~-+O_2→N+O_2~-(II)V_o表示束缚两个电子的氧空位,V_o表示束缚单电子的氧空位。从而通过这两步反应切断了光生电子空穴对复合的路径,提高了光生载流子的分离效率,产生可见光催化活性。不同前驱体自身的性能不同,导致相同氮化过程中生成的氧空位浓度不同,使得不同掺氮样品的氧空位中间能级带隙不同,产生不同的可见光催化活性。通过这些研究,不但验证了结论1中提出的氧空位和掺杂的N之间协同作用共同决定可见光催化活性的理论,还发现NTA在制备高效可见光催化剂方面具有重要潜力。
     3、在对N掺杂TiO_2可见光催化作用机理系统研究的基础上,选择NTA为前驱体,采用一步法制备了Au修饰的N掺杂TiO_2,以期进一步提高光催化剂的可见光催化活性。研究发现,Au修饰的TiO_(2-x)N_x样品可见光催化活性高于单独Au修饰或单独N掺杂的TiO_2,表明金属离子修饰TiO_(2-x)N_x样品是获得高可见光催化性能光催化剂的一种方法。单独Au修饰的TiO_2在550~650nm出现Au的等离子体共振吸收峰,提高了光催化剂对可见光的吸收,但是光吸收阈值没有变化;Au修饰的TiO_(2-x)N_x样品光吸收阈值明显红移,并且具有较好的可见光吸收,但是Au的等离子体共振吸收峰弱化;修饰的Au4f_(7/2)结合能比体相Au的标准结合能(84.0eV)有所降低,单独Au修饰的TiO_2结合能位于83.1eV,主要是由于氧空位上的电子向修饰的Au6s轨道迁移所致;Au修饰的TiO_(2-x)N_x样品结合能位于83.4eV,比单独Au修饰的TiO_2结合能高,可能是由于Au6s轨道上的电子又向掺杂的N2p轨道迁移所致;掺杂的N、修饰的Au和生成的氧空位三者之间具有协同效应,即掺氮有利于氧空位的生成并提高Au与TiO_2之间的附着力,氧空位和Au的存在则有利于N的掺杂,这种协同作用是Au/TiO2-xNx可见光催化活性提高的根本原因。
     4、研究了其他几种不同金属离子修饰的M/TiO_(2-x)N_x(M=Ni, Pt, Pd, Cu)样品的制备及其性能表征,研究发现,不能以金属离子价态或半径大小直接判断TiO2的(锐钛矿/金红石)相变规律,也不能以金属离子价态或半径大小为依据直接比较哪种金属离子修饰的TiO_(2-x)N_x样品可见光催化活性的高低。提出了M/TiO_(2-x)N_x样品的可见光催化活性机理图,样品制备过程中生成的氧空位及修饰的金属共同产生可见光吸收,价带电子首先被可见光激发到氧空位能级,再跃迁到导带,XPS结果表明金属元素多以零价态的单质金属分散于TiO_2表面,可以作为电子捕获阱迅速捕获跃迁到导带上的光生电子,提高光生电子空穴对的分离效率;同时,掺杂的N在氧空位附近阻止从导带跳回氧空位能级的光生电子再跳回价带与光生空穴复合,进一步提高了光生载流子的分离效率,两种作用共同提高M/TiO_(2-x)N_x样品的可见光催化活性。
Nitrogen doping is one of the most efficient methods to extend light response of TiO_2into the visiblelight region in association with an expected enhancement of visible-light-responded photocatalytic activity.However, the origin of visible light photoactivity of N-doped TiO_2is still in debate. Four differentmechanisms have been proposed as below:(1) Band gap narrowing caused by mixing of N2p and O2porbitals, resulting in visible light response;(2) Localized midgap induced by doped-N, whose electrons canbe excited to jump to the conduction band by visible light;(3) Oxygen vacancy states below conductionband formed during nitrogen doping process;(4) A neutralization theory that suggests the synergistic effectbetween N2p localized midgap and oxygen vacancy states is responsible for the visible light photoactivity.Unfortunately, the role of the oxygen vacancy is usually not considered in the former two theories, whilehow the oxygen vacancy and doped-N work is not well elucidated in the latter two theories. Therefore, it isimperative to clarify the role of oxygen vacancy in enhancing visible light photoactivity and themechanisms by which the oxygen vacancy and doped-N work. The solution of these problems facilitates todesign and prepare highly visible-light-active photocatalyst.
     Therefore, we pay special attention to the effects of oxygen vacancy and dopants on the visible lightphotocatalytic activity, aiming at revealing the origin of visible light sensitization of N-doped TiO_2. Firstly,N-doped TiO_2is prepared by heat treatment of commercial P25-TiO_2in flowing NH3and the relationshipamong the doped-N, single-electron-trapped oxygen vacancy, optical absorbance and enhanced visible lightphotocatalytic activity is systematically studied. It is proposed that the origin of visible light sensitization ofN-doped TiO_2can be ascribed to the synergistic effect between oxygen vacancy and dopant nitrogen.Subsequently, three kinds of precursors, nanotubular titanic acid (denoted as NTA), raw P25-TiO_2andnovel-TiO_2, are separately used to prepare visible-light-active N-doped TiO_2samples by annealing inflowing NH3, aiming to reveal the determinative factors on visible light response. By comparing thephysicochemical properties of the three kinds of N-doped TiO_2samples with their visible lightphotocatalytic activity, the synergistic effect between oxygen vacancy and dopant nitrogen is proved andNTA precursor is pronounced to be one of the most promising materials for designing visible light activephotocatalyst. Furthermore, the characterization and mechanism of metal ion decorated TiO_2-xNxsamples hat based on the theory of N-doped TiO_2is systematically studied. In summary, four main conclusions aredrawn as below:
     1. N-doped TiO_2catalysts are prepared by nitridation of P25in NH3flowing under various temperaturesand the synergistic effect between the single-electron-trapped oxygen vacancy and doped-N in associationwith the origin of visible light sensitization of N-doped TiO_2is systematically studied. It is found that alarge amount of single-electron-trapped oxygen vacancies (denoted as SETOVs) generate during the dopingprocess, giving rise to a triplet ESR signal centered at g=2.004. The concentration of SETOVs is enhancedunder visible light irradiation as compared with that obtained in the dark, possibly because many freshadditional SETOVs generated under visible light irradiation. Therefore, it can be inferred that the oxygenvacancies can be divided into three categories: SETOVs with triplet ESR signal, dual-electrons-trappedoxygen vacancy and oxygen vacancy without electron, while the latter two will not produce ESR signals.The doped-N at interstitial site is directly combined with lattice oxygen or oxygen vacancy, showing abinding energy at400eV in XPS spectra. The origin of visible light photocatalytic activity is ascribed tothe synergetic effect between the formation of SETOVs in TiO_2matrix and the existence of doped-N on thesurface. Namlely, the formation of SETOVs results in visible light reponse, while doped-N plays a role inpreventing photoinduced electrons and holes from recombination. In other words, in the absence of eitherSETOVs in TiO_2matrix or doped-N on the surface, N-doped TiO_2will not show visible light photocatalyticactivity; and the higher the SETOVs concentration is, the better the visible light photocatalytic activity willbe.
     2. Not only as a connecting link between the preceding and the following but also in order to prove thesynergistic effect between oxygen vacancy and dopant nitrogen, three kinds of precursors are separatelyused to prepare visible light active N-doped TiO_2samples. Both the visible light absorption andphotocatalytic activity of the three kinds of N-doped TiO_2samples are found to be proportional to theconcentration of SETOVs, well conforming to what are summarized above. According to the DRS results,the band gap energy structure model of N-doped TiO_2is proposed. It is calculated that an intra-bandinduced by SETOVs is located at0.57eV below conduction band and2.34eV above valence band, with aband gap Eg=0.19eV resulting in visible light response which varies with varying concentration ofSETOVs. Given that the formation of SETOVs induces an intra-band, it is proposed that electrons are initially excited from valence band to intra-band and then jumped to the conduction band under visible lightirradiation. As a result, the photoinduced electrons may jump back from conduction band to intra-band,accompanying with a predicted charge transfer state that contributes to the visible light photocatalyticactivity:
     V_o+N→V_o+N~-(I)
     N~-+O_2→N+O_2~-(II)Where V_o represents for dual-electrons-trapped oxygen vacancy and V_o equivalents to SETOV. Thedoped-N plays a role in preventing photoinduced electrons and holes from recombination by cutting off theroute that the electrons jump back to valence band, resulting in enhanced visible light photocatalyticactivity. The N-doped TiO_2samples obtained by annealing of NTA as the precursor in flowing NH3exhibited the highest visible light photocatalytic activity, implying that NTA is one of the most promisingmaterials for designing visible light active photocatalyst.
