几种阳离子捕收剂对氧化铁矿的反浮选性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文选题来源于973项目子课题“难处理金属矿高效浮选捕收剂的分子组装与合成”,针对我国铁矿石选别难度大以及矿石开采后利用率偏低等实际问题,研究了几种阳离子反浮选捕收剂对氧化铁矿的浮选性能,并探讨了浮选机理。
     采用十二胺、十四胺、十八胺、Gemini型阳离子表面活性剂及有机硅阳离子表面活性剂为捕收剂开展了单矿物可浮性实验,研究了磁铁矿、赤铁矿和石英三种矿物的浮选行为。结果表明,对于分离石英和赤铁矿,采用Gemini阳离子捕收剂31527浮选分离的效果较好,当药剂浓度为0.5×10-4mol/L、pH约为7时,槽内产品赤铁矿回收率高达99.0%,而石英的回收率仅有0.3%;对于石英和磁铁矿体系,采用Gemini阳离子捕收剂31503的浮选效果较好,当药剂浓度为0.25×10-4mol/L、pH约为7时,槽内产品磁铁矿回收率高达93.4%,而石英回收率仅为8.3%;以三种脂肪胺为捕收剂,当矿浆中捕收剂浓度低于0.5×10-4mol/L时,随着脂肪胺烃链的增长,其对三种矿物的捕收能力有减弱的趋势;当在石英赤铁矿、石英磁铁矿两个浮选体系内添加淀粉作为抑制剂时,在两种Gemini阳离子捕收剂本身已经取得良好的选择性的前提下,淀粉的抑制作用不明显。
     人工混合矿实验结果表明,对于石英赤铁矿人工混合矿和石英磁铁矿人工混合矿,仅采用阳离子捕收剂浮选分离效果不佳。以淀粉为抑制剂、Gemini 31503为捕收剂浮选得到了磁铁精矿品位70.92%、回收率98.14%的产品;以淀粉为抑制剂、Gemini 31527为捕收剂浮选得到了赤铁精矿品位67.78%、铁回收率77.21%的产品。与未添加淀粉作为抑制剂的实验相比,铁回收率明显提高,铁精矿的品位也得到一定提高。
     捕收剂与抑制剂对矿物的机理分析表明,Gemini阳离子表面活性剂对赤铁矿、磁铁矿以及石英的作用主要是物理吸附,且Gemini捕收剂具有二聚的结构,使其具有更小的临界胶束浓度,更强的表面活性,更容易吸附在矿粒周围,能有效地增加矿粒的疏水性能;Gemini阳离子表面活性剂能优先吸附于石英表面,显著地改变石英动电位,而在磁铁矿和赤铁矿表面上的吸附,对二者表面动电位的改变相应较小,从而扩大了矿物表面疏水性的差异。
This dissertation was supported by the National Basic Research Program of China "Molecular Assembly and Synthesis of Efficient Flotation Collector for Refractory Ore". Due to the character in most of the iron oxide in China, some types of surfactants were used as collectors for hematite and magnetite reverse flotation in order to search an efficient collector, and the related mechanisms were investigated at the end of article.
     The flotation behavior of magnetite, hematite and quart was investigated through the pure mineral flotation experiments by using dodecylamine, tetradecylamine, octadecylamine, Gemini cationic surfactant and silicone cationic surfactant as collector. For the separation of quartz and hematite, Gemini cationic collector 31527 have a got better effect, when the collector concentration is 0.5×10-4mol/L and pH is about 7, the recovery rate hematite is as high as 99.0% while quartz is 0.3% in the flotation tank. For the separation of quartz and hematite, Gemini cationic collector 31503 have a got better effect, when the collector concentration is 0.25×10-4mol/L and pH is about 7, the recovery rate magnetite is as high as 93.4% while quartz is 0.3% in the flotation tank. For the three aliphatic amines, in the low-concentration cases, the length of hydrocarbon chain is longer the collector capacity is weaker. When putting the starch into the two systems of quartz-hematite and quartz-magnetite, the inhibition of starch for the iron ore was not obvious as the two Gemini collectors had shown enough selectivity.
     Artificial mixed mineral test results show that, the separation effects of the two mineral systems were not satisfactory for the independent use of Gemini collector. When adding starch as inhibitors and Gemini 31503 as collector, the magnetite concentrate grade came to 70.92% with recovery 98.14%. Similarly, when adding starch as inhibitors and Gemini 31527 as collector, the hematite concentrate grade came to 67.78% with recovery 77.21%.
