基于逆向工程的矿用轴流通风机弯掠组合叶片优化设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿山通风机械中,弯掠组合叶片轴流通风机以其效率高、噪声低、性能可靠的特点逐步成为矿井主要通风设备。弯掠组合叶片作为轴流通风机的核心零件,对整机性能有着决定性的影响。本文以矿用轴流通风机弯掠组合叶片为研究对象,综合运用逆向工程技术、测量技术、数据处理技术、计算流体力学(CFD)和三维流场分析等方法,研究矿用轴流通风机弯掠组合叶片优化设计方法。本文主要研究工作如下。
     (1)研究了矿用轴流通风机三维几何模型反求策略,实现了对复杂曲面高精度的反求。首先,根据通风机叶片设计特点规划测量路径,应用三坐标测量机(CMM)对矿用轴流通风机叶片表面曲面进行测量,提取通风机叶片表面曲面的三维点云数据。然后,在反求软件UG中,最小二乘拟合曲线检查法对所提取的点云数据进行异常点的剔除,弦高—夹角综合法进行点云数据的精简。最后,采用非均匀有理B样条(NURBS)对各截面数据点进行曲线拟合,并使用通过曲线组生成曲面的方法重构了矿用轴流通风机叶片的三维几何模型。
     (2)研究了应用计算流体力学软件FLUENT在不同叶片数及轴向间隙下对通风机气动性能进行三维流场模拟,分析不同叶片数及轴向间隙对通风机气动性能的影响。结果表明随着通风机前后两级叶轮叶片数的增加,通风机的全压会相应地增大,效率会先提高后降低,即存在一个前后两级叶轮叶片数的最佳组合,此时通风机的气动性能最佳。在前后两级叶轮最佳叶片数组合下,两级叶轮轴向间隙的增大会增加通风机流道内气流的摩擦损失,从而降低通风机的全压和效率;减小两级叶轮的轴向间隙可提高通风机的全压和效率,但叶片的振动和通风机的噪声会有所增大。
     (3)研究了应用响应面法(RSM)和三维流场分析对矿用对旋式轴流通风机前后两级叶片弯掠参数进行了优化设计。首先定义了矿用对旋式轴流通风机前后两级叶片弯掠参数,然后以矿用对旋式轴流通风机前后两级叶片的弯、掠角为设计变量,以通风机全压效率最大化为优化目标,建立前后两级叶片的弯、掠角与通风机全压效率的响应面模型,最后对各参数进行优化设计。
The skewed and swept blades of mine axial fan gradually become major mine ventilation equipment with the high efficiency, low noise and performance reliable characteristic in mine ventilation machinery. Therefore,in order to learn from these experiences in the optimization design. This paper uses reverse engineering technology to obtain these experience parameters. Thus, for better, faster to design a high quality fan blade to provide relevant reference. This paper utilizes reverse engineering technique, measurement technology, computational fluid dynamics (CFD), data processing technology and three-dimensional flow field analysis method to study mine axial fan optimization design method of skewed and swept blades. It is made great contribution to the proposition and development of the skewed and swept blades of mine axial fan design theory.
     (1) The blade shape of mine axial fan is the crucial influence factor on the aerodynamic performance of mine axial fan. In order to absorb and introduce the advanced design technology, reverse engineering was introduced to reconstruction the 3D geometrical model of mine axial fan blade. Firstly, according to the characteristics of the mine axial fan blade design planning measurement path and the point cloud data of 3D geometrical surfaces of mine axial fan blade were obtained through measuring with a three-coordinate measuring machine (CMM).Secondly, the point cloud data were processed by using UG a software of reverse engineering, including eliminated the abnormal points, the data smoothing and the data simplification of the point cloud. Finally, the non-uniform B-spline curve was introduced to fitting the date points of every cross section. The 3D geometrical model of mine axial fan blade was reconstructed through the method of the curve generating surface. It is of important significance to the direction the optimization design and computational fluid dynamics simulation of mine axial fan.
     (2) The computational fluid dynamics method was used to solve the three-dimensional flow. The effects of blades number and axial clearance on the aerodynamic performance of fan were studied. By increasing the two-stage blades, the total-pressure was enhanced and the efficiency of fan was increased at the beginning and decreased in the end. There was an optimal combination of two-stage blades. Under this condition the optimal aerodynamic performance of fan was obtained. In the optimal combination of two-stage blades condition, as the axial clearance increases, the friction losses of internal flow was improved, the total-pressure and efficiency were decreased. In contrast, the total-pressure and efficiency of fan, the aerodynamic noise and the blades vibration were enhanced with reduced the axial clearance.