     3. Au/TiO_(2-x)N_xsamples are prepared via a facile one-pot route and they showed much better visible lightperformance than Au/TiO_2or TiO_(2-x)N_xsamples. An additional absorption band from550~650nm index togold surface plasmon resonance is observed in DRS spectra for Au/TiO_2, while this peak for Au/TiO_2-xNxsamples is very weak. The binding energy values of Au4f7/2are83.1and83.4eV for Au/TiO_2and TiO_2-xNxsamples, respectively, lower than84.0eV of metallic Au. As to Au/TiO_2samples, the electrons can transferfrom SETOVs to Au6s obitals, resulting in lower Au4f binding energy. Accompanying with the Nincorporation, an electron transfer from Au6s obital toward the N2p level can be expected, resulting in thebinding energy shifting from83.1eV for Au/TiO_2to83.4eV for Au/TiO_2-xNxsamples. The higher visiblelight photocatalytic activity of Au/TiO_2-xNxsamples is attributed to the synergetic effect among doped-N,modified-Au and oxygen vacancy. Namely, nitrogen doping favors the formation of oxygen vacancy andincreases the Au-surface adhesion energy, while the existence of both Au and oxygen vacancy results ineasily nitrogen doping into TiO_2.
     4. Noble metal ions Pd2+and Pt4+or transition metal ions Cu2+and Ni2+modified TiO_2-xNxsamples(denoted as M/TiO_2-xNx) are also prepared separately according to the same method mentioned in the thirdportion. It is found that there has no direct relationship between the valence state or ionic radius of metalion and Anatase/Rutile phase transformation or visible light photocatalytic activity with respect to M/TiO_2-xNxsamples. The visible light response of M/TiO_2-xNxis attributed to the formation of SETOVsduring the preparation process, while dopant nitrogen plus modified metal contribute not only to improvethe visible light absorption but also suppress the recombination of photogenerated electrons and holes. Inone word, the enhanced separation efficiency of photogenerated electron–hole pairs attributed to thesynergistic effect among oxygen vacancies and N dopant as well as modified metal particulates on thesurface of TiO_2jointly account for the increased visible light photocatalytic performance of M/TiO_2-xNxsamples. The visible light photocatalytic mechanism of M/TiO_2-xNxis proposed and discussed in detail.
引文
[1] Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science,2001,293:269-271.
    [2] Ghicov A, Macak JM, Tsuchiya H, et al. Ion implantation and annealing for an efficient N-doping ofTiO2nanotubes [J]. Nano Lett,2006,6(5):1080-1082.
    [3] Hong YC, Bang CU, Shin DH, et al. Band gap narrowing of TiO2by nitrogen doping in atmosphericmicrowave plasma [J]. Chem Phys Lett,2005,413(4-6):454-457.
    [4] Li G, Yu JC, Zhang D, et al. A mesoporous TiO2xNxphotocatalyst prepared by sonication pretreatmentand in situ pyrolysis [J]. Separation and Purification Technology,2009,67(2):152-157.
    [5] Valentin CD, Pacchioni G, Selloni A, et al. Characterization of paramagnetic species in N-doped TiO2powders by EPR spectroscopy and DFT calculations [J]. J Phys Chem B,2005109(23):11414-11419.
    [6] Xu J, Ao Y, Fu D, et al. A simple route to synthesize highly crystalline N-doped TiO2particles underlow temperature [J]. J Crystal Growth,2008,310(19):4319-4324.
    [7] Fu H, Zhang L, Zhang S, et al. Electron spin resonance spin-trapping detection of radicalintermediates in N-doped TiO2-assisted photodegradation of4-chlorophenol [J]. J Phys Chem B,2006,110(7):3061-3065.
    [8] Li H, Li J, Huo Y. Highly active TiO2N photocatalysts prepared by treating TiO2precursors inNH3/ethanol fluid under supercritical conditions [J]. J Phys Chem B,2006,110(4):1559-1565.
    [9] Nakamura R, Tanaka T, Nakato Y. Mechanism for visible light responses in anodic photocurrents atN-doped TiO2film electrodes [J]. J Phys Chem B,2004,108:10617-10620.
    [10] Irie H, Watanabe Y, Hashimoto K. Nitrogen-concentration dependence on photocatalytic activity ofTiO2xNxpowders [J]. J Phys Chem B,2003,107:5483-5486.
    [11] Lindgren T, Mwabora JM, Avendano E, et al. Photoelectrochemical and optical properties of nitrogendoped titanium dioxide films prepared by reactive DC magnetron sputtering [J]. J Phys Chem B,2003,107:5709-5716.
    [12] Ihara T, Miyoshi M, Iriyama Y, et al. Visible-light-active titanium oxide photocatalyst realized by anoxygen-deficient structure and by nitrogen doping [J]. Appl Catal B: Environ,2003,42:403-409.
    [13] Serpone N. Is the band gap of pristine TiO2narrowed by anion-and cation-doping of titanium dioxidein second-generation photocatalysts?[J]. J Phys Chem B,2006,110:24287-24293.
    [14] Kuznetsov VN, Serpone N. Visible light absorption by various titanium dioxide specimens [J]. J PhysChem B,2006,110:25203-25209.
    [15] Emeline AV, Sheremetyeva NV, Khomchenko NV, et al. Photoinduced formation of defects andnitrogen stabilization of color centers in N-doped titanium dioxide [J]. J Phys Chem C,2007,111:11456-11462.
    [16] Kuznetsov VN, Serpone N. On the origin of the spectral bands in the visible absorption spectra ofvisible-light-active TiO2specimens analysis and assignments [J]. J Phys Chem C,2009,113:15110-15123.
    [17] Livraghi S, Paganini MC, Giamello E, et al. Origin of photoactivity of nitrogen-doped titaniumdioxide under visible light [J]. J Am Chem Soc,2006,128(49):15666-15671.
    [18] Lin Z, Orlov A, Lambert RM, et al. New insights into the origin of visible light photocatalytic activityof nitrogen-doped and oxygen-deficient anatase TiO2[J]. J Phys Chem B,2005,109(44):20948-20952.
    [19] Nambu A, Graciani J, Rodriguez JA, et al. N doping of TiO2(110): Photoemission anddensity-functional studies [J]. J Chem Phys,2006,125(9):094706.
    [20] Spadavecchia F, Cappelletti G, Ardizzone S, et al. Electronic structure of pure and N-doped TiO2nanocrystals by electrochemical experiments and first principles calculations [J]. J Phys Chem C2011,115:6381-6391.
    [21] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature,1972,238:37-38.
    [22] Ni M, Leung MKH, Leung DYC, et al. A review and recent developments in photocatalyticwater-splitting using TiO2for hydrogen production [J]. Renewable and Sustainable Energy Reviews,2007,11(3):401-425.
    [23] Khan SUM, Al-Shahry M, Ingler WB. Efficient photochemical water splitting by a chemicallymodified n-TiO2[J]. Science,2002,297:2243-2245.
    [24] Abe R, Sayama K, Arakawa H. Significant effect of iodide addition on water splitting into H2and O2over Pt-loaded TiO2photocatalyst: Suppression of backward reaction [J]. Chem Phys Lett,2003,371(3-4):360-364.
    [25] Henderson MA. A surface science perspective on TiO2photocatalysis [J]. Surf Sci Rep,2011,66(6-7):185-297.
    [26] Chen XB. Titanium dioxide nanomaterials and their energy applications [J]. Chin J Catal,2009,30(8):839-851.
    [27]温福宇,杨金辉,宗旭,等.太阳能光催化制氢研究进展[J].化学进展,2009,21(11):2285-2302.
    [28] Zou Z, Ye J, Sayama K, et al. Direct splitting of water under visible light irradiation with an oxidesemiconductor photocatalyst [J]. Nature,2001,414:625-627.
    [29] Kim HG, Hwang DW, Lee JS. An undoped, single-phase oxide photocatalyst working under visiblelight [J]. J Am Chem Soc,2004,126(29):8912-8913.
    [30] Lei Z, You W, Liu M, et al. Photocatalytic water reduction under visible light on a novel ZnIn2S4catalyst synthesized by hydrothermal method [J]. Chem Commun,2003,17::2142-2143.
    [31] Kudo A, Sekizawa M. Photocatalytic H2evolution under visible light irradiation on Ni-doped ZnSphotocatalyst [J]. Chem Commun,2000,15:1371-1372.
    [32] Lu D, Takata T, Saito N, et al. Photocatalyst releasing hydrogen from water [J]. Nature,2006,440(295.
    [33] Maeda K, Teramura K, Takata T, et al. Overall water splitting on (Ga1-xZnx)(N1-xOx) solid solutionphotocatalyst relationship between physical properties and photocatalytic activity [J]. J Phys Chem B,2005,109(43):20504-20510.
    [34] Maeda K, Takata T, Hara M, et al. Gan:Zno solid solution as a photocatalyst for visible-light-drivenoverall water splitting [J]. J Am Chem Soc,2005,127(23):8286-8287.
    [35] Shi R, Wang Y, Li D, et al. Synthesis of ZnWO4nanorods with [100] orientation and enhancedphotocatalytic properties [J]. Appl Catal B: Environ,2010,100:173-178.
    [36] Shi R, Lin J, Wang Y, et al. Visible-light photocatalytic degradation of BiTaO4photocatalyst andmechanism of photocorrosion suppression [J]. J Phys Chem C,2010,114(14):6472-6477.
    [37] Carey JH, Lawrence J, Tosine HM. Photodechlorination of PCB's in the presence of titanium dioxidein aqueous suspensions [J]. Bulletin of Environmental Contamination and Toxicology,1976,16(6):697-701.
