基于电磁时间反演的高分辨率成像与自适应无线传输研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了基于电磁时间反演技术的高分辨率雷达成像方法和自适应超宽带无线传输方案。一方面,针对复杂环境下雷达成像系统所要求的远作用距离、高灵敏度、高分辨率和高稳定性等重要性能指标,深入研究了电磁时间反演算子分解(DORT,法语缩写)成像方法和传输模式的时间反演多信号分类(TR-MUSIC)成像方法。另一方面,考虑到大容量、高数据率、强自适应能力的无线通信系统的发展需求,本文提出了两种基于电磁时间反演技术的自适应超宽带无线传输方案,分别是时间反演SISO/MISO脉冲超宽带传输方案和后置时间反演MIMO超宽带传输方案。
     首先,论文对电磁DORT算法进行了进一步深入研究,对其在电磁探测和成像问题中的全波矢量理论和应用模型进行了研究和讨论。论证了DORT在实现高效选择性目标定位和高分辨率成像方面的优势。显示其在地下目标探测、穿墙雷达成像、医疗检测等领域的应用潜力。随后,论文将该算法扩展到多频点和宽带情形,提出宽带电磁DORT成像技术。由于宽带系统能捕捉到目标对不同频率的不同响应,因此可以更精确、更全面地探测、定位和成像目标。
     进一步,本文提出了传输模式的电磁TR-MUSIC成像方法。对存在多散射的模型进行了全波分析,并详细讨论了其特征值系统和伪谱定义。该算法相对于DORT的优势在于其成像分辨率显著提高,可以探测间距小于一个波长的多目标。与回波模式的TR-MUSIC算法相比,该传输模式方法由于等效阵列孔径的增大进一步提高了成像分辨率,扩大了成像区域有效范围,解决了回波模式下阵列平面法线方向上重叠的多目标分辨困难的问题。
     随后,一种基于时间反演技术的超宽带脉冲SISO/MISO通信方案在本文提出并用于提高接收端信噪比。由于基于时间反演的传输方案的接收端不需要采用Rake接收机,明显简化了接收机结构。在该方案的基础上,本文分析了时间反演脉冲信号的功率优化问题,提出了补偿系数提取的一种有效方法。然后,进一步验证了功率补偿后的时间反演通信系统在满足美国联邦通信委员会(FCC)规定的辐射要求的同时,仍能保证其相对于传统超宽带脉冲通信的性能优势。这对实际工程中的电磁兼容设计具有重要意义。
     最后,本文提出一种后置时间反演MIMO超宽带无线传输方案。得益于时间反演技术的空时聚焦特性,该方案的理论分析和数值实验都显示了它在有效利用复杂环境下的多径效应、获取高信噪比方面的显著优势。同时,基于确定信道模型的通信系统分析显示,该方案的抗信道估计误差的鲁棒性明显提高。这证实了时间反演技术的引入有利于低误码率、高传输速率、高抗信道估计误差和抗多径效应的无线传输系统的实现。
This dissertation investigates high-resolution radar imaging methods and self-adaptive ultra-wideband wireless transmission schemes based on the electromagnetic time reversal technique. On one hand, aiming at the important performance targets, such as the distant detection range, high sensitivity, high resolution and high stability, which are demanded for radar imaging system in complex environment, the imaging methods with decomposition of the time reversal operator (DORT , Abbreviation in French) and with the time reversal multiple signals classification (TR-MUSIC) are investigated in great depth. On the other hand, considering the developmental requirements of the large capability, high data rate, and robust self-adaptability of wireless communication systems, the dissertation proposes two self-adaptive ultra-wideband wireless transmission schemes based on the electromagnetic time reversal technique. They are time-reversed SISO/MISO impulse ultra-wideband transmission scheme and post- time-reversed MIMO ultra-wideband transmission shceme.