     (3) The optimization design was studied using response surface methodology (RSM) and three-dimensional flow analysis for the mine contra-rotating axial fan two-stage blades. Firstly, the skew and sweep parameters of mine contra-rotating axial fan two-stage blades were defined. Secondly, the response surface model that between the skew, sweep of two-stage blades and total-pressure efficiency of fan was established with the skew and sweep of two-stage blades as the variables, the total-pressure efficiency of fan as the object. Finally, the skew and sweep parameters of two-stage blades were optimized.
引文
[1]商景泰.通风机实用技术手册[M].北京:机械工业出版社2005.
    [2] Filippov G A , Wang Zhongqi. The calculation of axialsymmetric flow in an turbine stage with small ratio of diameter to blade length [J ] . Journal of Moscow Power Institute , 1963 , (47) : 63-78.
    [3] Smith L.H., and Yeh H. Sweep and dihedral effect in axial flow turbomachinery[J].ASME Journal of basic engineering. Vol.85, No.2, 1963 401-416.
    [4] Smith L.H. The radial equilibrium equation of turbomachinery[J]. ASME Journal of energy for power. Vol.88, No.1, 1966 1-13.
    [5] Sasaki, T. Breugelmans, F. Comparison of sweep and dihedral effects on compressor cascade performance[J]. ASME Journal of Turbomachinery,1998,120:454-464.
    [6] Wadia, A R.Szucs, P N,Crall, D W. Inner Workings of Aerodynamic Sweep[J]. ASME Journal of turbomachinery,1998,120:671-692.
    [7] Hourmouziadis, J. Aerodynamic design of low pressure turbines. AGARD Lecture Series No.167, 1989:120-128.
    [8] J D Denton, L Xu. The Effects of Lean and Sweep on Transonic Fan Performance[J]. ASME Turbomachinery,2002,23-32.
    [9] Seoung-Jin Seo, Seung-Man Choi,Kwang-Yong Kim. Design of an Axial Flow Fan With Shape Optimization. 8th Asian International Fluid Machinery Conference,2005:50-63.
    [10] Choon-Man JANG, Ping LI, Kwang-Yong KIM . Optimization of Blade Sweep in a Transonic Axial Compressor Rotor[J]. JSME International Journal. Series B, Fluids and Thermal Engineering, 2005,48(4)793-801.
    [11] A. Samad, K. Y. Kim, T et al. Shape Optimization of Turbomachinery Blade using Multiple Surrogate Models[J]. ASME Joint-U.S.-European Fluids Engineering Summer Meeting, FL, USA. FEDSM2006.
    [12] C M Jang and K Y Kim. Optimization of a Stator Blade using Response Surface Method in a Single-Stage Transonic Axial Compressor, Proceedings of The Institution of Mechanical Engineers, Part A[J]. Journal of Power and Energy, 2007:595-603.
    [13] C. M. Jang, P. Li and K. Y. Kim, Optimization of Blade Sweep in a Transonic Axial Compressor Rotor[J]. JSME International Journal-Series B, 2005,48 (4):793-801.
    [14] Ki-Sang Lee,Kwang-Yong Kim,et al. Design Optimization of Low-speed Axial Flow Fan Blade with Dimensional RANS Analysis[J]. Journal of Mechanical Science and Technology,2008,22:1864-1969.
    [15] Temesgen Mengistu,Wahid Ghaly. Aerodynamic optimization of turbomachinery bladesusing evolutionary methods and ANN-based surrogate models[J]Optimization Engineering,2008,9:239-259.
    [16] Soo-Yong Cho,Eui-Soo Yoon,Bum-Seog Choi.A Study on an Axial-Type 2-D Turbine Blade Shape forReducing the Blade Profile Loss[J].KSME International Joural,2002,8(16):1154-1164.
    [17]陈铁,刘仪,刘斌,等.轴流式叶轮机械叶型的参数设计方法[J].西安交通大学学报,1997,31(5):52-57.
    [18]苏莫明,步天浚.子午加速轴流通风机最优化设计方法的研究[J].甘肃工业大学学报, 1990,16(1):24-35.