    [38] Frank SN, Bard AJ. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions attitanium dioxide powder [J]. J Am Chem Soc,1977,99(1):303-304.
    [39] Pruden AL, Ollis DF. Photoassisted heterogeneous catalysis: The degradation of trichloroethylene inwater [J]. J Catal,1983,82(2):404-417.
    [40] Turchi CS, Ollis DF. Mixed reactant photocatalysis: Intermediates and mutual rate inhibition [J]. Jcatal,1989,119(2):483-496.
    [41] Tanaka K, Hisanaga T, Harada K. Photocatalytic degradation of organohalide compounds insemiconductor suspension with added hydrogen peroxide [J]. New J Chem,1989,13(1):5-7.
    [42] Turchi CS, Ollis DF. Photocatalytic degradation of organic water contaminants: Mechanismsinvolving hydroxyl radical attack [J]. J Catal,1990,122(1):178-192.
    [43] Matthews RW. Photo-oxidation of organic material in aqueous suspensions of titanium dioxide [J].Water Res,1986,20(5):569-578.
    [44] Matthews RW. Purification of water with near--UV illuminated suspensions of titanium dioxide [J].Water Res,1990,24(5):653-660.
    [45] Matthews RW. Photooxidative degradation of coloured organics in water using supported catalysts.TiO2on sand [J]. Water Res,1991,25(10):1169-1176.
    [46] Wu T, Lin T, Zhao J, et al. TiO2-assisted photodegradation of dyes.9. Photooxidation of a squaryliumcyanine dye in aqueous dispersions under visible light irradiation [J]. Environ Sci Technol,1999,33(9):1379-1387.
    [47] Wu T, Liu G, Zhao J, et al. Photoassisted degradation of dye pollutants. V. Self-photosensitizedoxidative transformation of rhodamine B under visible light irradiation in aqueous TiO2dispersions [J].J Phys Chem B,1998,102(30):5845-5851.
    [48] Zhao W, Chen C, Li X, et al. Photodegradation of sulforhodamine-B dye in platinized titaniadispersions under visible light irradiation: Influence of platinum as a functional co-catalyst [J]. J PhysChem B,2002,106(19):5022-5028.
    [49] Wu T, Liu G, Zhao J, et al. Evidence for H2O2generation during the TiO2-assisted photodegradation ofdyes in aqueous dispersions under visible light illumination [J]. J Phys Chem B,1999,103(23):4862-4867.
    [50] Linsebigler AL, Lu G, John T. Yates J. Photocatalysis on TiO2surfaces: Principles, mechanisms, andselected results [J]. Chem Rev,1995,95(3):735-758.
    [51] Choi W, Termin A, Hoffmann MR. The role of metal ion dopants in quantum-sized TiO2: Correlationbetween photoreactivity and charge carrier recombination dynamics [J]. J Phys Chem,1994,98(51):13669-13679.
    [52]吴树新,马智,秦永宁,等.过渡金属掺杂二氧化钛光催化性能的研究[J].感光科学与光化学,2005,23(2):94-101.
    [53] Wang Y, Cheng H, Zhang L, et al. The preparation, characterization, photoelectrochemical andphotocatalytic properties of lanthanide metal-ion-doped TiO2nanoparticles [J]. J Mol Catal A: Chem,2000,151(1-2):205-216.
    [54] Yamashita H, Harada M, Misaka J, et al. Degradation of propanol diluted in water under visible lightirradiation using metal ion-implanted titanium dioxide photocatalysts [J]. J Photochem Photobiol A:Chem,2002,148(1-3):257-261.
    [55] Li F, Li X, Hou M, et al. Enhanced photocatalytic activity of Ce3+-TiO2for2-mercaptobenzothiazoledegradation in aqueous suspension for odour control [J]. Appl Catal A: Gen,2005,285(1-2):181-189.
    [56] Choi J, Park H, Hoffmann MR. Effects of single metal-ion doping on the visible-light photoreactivityof TiO2[J]. J Phys Chem C,2010,114(2):783-792.
    [57] Sato S. Photocatalytic activity of NOx-doped TiO2in the visible light region [J]. Chem Phys Lett,1986,123(1,2):126-128.
    [58] Yang J, Bai H, Jiang Q, et al. Visible-light photocatalysis in nitrogen-carbon-doped TiO2filmsobtained by heating TiO2gel-film in an ionized N2gas [J]. Thin Solid Films,2008,516(8):1736-1742.
    [59] Di Valentin C, Finazzi E, Pacchioni G, et al. N-doped TiO2: Theory and experiment [J]. Chem Phys,2007,339(1-3):44-56.
    [60] In S, Orlov A, Berg R, et al. Effective visible light-activated B-doped and B, N-codoped TiO2photocatalysts [J]. J Am Chem Soc,2007,129(45):13790-13791.
    [61] Liu G, Zhao Y, Sun C, et al. Synergistic effects of B/N doping on the visible-light photocatalyticactivity of mesoporous TiO2[J]. Angew Chem Int Ed,2008,47(24):4516-4520.
    [62] Gopal NO, Lo HH, Ke SC. Chemical state and environment of boron dopant in B, N-codoped anataseTiO2nanoparticles: An avenue for probing diamagnetic dopants in TiO2by electron paramagneticresonance spectroscopy [J]. J Am Chem Soc,2008,130(9):2760-2761.
    [63]Morikawa T, Asahi R, Ohwaki T, et al. Band-gap narrowing of titanium dioxide by nitrogen doping [J].Japn J Appl Phys,2001,40:561-563.
    [64] Livraghi S, Votta A, Paganini MC, et al. The nature of paramagnetic species in nitrogen doped TiO2active in visible light photocatalysis [J]. Chem Commun,2005,4:498-500.
    [65] Sathish M, Viswanathan B, Viswanath R, et al. Synthesis, characterization, electronic structure, andphotocatalytic activity of nitrogen-doped TiO2nanocatalyst [J]. Chem Mater,2005,17(25):6349-6353.
    [66]王岩,张纪伟,金振声等.新型N-TiO2亚甲基蓝的可见光催化脱色研究[J].科学通报,2007,52(16):1973-1976.
    [67] Yu JC, Ho W, Yu J, et al. Efficient visible-light-induced photocatalytic disinfection on sulfur-dopednanocrystalline titania [J]. Environ Sci Technol,2005,39(4):1175-1179.
    [68] Yang K, Dai Y, Huang B. Understanding photocatalytic activity of S-and P-doped TiO2under visiblelight from first-principles [J]. J Phys Chem C,2007,111(51):18985-18994.
    [69] Ohno T, Murakami N, Tsubota T, et al. Development of metal cation compound-loaded S-doped TiO2photocatalysts having a rutile phase under visible light [J]. Appl Catal A: Gen,2008,349(1-2):70-75.
    [70] Ren W, Ai Z, Jia F, et al. Low temperature preparation and visible light photocatalytic activity ofmesoporous carbon-doped crystalline TiO2[J]. Appl Catal B: Environ,2007,69(3-4):138-144.
    [71] Choi Y, Umebayashi T, Yoshikawa M. Fabrication and characterization of C-doped anatase TiO2photocatalysts [J]. J Mater Sci,2004,39(5):1837-1839.
    [72] Park JH, Kim S, Bard AJ. Novel carbon-doped TiO2nanotube arrays with high aspect ratios forefficient solar water splitting [J]. Nano Lett,2006,6(1):24-28.
    [73] Kang IC, Zhang Q, Yin S, et al. Preparation of a visible sensitive carbon doped TiO2photo-catalyst bygrinding TiO2with ethanol and heating treatment [J]. Appl Catal B: Environ,2008,80(1-2):81-87.
    [74] Sakthivel S, Kisch H. Daylight photocatalysis by carbon-modified titanium dioxide [J]. Angew ChemInt Ed,2003,42(40):4908-4911.
    [75] Li D, Haneda H, Labhsetwar NK, et al. Visible-light-driven photocatalysis on fluorine-doped TiO2powders by the creation of surface oxygen vacancies [J]. Chem Phys Lett,2005,401(4-6):579-584.
    [76] Li D, Haneda H, Hishita S, et al. Fluorine-doped TiO2powders prepared by spray pyrolysis and theirimproved photocatalytic activity for decomposition of gas-phase acetaldehyde [J]. J Fluorine Chem,2005,126(1):69-77.
    [77] Luo H, Takata T, Lee Y, et al. Photocatalytic activity enhancing for titanium dioxide by co-doping withbromine and chlorine [J]. Chem Mater,2004,16(5):846-849.
    [78] Joung S, Amemiya T, Murabayashi M, et al. Chlorine-doped visible light driven TiO2photocatalysts:Property changes due to preparation condition [J]. Appl Catal B: Environ,2007,69:138-144.
    [79]樊丽霞,邓培昌,王海增等.溴掺杂TiO2光催化剂的制备与性能研究[J].环境工程学报,2010,(2):417-421.
    [80] Liu G, Chen Z, Dong C, et al. Visible light photocatalyst: Iodine-doped mesoporous titania with abicrystalline framework [J]. J Phys Chem B,2006,110(42):20823-20828.