     Firstly, the dissertation further investigates the electromagnetic DORT algorithm, the full-wave vector theory and its application model of electromagnetic DORT in electromagnetic detection and imaging problems are investigated and discussed. It verifies the advantages of DORT in terms of realizing the efficient selective-localization and high resolution imaging. It demonstrates the potential in its applications on the areas of subsurface targets detection, through-wall radar imaging and medical examinations. Then, the algorithm is extended to multiple frequencies and wideband cases. The wideband electromagnetic DORT imaging technique is proposed. Since the wideband system can capture different responses from the targets in different frequency points, it can perform the detection, localization and imaging for the targets more accurately and completely.
     Furthermore, the imaging method with transmit-mode electromagnetic TR-MUSIC is proposed. The full-wave analysis of the multiple scattering models is carried out, and its egienvalue system and pesudospectrum definition are discussed in detail. Compared with the DORT method, the superiority is the great improvement on imaging resolution. It can distinguish the targets with distance smaller than one wavelength. Compared with the echo-mode TR-MUSIC, the transmit-mode method futher improves the resolution due to the improved effective array aperture, and the coverage of imaging domain is enlarged. It overcomes the problem with echo-mode scenario, which is an obstacle occurred in the detection of multiple targets overlapping in the direction of normal line of the array plane.
     Subsequently, a time reversal technique based ultra-wideband impulse SISO/MISO communication scheme is proposed in this dissertation and employed to improve the signal-noise-ratio of the receiver. Since the reveiver of the time reversal based transmission scheme needs no Rake receiver any more, the structure is obviously simplified. Based on this shceme, the dissertation analyzes the power optimization of the time reversal impulse signals and proposes an effective method of extracting the compensated coefficient. And then it is futher proved that the time reversed communication system can meet Federal Communication Commission (FCC)’s regulation of radiation requirement and at the same time keep the performance superiority over the classical ultra-wideband impulse communication, when the power is compensated. This is significant for the electromagnetic compatibility design in practical engineering.
     The last part of the dissertation proposes a post- time-reversed MIMO ultra-wideband wireless transmission shceme. Taking advantages of the spatial-temporal focusing characteristics of the time reversal technique, both the theoretical analysis and numerical experiments of this scheme show the great superiority on effectively utilizing the mluti-path effect under complex environment and achieving higher signal-noise-ratio. Meanwhile, the communication system analysis based on determinate channel model demonstrates that the robustness against the channel estimate error is evidently enhanced. It is verified that the introduction of time reversal technique is helpful for realization of the low bit-error-rate, high data rate, and high robustness against the channel estimate error and malti-path effect in wireless transmission systems.
引文
[1] R. A. Fisher. Optical Phase Conjugation. Academic Press, 1983.
    [2] A. Parvulescu and C. S. Clay. Reproducibility of signal reasmissions in the ocean. Radio Elec. Eng., 1965, 29: 223-228.
    [3] A. Parvulescu. Matched signal processing by ocean. J. Acoust. Soc. Am., 1995, 98: 943.
    [4] M. Fink. Time-reversal of ultrasonic fields I: basic principles. IEEE Trans. Ultrason. Ferroelect. Freq. Contr., 1992, 39(5): 555–566.
    [5] P. Glotov. Time Reversal of Electromagnetic Waves in Randomly Layered Media. PhD Dissertation, North Carolina State University, 2006.
    [6] M. Fink and C. Prada. Acoustics time-reversal mirrors. Inverse Prob., 2001, 17(1): R1–R38.
    [7] G. Lerosey, J. de Rosny, A. Tourin, et al. Time reversal of electromagnetic waves. Physical Review Letter, 2004, 92(19) : 193904-1-193904-4.
    [8] Y. Chang, H. R. Fetterman, I. L. Newberg, et al. Microwave phase conjugation using antenna arrays. IEEE Trans. Microwave Theory Tech., 1998, 46(11) : 1910–1919.
    [9] T. Leutenegger and J. Dual. Non-destructive testing of tubes using a time reverse numerical simulation (TRNS) method. Ultrasonics, 2004, 41(10):811–822.
    [10] J. B. Pendry. Time reversal and negative refraction. Science, 2008, 322:71-73.
    [11] D. M. Pepper. Nonlinear optical phase conjugation. Optical Engineering, 1982, 21(2): 156.