    [19]范波涛,李绍珍,苑国强.风机叶片的几何形状研究[J].山东工业大学学报,2001,31(1): 69-73.
    [20]贺秋冬,苏莫明.矿用弯掠组合正交叶片对旋式局部通风机的研制[J].矿山机械,2004,8:6-7.
    [21]陈海生,谭春青,梁锡智,等.可逆式轴流通风机的优化设计和实验研究[J].煤炭学报,2006,1(31):116-120.
    [22]伊卫林,黄鸿雁,韩万金.轴流压气机叶片优化设计[J].热能动力工程,2006, 21(6):140-144.
    [23]李杨,欧阳华,杜朝辉.基于叶片弯掠技术的优化设计[J].热能动力工程,2007,22(6):605-609.
    [24]金涛,童水生.逆向工程技术[M].北京:机械工业出版社,2003.
    [25] Song C K, Kim S W. Reverse engineering autonomous digitization of free-formed surfaces on a CNC coordinate measuring machine[J]. International Journal of Machine Tools Manufacture.1997, 37(7):1041-1051.
    [26] Yau H T, Menq C H. Automated CMM Path Planning for Dimensional Inspection of Dies and Molds Having Complex Surfaces [J]. International Journal of Machine Tools Manufacture,1995,35(6):861-876
    [27] I Ainsworth, M. Ristic and D. Brujic. CAD-Based Measurement Path Planning for Free-Form ShapesUsing Contact Probes[J]. The International Journal of Advanced Manufacturing Technology, 2000,16:23-31.
    [28] Lin Z C,Chow J J. Near Optimal Measuring Sequence Planning and Collision-Free Path Planning with a Dynamic Programming Method [J]. The International Journal of Advanced Manufacturing Technology, 2001,18:29-43.
    [29] Diaa F. ElKott Stephen C. Veldhuis. CAD-based sampling for CMM inspection of models with sculptured features [J]. Engineering with Computers (2007) 23:187–206.
    [30]周保珍,平雪良,等.基于CAD模型的复杂曲面三坐标自动测量[J].机床与液压,2008,36(4)1:25-127.
    [31] Fan K C, Leu M C.Inteligent planning of CAD-directed inspection for coordinate measuring machines[J]. Computer Integrated Manufacturing Systems,1998,11(1):43-51.
    [32] Qu L S, Xu G H,Wang G H. optimizating of the measuring path on a coorinate measuring machine using genetic algorithms [J] Measurement, 1998,23:159-170.
    [33] LU C G, Morton D, Wu M H, Myler P. Genetic Algorithm Modelling and Solution of Inspection Path Planning on a Coordinate Measuring Machine (CMM) [J]. The International Journal of Advanced Manufacturing Technology, 1999,15:409-416.
    [34]高延峰,王孙安.基于遗传算法的自由曲面测量路径规划[J].机床与液压,2003,(6):275-276.
    [35]纪小刚.增压器叶轮逆向工程中的关键技术研究[D].南京:南京理工大学博士学位论文,2006.
    [36]何雪明,李成刚,胡于进,曲萍,李文君.三坐标测量机测量路径的曲率连续自适应规划[J].清华大学学报,2007,47(S2):1835-1839.
    [37]刘维伟,任军学,潘天丽.叶轮类零件测量造型方法研究[J].航空计算技术, 2000, 4(30) : 52-55.
    [38]王刚,王达仁,赵万生.涡轮叶片造型方法的研究[J].电加工与模具, 2002,1:49-52.
    [39]白瑀,张定华,任军学,等.叶片高质量造型方法研究[J].机械科学与技术, 2003, 22(3): 447 -449.
    [40]单晨伟,张定华,刘维伟,等.叶片测量造型方法研究[J].机床与液压,2006,2:182-185.
    [41]张力宁,张定华,陈志强.基于等距线的叶片截面中弧线计算方法[J].机械设计,2006,23(5):39-41.
    [42]庄伟娜,周来水,安鲁陵,姬俊峰.基于U G整体叶轮实体造型研究[J].中国制造业信息化,2008,5(28):35-42.
    [43]吴秉礼.反求工程技术在HK型轴流通风机叶片上的应用[J].流体机械,1998, 2(26): 16-19.
    [44]张鄂,买买提明.现代设计理论与方法[M].北京:科学出版社,2007.