    [81] Huang Y, Ho W, Ai Z, et al. Aerosol-assisted flow synthesis of B-doped, Ni-doped and B–Ni-codopedTiO2solid and hollow microspheres for photocatalytic removal of NO [J]. Appl Catal B: Environ,2009,89(3-4):398-405.
    [82] Fittipaldi M, Gombac V, Montini T, et al. A high-frequency (95GHz) electron paramagnetic resonancestudy of B-doped TiO2photocatalysts [J]. Inorg Chim Acta,2008,361(14-15):3980-3987.
    [83] Yang K, Dai Y, Huang B. Origin of the photoactivity in boron-doped anatase and rutile TiO2calculatedfrom first principles [J]. Physical Review B,2007,76(19):195201.
    [84] Lin L, Lin W, Zhu Y, et al. Phosphor-doped titania—a novel photocatalyst active in visible light [J].Chem Lett,2005,34(3):284-285.
    [85] Yu HF. Photocatalytic abilities of gel-derived P-doped TiO2[J]. J Phys Chem Solids,2007,68(4):600-607.
    [86] Lv Y, Yu L, Huang H, et al. Preparation, characterization of P-doped TiO2nanoparticles and theirexcellent photocatalystic properties under the solar light irradiation [J]. J Alloys Compd,2009,488(1):314-319.
    [87] Li F, Jiang Y, Xia M, et al. Effect of the P/Ti ratio on the visible-light photocatalytic activity ofP-doped TiO2[J]. J Phys Chem C,2009,113(42):18134-18141.
    [88]陈崧哲,张彭义,祝万鹏等.反应磁控溅射法制备的氮掺杂TiO2光催化膜的氮化学态和光催化活性[J].催化学报,2004,25(7):515-517.
    [89] Chen SZ, Zhang PY, Zhuang DM, et al. Investigation of nitrogen doped TiO2photocatalytic filmsprepared by reactive magnetron sputtering [J]. Catal Commun,2004,5(11):677-680.
    [90] Mwabora JM, Lindgren T, Avenda o E, et al. Structure, composition, and morphology ofphotoelectrochemically active TiO2-xNxthin films deposited by reactive DC magnetron sputtering [J]. JPhys Chem B,2004,108(52):20193-20198.
    [91]阮广福,叶勤.掺氮可见光响应TiO2-xNx光催化薄膜的制备及性能初探[J].暨南大学学报(自然科学版,2007,28(1):88-91.
    [92] Liu B, Wen L, Zhao X. The structure and photocatalytic studies of N-doped TiO2films prepared byradio frequency reactive magnetron sputtering [J]. Sol Energy Mater Sol Cells,2008,92(1):1-10.
    [93] Sato S, Nakamura R, Abe S. Visible-light sensitization of TiO2photocatalysts by wet-method n doping[J]. Appl Catal A: Gen,2005,284(1-2):131-137.
    [94] Burda C, Lou Y, Chen X, et al. Enhanced nitrogen doping in TiO2nanoparticles [J]. Nano Lett,2003,3(8):1049-1051.
    [95] Gole JL, Stout JD, Burda C, et al. Highly efficient formation of visible light tunable TiO2-xNxphotocatalysts and their transformation at the nanoscale [J]. J Phys Chem B,2004,108(4):1230-1240.
    [96] Chen X, Lou YB, Samia ACS, et al. Formation of oxynitride as the photocatalytic enhancing site innitrogen-doped titania nanocatalysts: Comparison to a commercial nanopowder [J]. Adv Funct Mater,2005,15(1):41-49.
    [97] Wang Z, Cai W, Hong X, et al. Photocatalytic degradation of phenol in aqueous nitrogen-doped TiO2suspensions with various light sources [J]. Appl Catal B: Environ,2005,57(3):223-231.
    [98] Aita Y, Komatsu M, Yin S, et al. Phase-compositional control and visible light photocatalytic activityof nitrogen-doped titania via solvothermal process [J]. J Solid State Chem,2004,177(9):3235-3238.
    [99] Diwald O, Thompson TL, Zubkov T, et al. Photochemical activity of nitrogen-doped rutile TiO2(110)in visible light [J]. J Phys Chem B,2004,108(19):6004-6008.
    [100]Vitiello RP, Macak JM, Ghicov A, et al. N-doping of anodic TiO2nanotubes using heat treatment inammonia [J]. Electrochem Commun,2006,8(4):544-548.
    [101]Wang Y, Feng C, Jin Z, et al. A novel N-doped TiO2with high visible light photocatalytic activity [J].J Mol Catal A: Chem,2006,260(1-2):1-3.
    [102]Kosowska B, Mozia S, Morawski AW, et al. The preparation of TiO2–nitrogen doped by calcination ofTiO2·xH2O under ammonia atmosphere for visible light photocatalysis [J]. Sol Energy Mater Sol Cells,2005,88(3):269-280.
    [103]Nosaka Y, Matsushita M, Nishino J, et al. Nitrogen-doped titanium dioxide photocatalysts for visibleresponse prepared by using organic compounds [J]. Sci Tech Adv Mater,2005,6(2):143-148.
    [104]Yang S, Gao L. New method to prepare nitrogen-doped titanium dioxide and its photocatalyticactivities irradiated by visible light [J]. J Am Ceram Soc,2004,87(9):1803-1805.
    [105]Mozia S, Tomaszewska M, Kosowska B, et al. Decomposition of nonionic surfactant on anitrogen-doped photocatalyst under visible-light irradiation [J]. Appl Catal B: Environ,2005,55(3):195-200.
    [106]Kobayakawa K, Murakami Y, Sato Y. Visible-light active N-doped TiO2prepared by heating oftitanium hydroxide and urea [J]. J Photochem Photobiol A: Chem,2005,170(2):177-179.
    [107]Yin S, Yamaki H, Zhang Q, Mechanochemical synthesis of nitrogen-doped titania and its visible lightinduced NOxdestruction ability [J]. Solid State Ionics,2004,172(1-4):205-209.
    [108]Yin S, Yamaki H, Komatsu M, et al. Preparation of nitrogen-doped titania with high visible lightinduced photocatalytic activity by mechanochemical reaction of titania and hexamethylenetetramine[J]. J Mater Chem,2003,13(12):2996-3001.
    [109]Yin S, Zhang Q, Saito F, et al. Preparation of visible light-activated titania photocatalyst bymechanochemical method [J]. Chem Lett,2003,32(4):358-359.
    [110]Yin S, Yamaki H, Komatsu M, et al. Synthesis of visible-light reactive TiO2xNyphotocatalyst bymechanochemical doping [J]. Solid State Sci,2005,7(12):1479-1485.
    [111]邢朋飞,王金淑,李辉, et al.机械化学法制备N掺杂纳米TiO2可见光光催化剂及其性能研究[J].稀有金属,2006,30(5):649-652.
    [112]王金淑,邢朋飞,李莉莉, et al.机械化学法N掺杂纳米TiO2的制备与表征[J].北京工业大学学报,2006,32(007):633-637.
    [113]Yamada K, Nakamura H, Matsushima S, et al. Preparation of N-doped TiO2particles by plasmasurface modification [J]. Comptes Rendus Chimie,2006,9(5-6):788-793.
    [114]Diwald O, Thompson TL, Goralski EG, et al. The effect of nitrogen ion implantation on thephotoactivity of TiO2rutile single crystals [J]. J Phys Chem B,2004,108(1):52-57.
    [115]Li D, Haneda H, Hishita S, et al. Visible-light-driven nitrogen-doped TiO2photocatalysts: Effect ofnitrogen precursors on their photocatalysis for decomposition of gas-phase organic pollutants [J].Mater Sci Eng B,2005,117(1):67-75.
    [116]Li D, Hajime, Haneda, et al. Visible-light-driven N-F-codoped TiO2photocatalysts.1. Synthesis byspray pyrolysis and surface characterization [J]. Chem Mater,2005,17:2588-2595.
    [117]Yang M, Yang T, Wong M. Nitrogen-doped titanium oxide films as visible light photocatalyst byvapor deposition [J]. Thin Solid Films,2004,469-470:1-5.
    [118]Wu PG, Ma CH, Shang JK. Effects of nitrogen doping on optical properties of TiO2thin films [J].Appl Phys A,2004,81(7):1411-1417.
    [119]Naik B, Parida KM, Gopinath CS. Facile synthesis of N-and S-incorporated nanocrystalline TiO2anddirect solar-light-driven photocatalytic activity [J]. J Phys Chem C,2010,114(45):19473-19482.
    [120]Lu X, Huang F, Wu J, et al. Intelligent hydrated-sulfate template assisted preparation of nanoporousTiO2spheres and their visible-light application [J]. ACS Appl Mater Interfaces,2011,3(2):566-572.
    [121]Shinn N, Tsang KL. Strain‐induced surface reactivity: Low temperature Cr/W (110) nitridation [J].Journal of Vacuum Science&Technology A: Vacuum, Surfaces, and Films,1991,9(3):1558-1562.
    [122]Saha NC, Tompkins HG. Titanium nitride oxidation chemistry: An X-ray photoelectron spectroscopystudy [J]. J Appl Phys,1992,72(7):3072-3079.
    [123]Xing M, Zhang J, Chen F. New approaches to prepare nitrogen-doped TiO2photocatalysts and studyon their photocatalytic activities in visible light [J]. Appl Catal B: Environ,2009,89(3-4):563-569.