    [12] P. Kosmas and C. M. Rappaport. Time reversal with the FDTD method for microwave breast cancer detection. IEEE Trans. Microwave Theory Tech., 2005, 53: 2317–2323.
    [13] M. Saillard, P. Vincent, and G. Micolau. Reconstruction of buried objects surrounded by small inhomogeneities. Inverse Prob., 2000, 16(5): 1195–1208.
    [14] G. Micolau, M. Saillard, and P. Borderies. DORT method as applied to ultrawideband signals for detection of buried objects. IEEE Trans. Geosci. Remote Sensing, 2003, 41(8):1813–1820.
    [15] T. Leutenegger and J. Dual. Non-destructive testing of tubes using a time reversed numerical simulation (TRNS) method. Ultrasonics, 2004, 41(10):811–822.
    [16] G. F. Edelmann, H. C. Song, S. Kim, et al. Underwater acoustic communications using time reversal. IEEE J. Ocean. Eng., 2005, 30(4):852–864.
    [17] W. J. Higley, P. Roux, W. A. Kuperman, et al. Synthetic aperture time-reversal communicationsin shallow water: experimental demonstration at sea. J. Acoust. Soc. Am., 2005, 118(4):2365–2372.
    [18] R. C. Qiu, C. Zhou, N. Guo, and J. Q. Zhang. Time reversal with MISO for ultra-wideband communications: experimental results. IEEE Antennas and Wireless Propagation Letters, 2006, 5:269-273.
    [19] A. J. Devaney, E. A. Marengo, and F. K. Gruber. Time-reversal-based imaging and inverse scattering of multiply scattering point targets. J. Acoust. Soc. Am., 2005, 118:3129–3138.
    [20] D. H. Liu, G. Kang, L. Li, et al. Electromagnetic time-reversal imaging of a target in a cluttered environment. IEEE Trans. Antennas Propagat., 2005, 53:3058–3066.
    [21] S. K. Lehman and A. J. Devaney. Transmission mode time-reversal superresolution imaging. J. Acoust. Soc. Am., 2003, 113:2742–2753.
    [22] A. G. Cepni, D. D. Stancil, J. Zhu, et al. Microwave signal nulling using mutilple antennas and time reversal method. The Proceedings of Vehicular Technology Conference (VTC Fall05), Dallas, TX. 2005, 2:1274-1278.
    [23] Fink. M. Time reversal mirrors. J. Phys. D.: Appl. Phys., 1993, 26(9) :1333–1350.
    [24] C. Prada, J. L. Thomas, and M. Fink. The iterative time reversal process: analysis of the convergence. J. Acoust. Soc. Am., 1995, 97:62–71.
    [25] C. Prada, F. Wu, and M. Fink. The iterative time reversal mirror: A solution to self-focusing the pulse echo mode. J. Acoust. Soc. Am., 1991, 90:1119-1129.
    [26] C. Prada, J. L. Thomas, and M. Fink. Theory of iterative time reversal acoustic mirrors. J. Acoust. Soc. Am., 1992, 91:2326(A).
    [27] G. Montaldo, M. Tanter, and M. Fink. Real time inverse filter focusing through iterative time reversal. J. Acoust. Soc. Am., 2004, 115(2): 768–775.
    [28] H. C. Song, W. A. Kuperman, and W. S. Hodgkiss. Iterative time reversal in the ocean. J. Acoust. Soc. Am., 1999, 105:3176–3184.
    [29] N. Chakroun, M. Fink, and F. Wu. Time reversal processing in ultrasonic nondestructive testing. IEEE Trans. Ultrason. Ferroelect. Freq. Contr., 1995, 42(6):1087–1098.
    [30] E. Kerbrat, C. Prada, and D. Cassereau. Ultrasonic nondestructive testing of scattering media using the decomposition of the time-reversal operator. IEEE Trans. Ultrason. Ferroelect. Freq. Contr., 2002, 49(8):1103–1112.
    [31] X. Li, E. J. Bond, B. D. V. Veen, et al. An overview of ultra-wideband microwave imaging via space-time beamforming for early-stage breast-cancer detection. IEEE Antennas Propagat. Mag.,2005, 47(1):19–34.
