磷灰石和硅质脉石浮选分离的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷灰石在浮选矿浆中的表面溶解会改变矿物的表面性质和浮选矿浆的化学环境。硅-钙质磷矿中主要含有硅质脉石(以石英为代表)和钙质脉石(以白云石为代表)两类。由于石英在碱性条件(pH大于10以后)下,极易被Ca2+活化,磷灰石溶液中溶解的Ca2+对磷灰石和石英的分离将产生不利的影响。论文研究了磷灰石和石英的基本浮选行为,以及金属Ca2+和各种抑制剂对磷灰石和石英分离的影响;系统考查了pH调整剂种类、Ca2+离子以及水玻璃对磷灰石和石英浮选行为的影响机理;并通过动电位测试、光电子能谱及浮选溶液化学,明确了磷灰石表面的活性物质及在碳酸钠体系中石英活化的作用原理。得到以下研究结果:
     1、磷灰石的可浮性优于石英。采用Na2CO3作为pH调整剂可提高磷灰石的可浮性,增大磷灰石和石英的可浮性差异。在碱性介质中,磷灰石表面活性物质是CaHPO4,当添加Na2CO3后,磷灰石饱和溶液中HPO42-组分的含量增加,即磷灰石表面活性物质增加,回收率也因此增加。
     2、浮选过程中添加金属Ca2+,在pH大于10(Na2CO3或NaOH)以后,石英回收率迅速增加,石英被活化的机理在于新生成的CaCO3沉积在表面;而在Na2CO3调浆体系中,加入金属Ca2+对磷灰石的影响较大,回收率有所下降,在NaOH调浆体系中,对磷灰石可浮性几乎无影响。
     3、在研究抑制剂种类对磷灰石和石英浮选分离影响的过程中,发现水玻璃的选择性明显要优于古尔胶、木质素磺酸钠、糊精和六偏磷酸钠。即使是被Ca2+活化过的石英,水玻璃依然对其有强烈的抑制作用,而对磷灰石几乎无影响。
     因此,在碱性条件下对磷灰石和石英进行浮选分离时,选择Na2CO3作为pH调整剂,水玻璃作为抑制剂,效果理想。
The surface dissolution of apatite in pulp will change its surface properties and the solution chemistry environment. Silicon-calcium phosphate rock contains mainly siliceous gangue (quartz as the representative) and calcareous gangue (represented by dolomite). Since in alkaline conditions (pH> 10), quartz is easy to be activated by Ca2+, and Ca2+ dissolved in apatite solution has a negative impact on the separation of apatite and quartz. The thesis studied the basic flotation behavior of apatite and quartz, and the influence by Ca2+ and various inhibitors on the separation of apatite and quartz. And investigate the types of pH regulator, and the mechanism of the impact on the flotation behavior by Ca2+ and the water glass. And by potentiodynamic tests, X-ray photoelectron spectrometric and flotation solution chemistry, reveals the substances on apatite surface and the principle of the activation of quartz in the sodium carbonate system. Get the following results:
     1. The floatability of apatite is superior to quartz. Using Na2CO3 as the pH regulator can improve the floatability of apatite, and increase the floatability difference between apatite and quartz. In alkaline medium, the active substance on apatite surface is CaHPO4. When adding Na2CO3 solution, the content of HPO42-component increases in the apatite saturated solution, in other words, the active substance increased on surface, therefore the recovery increased.
     2. Adding Ca2+ in flotation process at pH>10 (Na2CO3 or NaOH), the recovery of quartz increases rapidly. The mechanism of activation is that the new generation of CaCO3 deposites on the quartz surface. In the system of Na2CO3 as pH regulator, the recovery of apatite has dropped after adding Ca2+, while in the system of NaOH as pH regulator system, the floatability of apatite almost have not been affected.
     3. In the study of the impact of inhibitor species on flotation separation of apatite and quartz, water glass was found to be superior to guar gum, lignin sulfonate, dextrin, and sodium hexametaphosphate. Even as to quartz activated by Ca2+, water glass still has a strong inhibitory effect on its, but almost no effect on the apatite.