    [124]Chen X, Burda C. Photoelectron spectroscopic investigation of nitrogen-doped titania nanoparticles[J]. J Phys Chem B,2004,108(40):15446-15449.
    [125]Zhang Z, Wang X, Long J, et al. Nitrogen-doped titanium dioxide visible light photocatalyst:Spectroscopic identification of photoactive centers [J]. J Catal,2010,276(2):201-214.
    [126]Lee S-H, Yamasue E, Okumura H, et al. Effect of oxygen and nitrogen concentration of nitrogendoped TiOxfilm as photocatalyst prepared by reactive sputtering [J]. Appl Catal A: Gen,2009,371(1-2):179-190.
    [127]Vorontsov A, Altynnikov A, Savinov E, et al. Correlation of TiO2photocatalytic activity and diffusereflectance spectra [J]. J Photochem Photobiol A: Chem,2001,144(2-3):193-196.
    [128]Sakatani Y, Nunoshige J, Ando H, et al. Photocatalytic decomposition of acetaldehyde under visiblelight irradiation over La3+and N co-doped TiO2[J]. Chem Lett,2003,32(12):1156-1157.
    [129]Livraghi S, Czoska AM, Paganini MC, et al. Preparation and spectroscopic characterization of visiblelight sensitized N doped TiO2(rutile)[J]. J Solid State Chem,2009,182(1):160-164.
    [130]Reyes-Garcia EA, Sun Y, Reyes-Gil K, et al.15n solid state NMR and EPR characterization ofN-doped TiO2photocatalysts [J]. J Phys Chem C,2007,111(6):2738-2748.
    [131]Sun H, Bai Y, Jin W, et al. Visible-light-driven TiO2catalysts doped with low-concentration nitrogenspecies [J]. Sol Energy Mater Sol Cells,2008,92(1):76-83.
    [132]Feng C, Wang Y, Jin Z, et al. Photoactive centers responsible for visible-light photoactivity ofN-doped TiO2[J]. New J Chem,2008,32(6):1038-1047.
    [133]陈蔚萍,王岩,金振声, et al. NH3处理温度对N掺杂P25-TiO2的可见光催化活性的影响[J].中国科学: B辑,2009,005):432-439.
    [134]Feng C, Jin Z, Zhang J, et al. Coaction of sub-band and doped nitrogen on visible light photoactivityof N-doped TiO2[J]. Photochem Photobiol,2010,86(6):1222-1229.
    [135]Nakamura I, Negishi N, Kutsuna S, et al. Role of oxygen vacancy in the plasma-treated TiO2photocatalyst with visible light activity for NO removal [J]. J Mol Catal A: Chem,2000,161(1-2):205-212.
    [136]Serwicka E. Esr study on the interaction of water vapour with polycrystalline TiO2under illumination[J]. Colloids Surf,1985,13:287-293.
    [137]Ihara T, Miyoshi M, Ando M, et al. Preparation of a visible-light-active TiO2photocatalyst by RFplasma treatment [J]. J Mater Sci,2001,36(17):4201-4207.
    [138]Zhang S, Li W, Jin Z, et al. Study on ESR and inter-related properties of vacuum-dehydratednanotubed titanic acid [J]. J Solid State Chem,2004,177(4-5):1365-1371.
    [139]Zhang M, Jin Z, Zhang J, et al. Effect of annealing temperature on morphology, structure andphotocatalytic behavior of nanotubed H2Ti2O4(OH)2[J]. J. Mol. Catal. A: Chem,2004,217(1-2):203-210.
    [140]Qian L, Jin Z, Zhang J, et al. Study of the visible-excitation luminescence of NTA-TiO2(AB) withsingle-electron-trapped oxygen vacancies [J]. Appl Phys A: Mater Sci&Processing,2005,80(8):1801-1805.
    [141]Serwicka E, Schlierkamp M, Schindler R. Localizations of conduction band electrons in polycrystallinTiO2studied by ESR [J]. Zeitschrift Naturforschung Teil A,1981,36:226.
    [142]Di Valentin C, Pacchioni G, Selloni A. Origin of the different photoactivity of N-doped anatase andrutile TiO2[J]. Physical Review B,2004,70:085116.
    [143]Li D, Ohashi N, Hishita S, et al. Origin of visible-light-driven photocatalysis: A comparative study onN/F-doped and N–F-codoped TiO2powders by means of experimental characterizations andtheoretical calculations [J]. J Solid State Chem,2005,178(11):3293-3302.
    [144]Batzill M, Morales EH, Diebold U. Influence of nitrogen doping on the defect formation and surfaceproperties of TiO2rutile and anatase [J]. Phys Rev Lett,2006,96(2):26103.
    [145]Yang K, Dai Y, Huang B, et al. Theoretical study of n-doped TiO2rutile crystals [J]. J Phys Chem B,2006,110(47):24011-24014.
    [146]Yang K, Dai Y, Huang B. Study of the nitrogen concentration influence on N-doped TiO2anatase fromfirst-principles calculations [J]. J Phys Chem C,2007,111(32):12086-12090.
    [147]Lee JY, Park J, Cho JH. Electronic properties of N-and C-doped TiO2[J]. Appl Phys Lett,2005,87:011904.
    [148]Wang Y, Doren DJ. First-principles calculations on TiO2doped by N, Nd, and vacancy [J]. Solid StateCommun,2005,136(3):186-189.
    [149]Zhao D, Huang X, Tian B, et al. The effect of electronegative difference on the electronic structureand visible light photocatalytic activity of N-doped anatase TiO2by first-principles calculations [J].Appl Phys Lett,2011,98(16):162107.
    [150]Gao H, Zhou J, Dai D, et al. Photocatalytic activity and electronic structure analysis of N-dopedanatase TiO2: A combined experimental and theoretical study [J]. Chemical Engineering&Technology,2009,32(6):867-872.
    [151]戴冬梅,周晶,曲亚栋, et al. N掺杂TiO2的催化活性与电子结构关系探究[J].计算机与应用化学,2009,26(6):799-802.
    [152]徐凌,唐超群,戴磊, et al. N掺杂锐钛矿TiO2电子结构的第一性原理研究[J].物理学报,2007,56(2):1048-1053.
    [153]Lo HH, Gopal NO, Ke SC. Origin of photoactivity of oxygen-deficient TiO2under visible light [J].Appl Phys Lett,2009,95(8):083126.
    [154]Nambu A, Graciani J, Rodriguez J, et al. N doping of TiO2(110): Photoemission anddensity-functional studies [J]. J Chem Phys,2006,125:094706.
    [155]Graciani J, álvarez LJ, Rodriguez JA, et al. N doping of rutile TiO2(110) surface. A theoretical DFTstudy [J]. J Phys Chem C,2008,112(7):2624-2631.
    [156]Wang J, Tafen DN, Lewis JP, et al. Origin of photocatalytic activity of nitrogen-doped TiO2nanobelts[J]. J Am Chem Soc,2009,131(34):12290-12297.
    [157]Varghese OK, Paulose M, LaTempa TJ, et al. High-rate solar photocatalytic conversion of CO2andwater vapor to hydrocarbon fuels [J]. Nano Lett,2009,9(2):731-737.
    [158]Yu Z, Chuang SSC. The effect of pt on the photocatalytic degradation pathway of methylene blue overTiO2under ambient conditions [J]. Appl Catal B: Environ,2008,83(3-4):277-285.
    [159]Nakano Y, Morikawa T, Ohwaki T, et al. Origin of visible-light sensitivity in N-doped TiO2films [J].Chem Phys,2007,339(1-3):20-26.
    [160]Cong Y, Zhang J, Chen F, et al. Preparation, photocatalytic activity, and mechanism of nano-TiO2co-doped with nitrogen and iron (iii)[J]. J Phys Chem C,2007,111(28):10618-10623.
    [161]Joshi MM, Labhsetwar NK, Mangrulkar PA, et al. Visible light induced photoreduction of methylorange by N-doped mesoporous titania [J]. Appl Catal A: Gen,2009,357(1):26-33.
    [162]Emeline AV, Zhang X, Jin M, et al. Spectral dependences of the activity and selectivity of N-dopedTiO2in photodegradation of phenols [J]. J Photochem Photobiol A: Chem,2009,207(1):13-19.
    [163]Sun H, Bai Y, Liu H, et al. Mechanism of nitrogen-concentration dependence on pH value:Experimental and theoretical studies on nitrogen-doped TiO2[J]. J Phys Chem C,2008,112(34):13304-13309.
    [164]方晓明,张正国,陈清林.具可见光活性的氮掺杂二氧化钛光催化剂[J].化学进展,2007,19(9):1282-1290.
    [165]Fujishima A, Zhang X, Tryk D. TiO2photocatalysis and related surface phenomena [J]. Surf Sci Rep,2008,63(12):515-582.
    [166]Wei H, Wu Y, Lun N, et al. Preparation and photocatalysis of TiO2nanoparticles co-doped withnitrogen and lanthanum [J]. J Mater Sci,2004,39(4):1305-1308.
    [167]Di Valentin C, Finazzi E, Pacchioni G, et al. Density functional theory and electron paramagneticresonance study on the effect of N F codoping of TiO2[J]. Chem Mater,2008,20(11):3706-3714.