    [32] P. Kosmas and C. M. Rappaport. Time reversal with the FDTD Method for microwave breast cancer detection. IEEE Trans. Microwave Theory Tech., 2005, 53(7):2317–2324.
    [33] P. Kosmas and C. M. Rappaport. FDTD-based time reversal for microwave breast cancer detection - localization in three dimensions. IEEE Trans. Microwave Theory Tech., 2006, 54(4):1921–1927.
    [34] P. Kosmas and C. M. Rappaport. A matched-filter FDTD-based time reversal approach for microwave breast cancer detection. IEEE Trans. Antennas Propagat., 2006, 54(4):1257–1264.
    [35] Y. F. Chen, E. Gunawan, K. S. Low, et al. Pulse design for time reversal method as applied to ultrawideband microwave breast cancer detection: A two-dimensional analysis. IEEE Trans. Antennas Propagat., 2007, 55(1):194–204.
    [36] J. L. Thomas, F. Wu, and M. Fink. Time reversal focusing applied to lithotripsy. Ultrason. Imag., 1996, 18(2):106–121.
    [37] G. Montaldo, P. Roux, A. Derode, et al. Ultrasonic shock wave generator using 1-bit time-reversal in a dispersive medium: application to lithotripsy. Appl. Phys. Lett., 2002, 80(5):897–899.
    [38] J. L. Thomas and M. Fink. Ultrasonic beam focusing through tissue inhomogeneities with a time reversal mirror: application to transskull therapy. IEEE Trans. Ultrason. Ferroelect. Freq. Contr., 1996, 43:1122–1129.
    [39] J. M. F. Moura, Y. Jin, D. D. Stancil, et al. Single antenna time reversal adaptive interference cancellation. ICASSP’05, IEEE International Conference on Signal Processing, Philadelphia, PA, 2005, 1121-1124.
    [40] J. M. F. Moura and Y. Jin. Detection by time reversal: single antenna. IEEE Transaction on Signal Processing, 2007, 55:187-201.
    [41] Y. Jiang, J. Zhu, and D. Stancil. Synthetic aperture radar ghost image cancellation using broadband time reversal averaging techniques. Microwave Symposium, 2007, IEEE MTT-S International, 2007, 4:1474-1477.
    [42] Y. Jin and J. M. F. Moura. TR-SAR: time reversal target focusing in spotlight SAR. ICASSP’07, Honolulu, HI, 2007, 957-960.
    [43] Y. Jiang, J. Zhu, D. Stancil, et al. Single antenna target detection using broadband frequency selection time reversal. IEEE Antennas and Propagation Society International Symposium, 2006, 699-702.
    [44] J. M. F. Moura and Y. Jin. Time reversal imaging by adaptive interference cancelling. IEEE Transaction on Signal Processing, 2008, 56:233-247.
    [45] C. Prada, S. Manneville, D. Spoliansky, et al. Decomposition of the time reversal operator: detection and selective focusing on two scatterers. J. Acoust. Soc. Am., 1996, 99:2067–2076.
    [46] C. Prada and M. Fink. Separation of interfering acoustic scattered signals using the invariant of the time-reversal operator: application to lamb waves characterization. J. Acoust. Soc. Am., 1998, 104:801–807.
    [47] N. Mordant, C. Prada, and M. Fink. Highly resolved detection and selective focusing in a waveguide using the D.O.R.T. method. J. Acoust. Soc. Am., 1999, 105:2634–2642.
    [48] T. Folegot, C. Prada, and M. Fink. Resolution enhancement and separation of reverberation from target echo with the time reversal operator decomposition. J. Acoust. Soc. Am., 2003, 113:3155–5160.
    [49] J.-L. Robert, M. Burcher, C. Cohen-Bacrie, et al. Time reversal operator decomposition with focused transmission and robustness to speckle noise: application to microcalcification detection. J. Acoust. Soc. Am., 2006, 119:3848–3859.