     Thus, under alkaline conditions, we can select Na2CO3 as the pH regulator, water glass as inhibitor in the flotation separation of apatite and quartz, and the results are satisfactory.
引文
[1]毕明德,李润等.浏阳胶磷矿贫矿浮选研究[J]. IM&P化工矿物与加工,1999(1):25-29.
    [2]R.M.awadallah, A.E.mohamed, N.T. elhazek. Beneficiation of West Sibaiya Phosphate Ores by Flotation in Alkaline Media[J]. Metallurgical and Materials Transactions, Volume 29B, December 1998,1149-1157.
    [3]T.F.AI.Fariss, H.O.Ozbelge, A.M.Abdulrazik. Flotation of a carbonate rich sedimentary phosphate rock[J]. Fertilizer Research 29,1991:203-208.
    [4]郑其.胶磷矿的反浮选[J].中国矿业,1998(2):46-53.
    [5]吴良国,朱维成.反浮选脱除氧化镁的研究[J].化工矿山技术,1986(3):33-34.
    [6]杨帆,吴越清.浏阳磷矿西井田深部磷块岩正-反浮选试验[J].化工矿山技术,1995(2):56-63.
    [7]钱押林.胶磷矿常温无碱正反浮选新工艺研究[J].中国矿业,2006(11):65-68.
    [8]Shuang-shii Hsieh. Beneficiation of a Dolomitic Phosphate Pebble from Florida[J]. Ind. Eng.Chem. Res, Vol.27, No.4,1988:594-596.
    [9]骆兆军,钱鑫,王文潜.国内外磷矿选矿的新进展[J].中国矿业,1999(4):24-36.
    [11]葛英勇,甘顺鹏,曾小波.胶磷矿双反浮选工艺研究[J].化工矿物与加工,2006(8):8-10.
    [12]苏迪,解田等.某硅钙质胶磷矿双反浮选工艺的研究[J].化工矿物与加工2010(1):7-9.
    [10]E.E.Peng, Z.Gu. Processing Florida dolomitic phosphate pebble in a double reverse fine flotation process [J]. Minerals&Mettallurgical processing, Vol.22, No.1, Feb,2005:23-30.
    [13]邓丽君,李国胜.西南某磷矿柱式正反浮选工艺研究[J].IM&P化工矿物与加工,2009(9).
    [14]卿黎,梅毅.FCSMC浮选柱对中的品位胶磷矿的半工业试验研究[J].金属矿山,2009(1).
    [15]王金生.胶磷矿重介质分选工艺的研究与实践[J]. IM&P化工矿物与加工,2009(8):4-6.
    [16]杨敖,杨利萍.磷矿的选矿[J].矿产综合利用,1997(12):13-17.
    [17]刘代俊,江发成等.磷资源加工研究进展:高硅低品位磷矿的湿法浸取流 [J].磷肥与复肥,2008(9):11-13.
    [18]金央,李军等.盐酸浸取磷矿石的研究[J].无机盐工业,2008(10):28-30.
    [19]刘明理.立窑法利用中低品位磷矿石生产工业磷酸的研究[J].化学研究与应用,2009(1):131-134.
    [20]刘俊,龚文琪等.低品位磷矿的生物浸出研究[J].金属矿山,2008(7):385.
    [21]Young.C.A, Miller.J.D. Effect of temperature on oleate adsorption at a calcite surface:an FT-NIR/IRS study and review[J]. International Journal of Mineral Processing,2000,58(2):331-350.
    [22]张国范,陈启元,冯其明等.温度对油酸钠在一水硬铝石矿物表面吸附的影响[J].中国有色金属学报,2004,14(6):1042-1046.
    [23]Fuerstenau.D.W, Pradip. Zeta potentials in the flotation of oxide and silicate minerals[J]. Advances in Colloid and Interface Science,2005,114-115:9-26.