    [168]Sakatani Y, Ando H, Okusako K, et al. Metal ion and N co-doped TiO2as a visible-light photocatalyst[J]. J Mater Res,2004,19(7):2100-2108.
    [169]Liu J, Han R, Zhao Y, et al. Enhanced photoactivity of V N codoped TiO2derived from a two-stephydrothermal procedure for the degradation of PCP Na under visible light irradiation [J]. J PhysChem C,2011,115:4507–4515.
    [170]Huang LH, Sun C, Liu YL. Pt/N-codoped TiO2nanotubes and its photocatalytic activity under visiblelight [J]. Appl Surf Sci,2007,253(17):7029-7035.
    [171]Jia L, Wu C, Han S, et al. Theoretical study on the electronic and optical properties of (N,Fe)-codoped anatase TiO2photocatalyst [J]. J Alloys Compd,2011,509(20):6067-6071.
    [172]Su Y, Xiao Y, Li Y, et al. Preparation, photocatalytic performance and electronic structures ofvisible-light-driven Fe–N-codoped TiO2nanoparticles [J]. Mater Chem Phys,2011,126(3):761-768.
    [173]Sasikala R, Shirole AR, Sudarsan V, et al. Enhanced photocatalytic activity of indium and nitrogenco-doped TiO2–Pd nanocomposites for hydrogen generation [J]. Appl Catal A: Gen,2010,377(1-2):47-54.
    [174]Ma X, Miao L, Bie S, et al. Synergistic effect of V/N-codoped anatase photocatalysts [J]. Solid StateCommun,2010,150(13-14):689-692.
    [175]Li J, Xu J, Dai W-L, et al. One-pot synthesis of twist-like helix tungsten–nitrogen-codoped titaniaphotocatalysts with highly improved visible light activity in the abatement of phenol [J]. Appl Catal B:Environ,2008,82(3-4):233-243.
    [176]Kubacka A, Bachiller-Baeza B, Colón G, et al. W, N-codoped TiO2-anatase: A sunlight-operatedcatalyst for efficient and selective aromatic hydrocarbons photo-oxidation [J]. J Phys Chem C,2009,113(20):8553-8555.
    [177]Kubacka A, Colón G, Fernández-García M. N-and/or W-(co)doped TiO2-anatase catalysts: Effect ofthe calcination treatment on photoactivity [J]. Appl Catal B: Environ,2010,95(3-4):238-244.
    [178]Liu C, Tang X, Mo C, et al. Characterization and activity of visible-light-driven TiO2photocatalystcodoped with nitrogen and cerium [J]. J Solid State Chem,2008,181(4):913-919.
    [179]Xu J, Ao Y, Fu D, et al. A simple route for the preparation of Eu, N-codoped TiO2nanoparticles withenhanced visible light-induced photocatalytic activity [J]. J Colloid Interface Sci,2008,328(2):447-451.
    [180]Long R, English NJ. Band gap engineering of (N, Ta)-codoped TiO2: A first-principles calculation [J].Chem Phys Lett,2009,478(4-6):175-179.
    [181]Tan K, Zhang H, Xie C, et al. Visible-light absorption and photocatalytic activity in molybdenum-andnitrogen-codoped TiO2[J]. Catal Commun,2010,11(5):331-335.
    [182]Huang D-G, Liao S-J, Liu J-M, et al. Preparation of visible-light responsive N–F-codoped TiO2photocatalyst by a sol–gel-solvothermal method [J]. J Photochem Photobiol A: Chem,2006,184(3):282-288.
    [183]Xie Y, Zhao X, Li Y, et al. Ctab-assisted synthesis of mesoporous F–N-codoped TiO2powders withhigh visible-light-driven catalytic activity and adsorption capacity [J]. J Solid State Chem,2008,181(8):1936-1942.
    [184]Xu J, Yang B, Wu M, et al. Novel N–F-codoped TiO2inverse opal with a hierarchicalmeso-/macroporous structure: Synthesis, characterization, and photocatalysis [J]. J Phys Chem C,2010,114(36):15251-15259.
    [185]Livraghi S, Elghniji K, Czoska AM, et al. Nitrogen-doped and nitrogen–fluorine-codoped titaniumdioxide. Nature and concentration of the photoactive species and their role in determining thephotocatalytic activity under visible light [J]. J Photochem Photobiol A: Chem,2009,205(2-3):93-97.
    [186]Yuan J, Wang E, Chen Y, et al. Doping mode, band structure and photocatalytic mechanism ofB-N-codoped TiO2[J]. Appl Surf Sci,2011,257:7335-7342.
    [187]Cong Y, Chen F, Zhang J, et al. Carbon and nitrogen-codoped TiO2with high visible lightphotocatalytic activity [J]. Chem Lett,2006,35(7):800-801.
    [188]Zhang S, Song L. Preparation of visible-light-active carbon and nitrogen codoped titanium dioxidephotocatalysts with the assistance of aniline [J]. Catal Commun,2009,10(13):1725-1729.
    [189]Wu K-R, Hung C-H. Characterization of N, C-codoped TiO2films prepared by reactive dc magnetronsputtering [J]. Appl Surf Sci,2009,256(5):1595-1603.
    [190]Wang X, Lim T-T. Solvothermal synthesis of C-N-codoped TiO2and photocatalytic evaluation forbisphenol a degradation using a visible-light irradiated led photoreactor [J]. Appl Catal B: Environ,2010,100(1-2):355-364.
    [191]Xu QC, Wellia DV, Yan S, et al. Enhanced photocatalytic activity of C-N-codoped TiO2filmsprepared via an organic-free approach [J]. J Hazard Mater,2011,188(1-3):172-180.
    [192]Ohno T, Miyamoto Z, Nishijima K, et al. Sensitization of photocatalytic activity of S-or N-dopedTiO2particles by adsorbingFe3+cations [J]. Appl Catal A: Gen,2006,302(1):62-68.
    [193]Wei F, Ni L, Cui P. Preparation and characterization of N-S-codoped TiO2photocatalyst and itsphotocatalytic activity [J]. J Hazard Mater,2008,156(1-3):135-140.
    [194]Han T, Fan T, Chow SK, et al. Biogenic N–P-codoped TiO2: Synthesis, characterization andphotocatalytic properties [J]. Bioresour Technol,2010,101(17):6829-6835.
    [195]Xu Q-c, Wellia DV, Sk MA, et al. Transparent visible light activated C-N-F-codoped TiO2films forself-cleaning applications [J]. J Photochem Photobiol A: Chem,2010,210(2-3):181-187.
    [196]Takeuchi K, Nakamura I, Matsumoto O, et al. Preparation of visible-light-responsive titanium oxidephotocatalysts by plasma treatment [J]. Chem Lett,2000,29(12):1354-1355.
    [197]王晓冬,杨建军,殷好勇等.纳米管TiO2光催化降解丙烯的研究[J].感光科学与光化学2002,20(6):424-428.
    [198]Nakano Y, Morikawa T, Ohwaki T, et al. Deep-level optical spectroscopy investigation of N-dopedTiO2films [J]. Appl Phys Lett,2005,86:132104.
    [199]Martyanov IN, Uma S, Rodrigues S, et al. Structural defects cause TiO2-based photocatalysts to beactive in visible light [J]. Chem Commun,2004,21):2476-2477.
    [200]Datye AK, Riegel G, Bolton JR, et al. Microstructural characterization of a fumed titanium dioxidephotocatalyst [J]. J Solid State Chem,1995,115(1):236-239.
    [201]Tseng Y-H, Kuo C-S, Huang C-H, et al. Visible-light-responsive nano-TiO2with mixed crystal latticeand its photocatalytic activity [J]. Nanotechnology,2006,17(10):2490-2497.
    [202]Cong S, Xu Y. Explaining the high photocatalytic activity of a mixed phase TiO2: A combined effectof O2and crystallinity [J]. J Phys Chem C,2011,115(43):21161-21168.
    [203]Hurum DC, Agrios AG, Gray KA, et al. Explaining the enhanced photocatalytic activity of degussaP25mixed-phase TiO2using EPR [J]. J Phys Chem B,2003,107(19):4545-4549.
    [204]Iyengar RD, Codell M, Karra JS, et al. Electron spin resonance studies of the surface chemistry ofrutile [J]. J Am Chem Soc,1966,88(22):5055-5060.
    [205]Iyengar RD. An ESR study of the nature of the surface oxygen during the oxidation of anonstoichiometric rutile surface with oxides of nitrogen [J]. J catal,1967,9:305-307.
    [206]Fukuzawa S, Sancier KM, Kwan T. Photoadsorption and phofodesorption of oxygen on titaniumdioxide [J]. J catal,1968,11(4):364-369.
    [207]Iyengar R, Kellerman R. Esr studies on the role of ammonia in promoting radical species inprecipitated titanium dioxide [J]. J Colloid Interface Sci,1971,35(3):424-433.
    [208]Che M, Naccache C, Imelik B. Electron spin resonance studies on titanium dioxide and magnesiumoxide--electron donor properties [J]. J catal,1972,24(2):328-335.