    [50] G. Micolau and M. Saillard. D.O.R.T. method as applied to electromagnetic sensing of buried objects. Radio Sci., 2003, 38:1038-1046.
    [51] Micolau, G., M. Saillard, and P. Borderies. DORT method as applied to ultrawideband signals for detection of buried objects. IEEE Trans. Geosci. Remote Sens., 2003, 41:1813–1820.
    [52] J.-L. Robert and M. Fink. Green’s function estimation in speckle using the decomposition of the time reversal operator: application to aberration correction in medical imaging. J. Acoust. Soc. Am., 2008, 123:866–877.
    [53] M. E. Yavuz and F. L. Teixeira. Space-frequency ultrawideband time-reversal imaging. IEEE Trans. Geosci. Remote Sens., 2008, 46:1114-1124.
    [54] M. E. Yavuz and F. L. Teixeira. Full time-domain DORT for ultrawideband electromagnetic fields in dispersive random inhomogeneous media. IEEE Trans. Antennas Propagat., 2006, 54(8):2305-2315.
    [55] H. Tortel, G. Micolau, and M. Saillard. Decomposition of the time reversal operator for electromagnetic scattering. J. Electromagn. Waves Appl., 1999, 13:687–719.
    [56] D. H. Chambers and J. G. Berryman. Time-reversal analysis for scatterer characterization. Phys. Rev. Lett., 2004, 92(2):023902.
    [57] D. H. Chambers and J. G. Berryman. Analysis of the time-reversal operator for a small sphericalscatterer in an electromagnetic field. IEEE Trans. Antennas Propagat., 2004, 52:1729–1738.
    [58] T. Rao and X. Chen. Analysis of the time-reversal operator for a single cylinder under two-dimensional settings. J. Electromagn. Waves Appl., 2006, 20(15):2153–2165.
    [59] X. Chen. Time-reversal operator for a small sphere in electromagnetic fields. J. Electromagn. Waves Appl., 2007, 21:1219–1230.
    [60] A. J. Devaney. Super-resolution processing of multistatic data using time-reversal and MUSIC. Unpublished paper, preprint available on the author’s web site.
    [61] R. O. Schmidt. Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propagat., 1986, 34:276-280.
    [62] M. Cheney. The linear sampling method and the MUSIC algorithm. Inverse Prob., 2001, 17:591–595.
    [63] A. Kirsch. The MUSIC-algorithm and the factorization method in inverse scattering theory for inhomogeneous media. Inverse Prob., 2002, 18:1025–1040.
    [64] F. K. Gruber, E. A. Marengo, and A. J. Devaney. Time-reversal imaging with multiple signal classification considering multiple scattering between the targets. J. Acoust. Soc. Am., 2004, 115:3042–3047.
    [65] A. J. Devaney, E. A. Marengo, and F. K. Gruber. Time-reversal-based imaging and inverse scattering of multiply scattering point targets. J. Acoust. Soc. Am., 2005, 118:3129–3138.
    [66] E. A. Marengo and F. K. Gruber. Subspace-based localization and inverse scattering of multiply scattering point targets. EURASIP J. Advances in Signal Processing, 2007, 17342–17358.
    [67] S. K. Lehman and A. J. Devaney. Transmission mode time-reversal super-resolution imaging. J. Acoust. Soc. Am., 2003, 113:2742–2753.
    [68] E. A. Marengo, F. K. Gruber, and F. Simonetti. Time-reversal MUSIC imaging of extended targets. IEEE trans. Image Processing, 2007, 16(8):1967-1984.
    [69] D. H. Chamber. Analysis of the time reversal operator for scatters of finite size. J. Acoust. Soc. Am., 2002, 112:411–419.
    [70] S. Hou, K. Solna, and H. Zhao. Imaging of location and geometry for extended targets using the response matrix. J. Comput. Phys., 2004, 199(1): 317–338.
    [71] S. Hou, K. Solna, and H. Zhao. A direct imaging algorithm for extended targets. Inverse Prob., 2006, 22:1151–1178.
    [72] S. Hou, K. Solna, and H. Zhao. A direct imaging method using far field data, Inverse Probl., 2007, 23:1533–1546.