    [24]萨马桑德兰.以离子分子络合物为基础的浮选机理[J].中南矿冶学院学报,1983,8(增刊2):59-68.
    [25]骆兆军,王文潜,钱鑫.磷矿浮选进展[J].化工矿物与加工,1999(7).
    [26]唐云,张覃.TS药剂在磷矿浮选中的作用研究[J].矿业研究与开发,2003(3):23-26.
    [27]罗廉明,乐华斌,刘鑫.一种新型磷矿低温浮选捕收剂[J].化工矿物与加工,2005(12):3-5.
    [28]王竹生等.新型捕收剂H917的工业试验[J].化工矿山技术,1992,21(6):22-23.
    [29]朱建光等.利用协同效应最佳点配制新捕收剂[J].化工矿山技术,1997,26(2):27-30.
    [30]辜国杰等.王集磷矿石不加温浮选试验[J].化工矿山技术,1997,26(3):19-20.
    [31]魏春城等.常温捕收剂N-1的工业性选矿试验[J].化工矿山技术,1994,23(4):31-33.
    [32]钟康年等.捕收剂的亚油酸/油酸比值对磷矿浮选的影响[J].化工矿物与加工,2003,(11):1-3.
    [33]周叔良译.美国西部磷矿应用碳酸盐-二氧化硅浮选技术[J].化工矿山译丛,1985,(1):29-34.
    [34]Houot.R et al. Inversflotation Beneficiation of Phosphate Ores[J]. Proceeding Compounds,1980,4(21-25):231-246.
    [35]丁浩等.C112作捕收剂浮选磷灰石和方解石及其作用机理的研究[J].化工 矿山技术,1991,20(4):20-23,25.
    [36]H.西斯等.磷酸矿石浮选药剂评述[J].国外金属选矿,2003(10):8-13.
    [37]骆兆军,钱鑫,王文潜.磷矿捕收剂的发展动向[J].云南冶金,1999,28(2):17-20.
    [38]罗廉明,华萍.抗硬水性捕收剂的合成及浮选性能研究[J].湖北化工1999(4):9-11.
    [39]Rhodes.M.K. The effects of the physical variables of carboxymethyl cellulose reagents on the depression of magnesia bearing minerals in Western Australian nickel sulphide ores[J].13th International Mineral Processing Congress,1981: 346-349.
    [40]Pugh.RJ. Macromolecular organic depressants in sulphide flotation—a review. Int. J. Miner. Process,1989(25):101-130.
    [41]Bakinov.K.G, Vaneev.I.J, Gorlovsky.S.I, Eropkin.U.I, Zashikhin.N.V, Konev.A.S. New methods of sulphide concentrate upgrading[J].7th International Mineral Processing Congress,1964:227-238.
    [42]Rath.R.K, Subramanian.S, Laskowski.J.S. Adsorption of dextrin and guar gum onto talc[J]. A comparative study,1997:6260-6266.
    [43]曹建,姬俊梅.羧甲基纤维素在铌矿物选别中抑制行为的研究.矿业快报,2006,11(451):24-26.
    [44]Rath.R.K, Subramanian.S. Studies on adsorption of guar gum onto biotite mica[J]. Minerals engineering,1997,10(12):1405-1420.
    [45]巴洪春等.硅钙质胶磷矿浮选抑制剂SM101[J].化工矿山技术,1985(6).
    [46]李雪坤.选磷抑制剂S-711与棉浆造纸黑液的研究[J].化工矿山技术1987(3):15-17.
    [47]罗廉明,华萍.新型碳酸盐矿物抑制剂的制备及应用研究[J].化工矿物与加工,1999(9):11-12.
    [48]孙传尧,印万忠.硅酸盐矿物浮选原理[M].北京:科学出版社,2001:93-104,287-292.
    [49]姜有才等.红柱石矿可浮性的研究[J].国外金属矿选矿,1983,(3):21.