    [45]王增强,蔺小军,任军学. CMM测量曲面测头半径补偿与路径规划研究[J].机床与液压, 2006,3:75-77.
    [46] Lee K H, Woo H, Suk T. Date reduction methods for reverse engineering[J]. International Journal of Advanced Manufacturing Technology, 2002(10):735 -743.
    [47]王晓强,郭迎福,蒋庄德,等.基于线结构光扫描点云数据的数据精简及三角网格刨分[J].湖南科技大学学报(自然科学版), 2007,22(4):81-84.
    [48]张云杰,张云静. UG NX 5.0中文版曲面造型设计[M].北京:清华大学出版社,2008.
    [49]韩占忠,王敬,兰小平. FLUENT流体工程仿真计算实例与应用[M].北京:北京理工大学出版社, 2004.
    [50] Kamran M, Mohammad H S, Amir A. Reverse engineered of turbine blades based on design intent[J]. International Journal of Advanced Manufacturing Technology, 2007(32):1009-1020.
    [51] Kamran M, Mohammad H S, Amir A, et al. Improvement of reverse-engineered turbine blades using construction geometry[J]. International Journal of Advanced Manufacturing Technology, 2009(49): 675-687.
    [52]陈波,高学林,袁新.基于NURBS的叶片全三维气动优化设计[J].工程热物理学报, 2006,27(5):763-765.
    [53]吴永强.精通UG NX5+Imageware逆向工程设计[M].北京:电子工业出版社, 2008.
    [54] Duquette M, Visser K D. Numerical implications of solidity and blade number on rotor performance of horizontal-axis wind turbines[J]. Journal of Solar Energy Engineering, 2003,125(4): 425-432.
    [55]刘瑞韬,徐忠.叶片数及分流叶片位置对压气机性能的影响[J].工程热物理学报, 2004,25(2): 223-225.
    [56]陈杰,黄国平,梁德旺,等.叶片数对微型斜流叶轮性能的影响[J].航空动力学报, 2008,23(9): 1707- 1712.
    [57] Wang S H, Chen S H. Blade number effect for a ducted wind turbine[J]. Journal of Mechanical Science and Technology, 2008(22): 1984-1992.
    [58] Li C P, Hu J, Wu T Y, et al. Effect of axial spacing on compressor stability[J]. Transactions of NanjingUniversity of Aeronautics & Astronautics, 2005,22(3): 189-193.
    [59]张环,胡骏,李传鹏,等.轴向间距对压气机气动稳定性的影响[J].航空动力学报, 2005,20(1):120-124.
    [60] Lu H W, Chen F, Wan J L, et al. Flow field improvement by bowed stator stages in a compressor with different axial gaps under near stall condition[J]. Chinese Journal of Aeronautics, 2008(21):215- 222.
    [61] Mohammed, K P, Raj, D E. Investigations on Axial Flow Fan Impellers with Forward Sweept[J], ASME, 77-EF-1, 1977.
    [62] Sasaki, T. Breugelmans, F. Comparison of sweep and dihedral effects on compressor c ascade performance[J]. ASME Journal of Turbomachinery, 1998, 120: 454-464.
    [63] Na Cai, Jianzhong Xu. Aerodynamic Aeroacoustic Performance of Parametric Effects for Skewed-Swept Rotor[J]. ASME Journal of turbomachinery, 2001, 354:1-7.
    [64] Ernesto Benini. Three-Dimensional Multi-Objective Design Optimization of a Transonic Compressor Rotor[J]. Journal of Propulsion and Power, 2004, 23(2): 559-565.
    [65] Li Yang, Ouyang Hua, and Du Zhao-Hui. Optimization Design and Experimental Study of Low-Pressure Axial Fan with Forward-Skewed Blades[J]. International Journal of Rotating Machinery, 2007: 1-10.
    [66] Abdus Samad, Kwang-Yong Kim. Multi-objective optimization of an axial compressor blade[J]. Journal of Mechanical Science and Technology, 2008, 22: 999-1007.
    [67]黄磊,楚武利,邓文剑,张皓光.轴流压气机三维叶片周向积叠的多目标优化[J].机械科学与技术, 2009, 28(6): 716-720.
    [68]魏效玲,于治福,王宏伟.基于均匀试验和响应面法的矿用风动水泵稳健设计[J].煤炭学报, 2009, 34(2): 257-261.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700