    [73] S. Hou, K. Huang, K. Solna, et al. A phase and space coherent direct imaging method. J. Acoust. Soc. Am., 2009, 125:227–238.
    [74] E. Marengo, R. Hernandez, and H. Lev-Ari. Intensity-only signal subspace-based imaging. J. Opt. Soc. Am. A., 2007, 24:3619–3635.
    [75] X. D. Chen. Application of signal-subspace and optimization methods in reconstructing extended scatters. J. Opt. Soc. Am. A., 26:1022–1026.
    [76] A. J. Devaney. Time reversal imaging of obscured targets from multistatic data. IEEE Trans. Antennas Propagat., 2005, 53:1600–1610.
    [77] H. Ammari, E. Iakovleva, and D. Lesselier. Two numerical methods for recovering small inclusions from the scattering amplitude at a fixed frequency. SIAM J. Sci. Comput., 2005, 27:130-158.
    [78] E. Iakovleva, S. Gdoura, D. Lesselier, et al. Multistatic response matrix of a 3-D inclusion in half space and MUSIC imaging. IEEE Trans. Antennas Propagat., 2007, 55:2598–2609.
    [79] N. Irishina, M. Moscoso, and O. Dorn. Detection of small tumors in microwave medical imaging using level sets and MUSIC. Proc. PIERS 2006, Cambridge, U.K., 2006, 43–47.
    [80] H. Ammari, E. Iakovleva, D. Lesselier, et al. MUSIC-type electromagnetic imaging of a collection of small three-dimensional bounded inclusions. SIAM J. Sci. Comput., 2007, 29:674–709.
    [81] X. Chen and K. Agarwal. MUSIC algorithm for two-dimensional inverse problems with special characteristics of cylinders. IEEE Trans. Antennas Propagat., 2008, 56:1808–1812.
    [82] D. Liu, S. Vasudevan, J. Krolik, et al. Electromagnetic time-reversal source localization in changing media: Experiment and analysis. IEEE Trans. Antennas Propagat., 2007, 55(2):344–354.
    [83] X. Chen and Y. Zhong. A robust noniterative method for obtaining scattering strengths of multiply scattering point targets. J. Acoust. Soc. Am., 2007, 122:1325–1327.
    [84] E. Iakovleva, S. Gdoura, D. Lesselier, et al. Multistatic response matrix of a 3-D inclusion in half space and MUSIC imaging. IEEE Trans. Antennas Propagat., 2007, 55:2598–2609.
    [85] Y. Zhong and X. Chen. MUSIC imaging and electromagnetic inverse scattering of multiply scattering small anisotropic spheres. IEEE Trans. Antennas Propagat., 2007, 55:3542–3549.
    [86] H. Ammari, E. Iakovleva and D. Lesselier. A MUSIC algorithm for locating small inclusions buried in a half-space from the scattering amplitude at a fixed frequency. SIAM Multi. Model. Simu., 2005, 3:597–628.
    [87] H. Ammari, E. Iakovleva, H. Kang et al. Direct algorithms for thermal imaging of small inclusions. SIAM Multi. Model. Simu., 2005, 4:1116–1136.
    [88] H. Ammari, H. Kang, E. Kim, et al. A MUSIC-type algorithm for detecting internal corrosion from electrostatic boundary measurements. Numer. Math., 2008, 108:501–528.
    [89] H. Ammari, P. Calmon, and E. Iakovleva. Direct elastic imaging of a small inclusion. SIAM J. Imag. Sci., 2008, 1:169–187.
    [90] X. D. Chen and Y. Zhong. MUSIC electromagnetic imaging with enhanced resolution for small inclusions. Inverse Prob., 2009, 25:015008.
    [91] X. D. Chen. Signal-subspace method approach to the intensity-only electromagnetic inverse scattering problem. J. Opt. Soc. Am. A., 2008, 25:2018–2025.
    [92] X. D. Chen. MUSIC imaging applied to total internal reflection tomography. J. Opt. Soc. Am. A., 2008, 25:357–365.