    [209]Napoli F, Chiesa M, Livraghi S, et al. The nitrogen photoactive centre in N-doped titanium dioxideformed via interaction of N atoms with the solid. Nature and energy level of the species [J]. ChemPhys Lett,2009,477(1-3):135-138.
    [210]Meroni D, Ardizzone S, Cappelletti G, et al. Photocatalytic removal of ethanol and acetaldehyde byN-promoted TiO2films: The role of the different nitrogen sources [J]. Catal Today,2011,161(1):169-174.
    [211]Spadavecchia F, Cappelletti G, Ardizzone S, et al. Solar photoactivity of nano-N-TiO2from tertiaryamine: Role of defects and paramagnetic species [J]. Appl Catal B: Environ,2010,96(3-4):314-322.
    [212]Volodin A, Cherkashin A, Zakharenko V. Influence of physically adsorbed oxygen on the separationof electron-hole pairs on anatase irradiated by visible light [J]. React Kinet Catal Lett,1979,11(2):103-106.
    [213]Volodin A, Cherkashin A, Zakharenko V. Formation of O2ion-radicals on reduced anatase. Influenceof adsorbed co on the stabilization of O2[J]. React Kinet Catal Lett,1979,11(2):107-111.
    [214]Naccache C, Meriaudeau P, Che M, et al. Identification of oxygen species adsorbed on reducedtitanium dioxide [J]. Transations of the Faraday Society,1971,67:506-512.
    [215]Zhang J, Wang Y, Jin Z, et al. Visible-light photocatalytic behavior of two different N-doped TiO2[J].Appl Surf Sci,2008,254(15):4462-4466.
    [216]陈蔚萍,王岩,金振声等. NH3处理温度对N掺杂P25-TiO2的可见光催化活性的影响[J].中国科学: B辑,2009,39(5):432-439.
    [217]Yamada K, Yamane H, Matsushima S, et al. Effect of thermal treatment on photocatalytic activity ofN-doped TiO2particles under visible light [J]. Thin Solid Films,2008,516(21):7482-7487.
    [218]Anderson JR, Pratt KC. Introduction to characterization and testing of catalysts [M]. Academic PressSydney,1985.
    [219]Wendlandt WW, Hecht HG. Reflectance spectroscopy [M]. Interscience New York,1966.
    [220]Burgeth G, Kisch H. Photocatalytic and photoelectrochemical properties of titania-chloroplatinate (IV)[J]. Coord Chem Rev,2002,230(1-2):41-47.
    [221]Rosseler O, Shankar MV, Du MK-L, et al. Solar light photocatalytic hydrogen production from waterover Pt and Au/TiO2(anatase/rutile) photocatalysts: Influence of noble metal and porogen promotion[J]. J catal,2010,269(1):179-190.
    [222]刘守新,陈孝云,李晓辉. N掺杂对TiO2形态结构及光催化活性的影响[J].无机化学学报,2008,24(002):253-259.
    [223] Wang J, Zhang M, Wang K, et al. Reasons for the deactivation of Pt0/TiO2photocatalyst treatedby inert gas N2[J]. Appl Surf Sci,2008,254(17):5375-5379.
    [224]Hojamberdiev M, Zhu G, Sujaridworakun P, et al. Visible-light-driven N-F-codoped TiO2powdersderived from different ammonium oxofluorotitanate precursors [J]. Powder Technol,2012,218:140-148.
    [225]Subagio DP, Srinivasan M, Lim M, et al. Photocatalytic degradation of bisphenol-a by nitrogen-dopedTiO2hollow sphere in a vis-led photoreactor [J]. Appl Catal B: Environ,2010,95(3-4):414-422.
    [226]Moulder JF, Stickle WF, Sobol PE, et al. Handbook of x-ray photoelectron spectroscopy: A referencebook of standard spectra for identification and interpretation of [J]. Perkin-Elmer: Boca Raton, FL,1992:261.
    [227]Chastain J. Handbook of x-ray photoelectron spectroscopy [J]. Eden Prairire, MN: Perkin-Elemer,1992.
    [228]Li Q, Zhang J, Jin Z, et al. Photo and photoelectrochemical properties of p-type low-temperaturedehydrated nanotube titanic acid [J]. Electrochem Commun,2006,8(5):741-746.
    [229]Li Q, Wang X, Jin Z, et al. n/p-type changeable semiconductor TiO2prepared from NTA [J]. JNanopart Res,2006,9(5):951-957.
    [230]冯彩霞,王岩,金振声等. N掺杂纳米TiO2可见光催化氧化丙烯的动力学行为[J].物理化学学报,2008,24(4):633-638.
    [231]Fang X, Zhang Z, Chen Q, et al. Dependence of nitrogen doping on TiO2precursor annealed underNH3flow [J]. J Solid State Chem,2007,180(4):1325-1332.
    [232]Kasuga T, Hiramatsu M, Hoson A, et al. Formation of titanium oxide nanotube [J]. Langmuir,1998,14(12):3160-3163.
    [233]张顺利,周静芳,张治军等.纳米管TiO2的形貌结构和物理化学特性[J].科学通报,2000,45(10):1104-1108.
    [234]Yang J, Jin Z, Wang X, et al. Study on composition, structure and formation process of nanotubeNa2Ti2O4(OH)2[J]. Dalton Trans,2003,20:3898-3901.
    [235]王晓冬,李伟,杨建军等.纳米管钛酸钠的组成分析[J].化学研究,2003,14(2):5-8.
    [236]Yu J, Yu H, Cheng B, et al. Effects of calcination temperature on the microstructures andphotocatalytic activity of titanate nanotubes [J]. J Mol Catal A: Chem,2006,249(1-2):135-142.
    [237]Bavykin DV, Gordeev SN, Moskalenko AV, et al. Apparent two-dimensional behavior of TiO2nanotubes revealed by light absorption and luminescence [J]. J Phys Chem B,2005,109(18):8565-8569.
    [238]Morgado E, Marinkovic BA, Jardim PM, et al. Characterization and thermal stability ofcobalt-modified1-d nanostructured trititanates [J]. J Solid State Chem,2009,182(1):172-181.
    [239]Ananpattarachai J, Kajitvichyanukul P, Seraphin S. Visible light absorption ability and photocatalyticoxidation activity of various interstitial N-doped TiO2prepared from different nitrogen dopants [J]. JHazard Mater,2009,168(1):253-261.
    [240]Bianchi CL, Cappelletti G, Ardizzone S, et al. N-doped TiO2from TiCl3for photodegradation of airpollutants [J]. Catal Today,2009,144(1-2):31-36.
    [241]唐玉朝,黄显怀,俞汉青等. N掺杂TiO2光催化剂的制备及其可见光活性研究[J].无机化学学报,2006,21(11):1747-1751.
    [242]Stewart SJ, Fernández-García M, Belver C, et al. Influence of N-doping on the structure andelectronic properties of titania nanoparticle photocatalysts [J]. J Phys Chem B,2006,110(33):16482-16486.
    [243]Wang Y, Feng C, Zhang M, et al. Enhanced visible light photocatalytic activity of N-doped TiO2inrelation to single-electron-trapped oxygen vacancy and doped-nitrogen [J]. Appl Catal B: Environ,2010,100(1-2):84-90.
    [244]Noda H, Oikawa K, Ogata T, et al. Preparation of titanium (IV) oxides and its characterization [J].Bull Chem Soc Jpn,1986:1084-1090.
    [245]Cronemeyer D. Infrared absorption of reduced rutile TiO2single crystals [J]. Phys Rev,1959,113(5):1222-1226.
    [246]Higashimoto S, Tanihata W, Nakagawa Y, et al. Effective photocatalytic decomposition of VOC undervisible-light irradiation on N-doped TiO2modified by vanadium species [J]. Appl Catal A: Gen,2008,340(1):98-104.
    [247]Li Q, Easter NJ, Shang JK. As (III) removal by palladium-modified nitrogen-doped titanium oxidenanoparticle photocatalyst [J]. Environ Sci Technol,2009,43(5):1534-1539.
    [248]Sakthivel R, Ntho T, Witcomb M, et al. CO oxidation over anatase TiO2supported Au: Effect ofnitrogen doping [J]. Catal Lett,2009,130(3-4):341-349.
    [249]Graciani J, Nambu A, Evans J, et al. Au N synergy and N-doping of metal oxide-basedphotocatalysts [J]. J Am Chem Soc,2008,130(36):12056-12063.
    [250]Wu Y, Liu H, Zhang J, et al. Enhanced photocatalytic activity of nitrogen-doped titania by depositedwith gold [J]. J Phys Chem C,2009,113(33):14689-14695.
    [251]Li X, Fan T, Zhou H, et al. A facile way to synthesize biomorphic N-TiO2incorporated with aunanoparticles with narrow size distribution and high stability [J]. Microporous Mesoporous Mater,2008,116(1-3):478-484.
    [252]Tian B, Li C, Gu F, et al. Synergetic effects of nitrogen doping and Au loading on enhancing thevisible-light photocatalytic activity of nano-TiO2[J]. Catal Commun,2009,10(6):925-929.
    [253]Iliev V, Tomova D, Rakovsky S. Nanosized N-doped TiO2and gold modified semiconductors-photocatalysts for combined UV–visible light destruction of oxalic acid in aqueous solution [J].Desalination,2010,260(1-3):101-106.