    [50]毛钜凡,刁艳艳,孙宝岐.联合调整剂在蓝晶石与石英浮选分离中的作用[J].金属矿山,1995,(8):30-33.
    [51]毛钜凡,张志京.蓝晶石类矿物浮选的表面化学研究[J].国外金属矿选矿,1993,(6):28-33.
    [52]张泽强.酸性水玻璃在磷矿浮选中的作用[J].中国非金属矿工业导刊, 2003(2):39-41.
    [53]刘亚川.长石石英浮选分离新技术及其机理研究[M].沈阳:东北大学,1993.
    [54]孙传尧,印万忠.硅酸盐矿物浮选原理[M].北京:科学出版社,2001:93-104,287-292.
    [55]罗惠华,张洪文.云南海口磷矿擦洗尾矿合理浮选工艺研究[J].矿产保护与利用,2005(5):25-27.
    [56]Vaman.R.P. Process Flotation of Cacareons Muddorie Phosphate Ores [J]. Int. T. Miner. Proe.,1985, (14):57-66.
    [57]Houot.R. Beneficiation of Phosphate Ores through Floration Reciew of Industrical Application and Potential Development[J]. Int. J. Miner. Proc. 1982, (9):353-384.
    [58]朱建光.2000年浮选药剂的进展[J].国外金属矿选矿,2001,(3):15-16.
    [59]Prasad.M et al. Reverse Flotation of Sedimentary Caleareous/Dolomitic Rock Phosphate Ore-an Overview[J]. Miner. Metall. Process.,2000,17(1)49-55.
    [60]B.N.里亚波伊等.带有弱捕收性能的起泡剂的应用[J].国外金属矿选矿2005,(1):19-20.
    [61]钟康年等.胶磷矿的新型抑制剂w-10[J].化工矿山技术,1991,20(4):24-26.
    [62]孙克已等.含磷化合物在磷矿选矿中的应用[J].化工矿山技术,1992,21(4):50-53.
    [63]Hsieh, Shuang shii. Beneficiation of a Dolomitic Phosphate Pebble from Florida[J]. Ind. Eng. Chem. Res.,1988,27(4):594.
    [64]D.R.纳加雷.浮选硫化矿物和非硫化矿物的新型聚合物抑制剂[J].国外金属矿选矿,2001,(9):30-33.
    [65]朱建光.2001年浮选药剂的进展[J].国外金属矿选矿,2002,(2):9.
    [66]James.R.O, Healy.T.W, J.Coll[J]. Int.Sci.40,1972(1):42-52.
    [67]崔宪,松全元,朱秦生.磷灰石可浮性规律的研究[J].金属矿山,1992(11):43-51.
    [68]杨稳权,罗廉明,张路莉等.碳酸钠在云南胶磷矿正浮选中的作用效果探索[J].IM&P化工矿物与加工,2008(8):1-3.
    [69]Sania Margerida de Assis.工艺矿物学和溶解行为对碳酸盐型磷灰石浮选的影响[J].国外金属矿选矿,1992(6):26-31.
    [70]谢恒星.无机调整剂碳酸钠和水玻璃对磷灰石分选特性的影响研究[J].中国矿业,1998,7(2):56-58.
    [71]邵绪新,郭梦熊.胶磷矿和白云石的Zeta-电位研究[J].云南冶金,1992(1): 54-56.
    [72]王淀佐,胡岳华.浮选溶液化学[M].长沙:湖南科学技术出版社,1989:196-198.
    [73]D.Briggs, M.P.Seah. Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy[M]. John Willey & Sons, Vol.1, Second Edition, 1983:553.
    [74]印万忠,孙传尧.硅酸盐矿物表面特性的X射线光电子能谱分析[J].东北大学学报,2002,23(2):156-159.
    [75]孙传尧,印万忠.硅酸盐矿物浮选原理[M].北京:科学出版社,2001:93-104,366-392.
    [76]杨少燕.菱锌矿浮选的理论与工艺研究[M].硕士学位论文,中南大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700