     Mechanism analysis shows that, the adsorption of Gemini cationic surfactant on the surface of hematite, magnetite and quartz is mainly physical adsorption. And Gemini cationic surfactants preferential adsorption on the quartz surface can significantly change its zeta potential. The adsorption of Gemini cationic surfactants on the surface of magnetite and hematite changes the surface zeta potential correspondingly less, thus widening the difference of the hydrophobic between the mineral surfaces.
引文
[1]贾群子.从磁铁矿的标型特征论天湖铁矿的成因.西北地质,1991,12(1):19~25
    [2]焦延进.开源节流铁矿资源势在必行.冶金矿山与冶金设备,1995(5):11~12
    [3]任建伟.铁矿石高效反复选药剂理论和应用研究:[硕士学位论文].长沙:中南大学,2004
    [4]方启学,卢寿慈.弱磁性铁矿石分选工艺现状与进展.国外金属矿选矿,1999,(4):23~28
    [5]徐晓萍.云浮低品位硫铁矿矿石的重选试验研究.材料研究与应用,2008(1):59~62
    [6]吴芬明.我国磁选设备及铁矿石预选技术.冶金矿山设计与建设,1996(6):44~49
    [7]刘秉裕,赵通林.磁选柱的研制和应用.金属矿山,1995(7):33~37
    [8]周凌嘉,赵通林,陈中航,等.磁选柱在本溪钢铁集团选矿厂的应用.金属矿山,2008(7):100~102
    [9]王春梅,葛英勇,王凯金.GE-609捕收剂对齐大山赤铁矿反浮选的初探.有色金属(选矿部分),2006(4):41~43
    [10]葛英勇,袁武谱,董世祥.阴离子捕收剂MG常温反浮选铁矿的应用研究.有色金属:选矿部分,2008(5):41~43
    [11]樊绍良,段其富.铁精矿提质降杂技术研究.金属矿山,2002(4):38~41
    [12]余新阳,钟宏,刘广义.阳离子反浮选脱硅捕收剂研究状.轻金属,2008(6):6-10
    [13]Manser R M,李长根.硅酸盐矿物的浮选.国外金属矿选矿,1979(8):20~37
    [14]孙传尧,印万忠.硅酸盐矿物浮选原理.北京科学出版社,2001:127~129
    [15]Somasundaran P, Healy T W, Fuerstenau D W. Surfactant adsorption at the solid-liquid interface-dependence of mechanism on chain length. J. Phys. Chem.,1964,68(12):3562~3566
    [16]葛英勇,陈达,余永富.耐低温阳离子捕收剂GE-601反浮选磁铁矿的研究.金属矿山,2004(4):32~34
    [17]刘阅兵.赤铁矿选矿新工艺实验研究:[硕士学位论文].昆明:昆明理工大学,2007
    [18]孙平.鞍钢弓长岭选矿厂“提铁降硅”改造的实践.金属矿山,2002(12): 41~43
    [19]余永富,段其福.降硅提铁对我国钢铁工业发展的重要意义.矿冶工程,2002(3):1-6
    [20]Bunton C A, Robinson L B, Schaak J, et al. Catalysis of nucleophilic substitutions by micelles of dicationic detergents. J. Org. Chem.,1971,36(16):2346~2350
    [21]Devinsky F, Masarova L, Lacko I. Surface activity and micelle formation of some new bisquaternary ammonium salts. Journal of Colloid and Interface Science, 1985,105(1):235~239
    [22]Zhu Y P, Masuyama A, Okahara M. Preparation and surface active properties of amphipathic compounds with two sulfate groups and two lipophilic alkyl chains. Journal of American Oil Chemistry Society,1990,67(7):459
    [23]Menger F M, Littau C A. Gemini surfactants:systhesis and properties. Journal of American Chemistry Society,1991,113(4):1451~1452
    [24]Zana R, Talmon Y. Dependence of aggregate morphology on structure of dimeric surfactants. Nature,1993 (18):228~230