    [93] J.-P. Fouque and A. Nachbin. Time reversal refocusing of surface water waves. SIAM Multi. Model. Simu., 2003, 1:609-629.
    [94] C. Oestges, A. D. Kim, G. Papanicolau, and A. J. Paulraj. Characterization of space-time focusing in time reversed random fields. IEEE Trans. Antennas Propagat., 2005, 53:283–293.
    [95] P. Roux and M. Fink. Time reversal in a waveguide: study of the temporal and spatial focusing. J. Acoust. Soc. Am., 2000, 107: 2418–2429.
    [96] J. F. Lingevitch, H. C. Song, and W. A. Kuperman. Time reversed reverberation focusing in a waveguide. J. Acoust. Soc. Am.,2002, 111:2609–2614.
    [97] G. Bal and L. Ryzhik. Time reversal and refocusing in random media. SIAM J. Appl. Math., 2003, 63:1475-1498.
    [98] J.-P. Fouque, J. Garnier, A. Nachbin, et al. Time reversal refocusing for point source in randomly layered media. Wave Motion, 2005, 42:238-260.
    [99] A. Derode, P. Roux, and M. Fink. Robust acoustic time reversal with high-order multiple scattering. Phys. Rev. Lett., 1995, 75:4206-4209.
    [100] P. Roux, B. Roman, and M. Fink. Time reversal in an ultra-sonic waveguide. Applied Physics Letters, 1997, 70:1811-1813.
    [101] P. Blomgren, G. Papanicolaou, and H. Zhao. Super-resolution in time-reversal acoustics. J. Acoust. Soc. Am., 2002, 111:238-248.
    [102] C. Tsogka and G. Papanicolaou. Time reversal through a solid-liquid interface and super- resolution. Inverse Prob., 2002, 18:1639-1657.
    [103] G. Papanicolaou, L. Ryzhik and K. Solna. Statistical stability in time reversal. SIAM J. Appl. Math., 2004, 64:1133-1155.
    [104] P. Blomgren, G. Papanicolaou and H. Zhao. Super-resolution in time reversal acoustics. J. Acoust. Soc. Am., 2002, 111:230-248.
    [105] W. A. Kuperman, W. S. Hodgkiss, H. C. Song, et al. Phase conjugation in the ocean: experimental demonstration of an acoustic time reversal mirror. J. Acoust. Soc. Am., 1998, 103:25-40.
    [106] W. S. Hodgkiss, H. C. Song, W. A. Kuperman, et al. A long range and variable focus phase conjugation experiment in shallow water. J. Acoust. Soc. Am., 1999, 105:1597-1604.
    [107] S. Kim, G. F. Edelmann, T. Akal, et al. An initaial demonstration of underwater acoustic communication using time reversal. IEEE J. Ocean. Eng., 2002, 27:602-609.
    [108] G. F. Edelmann, H. C. Song, S. Kim, et al. Unerwater acoustic communications using time reversal. IEEE J. Ocean. Eng., 2005, 30(4):852–864.
    [109] A. Derode, A. Tourin, J. de Rosny, et al. Taking advantage of multiple scattering to communicate with time-reversal antennas. Phys. Rev. Lett., 2003, 90(1):014 301/1–014 301/4.
    [110] G. Lerosey, J. de Rosny, A. Tourin, et al. Time reversal of electromagnetic waves. Physical Review Letter, 2004, 92(19): 193904/1-193904/4.
    [111] P. Kyristi, G. Panicolaou, and A. Oprea. MISO time reversal and delayspread compression for FWA channels at 5 GHz. IEEE Antennas Wireless Propag. Lett., 2004, 3:96–99.
    [112] R. C. Qiu, C. M. Zhou, N. Guo, et al. Time reversal with MISO for ultrawideband communications: experimental results. IEEE Antennas Wireless Propag. Lett., 2006, 5:269–275.
    [113] R. C. Qiu. A generalized time domain multipath channel and its applications in ultra-wideband (UWB) receiver design: system performance analysis. Proc. IEEE Wireless Comm. Network Conf., 2004, 901-907.