    [254]Ortega Y, Hernández NC, Menéndez-Proupin E, et al. Nitrogen/gold codoping of the TiO2(101)anatase surface. A theoretical study based on DFT calculations [J]. PCCP,2011,13(23):11340.
    [255]Devi LG, Nagaraj B, Rajashekhar KE. Synergistic effect of Ag deposition and nitrogen doping in TiO2for the degradation of phenol under solar irradiation in presence of electron acceptor [J]. Chem Eng J,2012,181-182:259-266.
    [256]Zhang J, Wu Y, Xing M, et al. Development of modified n doped TiO2photocatalyst with metals,nonmetals and metal oxides [J]. Energy&Environ Sci,2010,3(6):715-726.
    [257]吴湘江,蒋耀辉,彭振山等. Au/TiO2催化剂的制备及低级醇类的光催化消除[J].中国有色金属学报,2009,19(1):139-147.
    [258]Etacheri V, Seery MK, Hinder SJ, et al. Highly visible light active TiO2xNxheterojunctionphotocatalysts [J]. Chem Mater,2010,22(13):3843-3853.
    [259]Méndez-Cruz M, Ramírez-Solís J, Zanella R. Co oxidation on gold nanoparticles supported overtitanium oxide nanotubes [J]. Catal Today,2011,166(1):172-179.
    [260]Khan MA, Jung HT, Yang OB. Synthesis and characterization of ultrahigh crystalline TiO2nanotubes[J]. J Phys Chem B,2006,110(13):6626-6630.
    [261]贺攀科,杨建军,杨冬梅等. Au/TiO2光催化分解臭氧[J].催化学报,2006,27(001):71-74.
    [262]董芳,杨冬梅,张敏等. TiO2晶型对Au/TiO2上光催化分解臭氧的影响[J].催化学报,2007,28(011):958-962.
    [263]田宝柱,童天中,陈峰等.水洗处理对Au/TiO2催化剂光催化活性的影响[J].物理化学学报,2007,23(7):978-982.
    [264]Cárdenas-Lizana F, Gómez-Quero S, Idriss H, et al. Gold particle size effects in the gas-phasehydrogenation of m-dinitrobenzene over Au/TiO2[J]. J catal,2009,268(2):223-234.
    [265]Arabatzis I, Stergiopoulos T, Andreeva D, et al. Characterization and photocatalytic activity ofAu/TiO2thin films for azo-dye degradation [J]. J catal,2003,220(1):127-135.
    [266]Zanella R, Giorgio S, Shin CH, et al. Characterization and reactivity in CO oxidation of goldnanoparticles supported on TiO2prepared by deposition-precipitation with naoh and urea [J]. J catal,2004,222(2):357-367.
    [267]Cojocaru B, Nea u, Sacaliuc-Parvulescu E, et al. Influence of gold particle size on the photocatalyticactivity for acetone oxidation of Au/TiO2catalysts prepared by dc-magnetron sputtering [J]. ApplCatal B: Environ,2011,107(1-2):140-149.
    [268]Kaur R, Pal B. Size and shape dependent attachments of au nanostructures to TiO2for optimumreactivity of Au/TiO2photocatalysis [J]. J Mol Catal A: Chem,2012,355:39-43.
    [269]吕倩,孟明,查宇清.高热稳定性纳米Au/TiO2催化剂的制备与表征[J].催化学报,2007,27(12):1111-1116.
    [270]Wei NN, Han T, Deng GZ, et al. Synthesis and characterizations of three-dimensional orderedgold-nanoparticle-doped titanium dioxide photonic crystals [J]. Thin Solid Films,2011,519(8):2409-2414.
    [271]Li H, Bian Z, Zhu J, et al. Mesoporous Au/TiO2nanocomposites with enhanced photocatalytic activity[J]. J Am Chem Soc,2007,129(15):4538-4539.
    [272]Arrii S, Morfin F, Renouprez A, et al. Oxidation of co on gold supported catalysts prepared by laservaporization: Direct evidence of support contribution [J]. J Am Chem Soc,2004,126(4):1199-1205.
    [273]毛立群,冯彩霞,金振声等. Au/TiO2的制备及其光催化氧化丙烯的研究[J].感光科学与光化学,2005,23(1):61-65.
    [274]Iliev V, Tomova D, Todorovska R, et al. Photocatalytic properties of TiO2modified with goldnanoparticles in the degradation of oxalic acid in aqueous solution [J]. Appl Catal A: Gen,2006,313(2):115-121.
    [275]刘秀华,傅依备,谢云等. Au/TiO2薄膜的制备及其光催化氧化对硝基苯酚的性能[J].催化学报,2006,27(006):532-536.
    [276]Kruse N, Chenakin S. Xps characterization of Au/TiO2catalysts: Binding energy assessment andirradiation effects [J]. Appl Catal A: Gen,2011,391(1-2):367-376.
    [277]Li W-K, Chu L-N, Gong X-Q, et al. A comparative dft study of adsorption and catalytic performanceof au nanoparticles at anatase and brookite TiO2surfaces [J]. Surf Sci,2011,605(15-16):1369-1380.
    [278]Cong Y, Zhang J, Chen F, et al. Synthesis and characterization of nitrogen-doped TiO2nanophotocatalyst with high visible light activity [J]. J Phys Chem C,2007,111(19):6976-6982.
    [279]D'Arienzo M, Scotti R, Wahba L, et al. Hydrothermal N-doped TiO2: Explaining photocatalyticproperties by electronic and magnetic identification of n active sites [J]. Appl Catal B: Environ,2009,93(1-2):149-155.
    [280]Li D, Chen Z, Chen Y, et al. A new route for degradation of volatile organic compounds under visiblelight: Using the bifunctional photocatalyst Pt/TiO2-xNxin H2-O2atmosphere [J]. Environ Sci Technol,2008,42(6):2130-2135.
    [281]Liu G, Li F, Wang D-W, et al. Electron field emission of a nitrogen-doped TiO2nanotube array [J].Nanotechnology,2008,19(2):025606.
    [282]Xiang Q, Yu J, Wang W, et al. Nitrogen self-doped nanosized TiO2sheets with exposed {001} facetsfor enhanced visible-light photocatalytic activity [J]. Chem Commun,2011,47(24):6906-6908.
    [283]Ma X, Feng C, Jin Z, et al. Insertion of platinum oxide into nanotube of sodium titanate [J]. JNanopart Res,2005,7(6):681-683.
    [284]Wahlstr m E, Lopez N, Schaub R, et al. Bonding of gold nanoclusters to oxygen vacancies on rutileTiO2(110)[J]. Phys Rev Lett,2003,90(2):026101.
    [285]Min B, Wallace W, Santra A, et al. Role of defects in the nucleation and growth of Au nanoclusters onSiO2thin films [J]. J Phys Chem B,2004,108(42):16339-16343.
    [286]Sanchez A, Abbet S, Heiz U, et al. When gold is not noble: Nanoscale gold catalysts [J]. J Phys ChemA,1999,103(48):9573-9578.
    [287]Shannon RD, Pask JA. Kinetics of the anatase‐rutile transformation [J]. J Am Ceram Soc,1965,48(8):391-398.
    [288]MacKenzie K. Calcination of titania: V, kinetics and mechanism of the anatase-rutile transformationin the presence of additives [J]. Transactions and Journal of the British Ceramic Society,1975,74(3):77-84.
    [289]Emeline AV, Kuznetsov VN, Rybchuk VK, et al. Visible-light-active titania photocatalysts: The caseof N-doped TiO2—properties and some fundamental issues [J]. International Journal of Photoenergy,2008,2008:1-19
    [290]Li Q, Xie R, Mintz EA, et al. Enhanced visible-light photocatalytic degradation of humic acid bypalladium-modified nitrogen-doped titanium oxide [J]. J Am Ceram Soc,2007,90(12):3863-3868.
    [291]Kim HY, Lee HM, Pala RGS, et al. CO oxidation by rutile TiO2(110) doped with V, W, Cr, Mo, andMn [J]. J Phys Chem C,2008,112(32):12398-12408.
    [292]Bechstein R, Kitta M, Schütte J, et al. Evidence for vacancy creation by chromium doping of rutiletitanium dioxide (110)[J]. J Phys Chem C,2009,113(8):3277-3280.
    [293]Belver C, Bellod R, Stewart SJ, et al. Nitrogen-containing TiO2photocatalysts part2. Photocatalyticbehavior under sunlight excitation [J]. Appl Catal B: Environ,2006,65(3-4):309-314.
    [294]Sreethawong T, Laehsalee S, Chavadej S. Use of Pt/N-doped mesoporous-assembled nanocrystallineTiO2for photocatalytic H2production under visible light irradiation [J]. Catal Commun,2009,10(5):538-543.
    [295]Batzill M, Morales E, Diebold U. Influence of nitrogen doping on the defect formation and surfaceproperties of TiO2rutile and anatase [J]. Phys Rev Lett,2006,96(2):026103.
    [296]Wang Y, Feng C, Zhang M, et al. Visible light active N-doped TiO2prepared from different precursors:Origin of the visible light absorption and photoactivity [J]. Appl Catal B: Environ,2011,104(3-4):268-274.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700