    [25]Rosen M J, Zhu Z H, Hua X Y. Relationship of structure to properties of surfactants 1,6-liner decyldiphenylenylether sulfonates. Journal of American Oil Chemical Society,1992,69(1):30~33
    [26]Zhu Y P, Masuyama A, Kirito Y I, et al. Preparation and properties of glycerol-based double-or triple-chain surfactants with two hydrophilic ionic groups. Journal of American Oil Chemical Society,1992,69(7):626~632
    [27]Rosen M J. Gemini:A new Generation of Surfactants. Chemtech,1993 (3): 30~33
    [28]Zana R, Xia J. Gemini Surfactants-synthesis, interfacial and solution-phase behavior, and application. Surfactant Science,2004,117(4)
    [29]赵剑曦.新一代表面活性剂Gemini化学进展,1999,11(4):348~357
    [30]高红云,张招贵.硅烷偶联剂的偶联机理及研究现状.江西化工,2003,2:30~34
    [31]Ponghdom S, Uthai T, Kannika H. Effeet of curing system on reinforcing efficieney of silane coupling agent. Polymer Testing,2004,23(4):397~403
    [32]关风.有机硅阳离子捕收剂的合成及其对硅铝酸盐矿物的浮选性能研究:[硕士学位论文].长沙:中南大学,2008
    [33]王洪岭.氧化锌浮选的新型捕收剂研究:[硕士学位论文].长沙:中南大学,2010
    [34]王淀佐.选矿与冶金药剂分子设计.长沙:中南工业大学出社,1996:88~90
    [35]孟今科.浮选法超纯铁精矿研究及其开发与利用.本钢技术,2000(4):22~23
    [36]张美鸽,王金玮.超纯铁精矿的工艺实验研究.中国铝业,2002(6):15~18
    [37]王淀佐.浮选剂作用原理及应用.北京:冶金工业出版社,1994:12~14
    [38]于世林.光谱分析法.重庆:重庆大学出版社,1991:73~77
    [39]陈允魁.红外吸收光谱及其应用.上海:上海交通大学出版社,1993:80~90
    [40]吴瑾光.近代傅立叶变换红外光谱技术及其应用.北京:科学技术文献出版社,1994:453,560~561
    [41]朱玉霜,朱建光.浮选药剂的化学原理.长沙:中南工业大学,1987:46~47
    [42]S·帕夫洛维奇,张兴仁,肖力子.淀粉、直链淀粉、支链淀粉和葡萄糖单体的吸附作用及其对赤铁矿和石英浮选的影响.国外金属矿选矿,2004(6):27~29
    [43]陈达,葛英勇.改性淀粉对石英-磁铁矿浮选体系的影响.矿产综合利用,2006(6):12~15
    [44]潘道皑编.物质结构.北京:高等教育出版社,1982:62~64
    [45]高洪山.制备高纯铁精矿的工艺.矿产综合利用,2000,12(6):14~16
    [46]Hoffinan K A. Self-Reversal of thermoremanet magnetization in the ilmenite-hematite system:order-disorder, symmetry, and spin alignment, J. Ceophys. Res.,1992 (10):10883~10895
    [47]邵美成.鲍林规则与键价理论.北京:高等教育出版社,1993:66-68
    [48]Santan A N, Peres A E C. Reverse magnesite flotation. Minerals Engineering, 2001,14(1):107~111
    [49]蒋昊,胡岳华,覃文庆,等.直链烷基胺浮选铝硅矿物机理.中国有色金属学报,2001,11(4):688~692
    [50]彭兰,曹学峰,杜平.胺类捕收剂对铝硅矿物的浮选性能研究.广西民族学院学报(自然科学版),2006,12(1):68~74
    [51]赵声贵,钟宏,刘广义.季铵盐捕收剂对铝硅矿物浮选行为的研究.金属矿山,2007(2):45~47
    [52]夏柳荫.双季铵盐Gemini捕收剂对铝硅酸盐矿物的浮选特性与机理研究:[博士学位论文],天津:天津大学,2009
    [53]Alami E, Beinert G, Marie P. Alkanediyl-α,co-bis(dimethylalkylammonium bromide)surfactants:3. behavior at the air-water interface. Langmuir,1993,9(6): 1465~1467
    [54]王淀佐,胡岳华.浮选溶液化学.长沙:湖南科学技术出版社,1998:35~38
    [55]胡熙庚,黄和慰.浮选理论与工艺.长沙:中南工业大学出版社,1994:39~42

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700