    [114] T. Strohmer, M. Emami, J. Hansen, et al. Application of time-reversal with MMSE equalizer to UWB communications. Proc. IEEE Global Telecommunications Conference, 2004, GLOBECOM’04, 2004, 5:3123-3127.
    [115] H. T. Nguyen, J. B. Andersen, and G. F. Pedersen. The potential use of time reversal technique in multiple elements antenna systems. IEEE Commun. Lett., 2005, 9(1):40-42.
    [116] Y. Jin, Y. Jiang, and J. M. F. Moura. Multiple antenna time reversal transmission in ultra-wideband communications. Proc. IEEE Global Telecommunications Conference, 2007, GLOBECOM’07, 2007, 3029-3033.
    [117] H. T. Nguyen, I. Z. Kovcs, and P. C. F. Eggers. A time reversal transmission approach for multiuser UWB communications. IEEE Trans. Antennas Propagat., 2006, 54(11):3216–3224.
    [118] H. T. Nguyen, J. B. Andersen, G. F. Pedersen, et al. Time reversal in wireless communications: a measurement-based investigation. IEEE Transactions on Wireless Communications, 2006, 5(8):2242-2252.
    [119] G. Lerosey, J. de Rosny, A. Tourin, et al. Focusing beyond the refraction limit with far-field time reversal. Science, 2007, 315:1120-1122.
    [120]王秉中.时间反演电磁学.课题组讲义,2009.
    [121] M. Born and E. Wolf. Principle of Optics, 7th ed. Cambrige U. Press, 1999.
    [122] W. C. Chow. Waves and Fields in Inhomogeneous Media. New York: Van Nostrand Reinhold, 1990.
    [123] J. A. Kong. Electromagnetic Wave Theory. EMW Publishing, 2000
    [124]王秉中.计算电磁学.北京:科学出版社,2002.
    [125] M. G. D. Benedetto and G. Giancola. Understanding Ultra Wide Band Radio Fundamentals. Upper Saddle River, NJ: Prentice Hall, 2004.
    [126] M. Z. Win and R. A. Scholtz. On the robustness of ultra-wide bandwidth signals in dense multipath environments. IEEE Commun. Lett., 1998, 2:51-53.
    [127] R. J-M. Cramer, R. A. Scholtz, and M. Z. Win. Evaluation of an ultra-wide-band propagation channel. IEEE Trans. Antennas Propagat., 2002, 50(5):561–570.
    [128] V. Tarokh, N. Seshadri, and A. R. Calderbank. Space–time codes for high data rate wireless communication: Performance criterion and code construction. IEEE Trans. Inform. Theory, 1998, 44:744-765.
    [129] V. Tarokh, H. Jafarkhani and A. R. Calderbank. Space-time block codes from orthogonal designs. IEEE Trans. Inform. Theory, 1999, 45:1456-1467.
    [130] S. A. Jafar and A. Goldsmith. Transmitter optimization and optimality of beamformingfor multiple antenna systems. IEEE Transactions on Wireless Communications, 2004, 3:1165-1175.
    [131]波尔拉.空时无线通信导论,刘威鑫译.北京:清华大学出版社,2007.
    [132] G. J. Foschini. Layered space–time architecture for wireless communication in a fading environment when using multielement antennas. Bell Labs Tech. J., 1996, 41-59.
    [133] G. J. Foschini, G. D. Golden, P. W. Wolniansky, et al. Simplified processing for wireless communication at high spectral efficiency. IEEE J. Select. Areas Commun. Wireless Commun. Series, 1999, 17:1841-1852.
    [134] E. Lawrey. The Suitability of OFDM as a Modulation Technique for Wireless Telecommunications with CDMA Comparison. PhD Dissertation, James Cook University, Oct. 1997.
    [135] J. van de Beek, P. O. Borjesson, M. Boucheret, et al. A time and frequency synchronization scheme for multiuser OFDM. IEEE J. Select. Areas Commun., 1999, 17(11):1900-1914.
    [136] J. L. Zhang, M. Z. Wang and W. L. Zhu. A novel OFDM frame synchronization scheme. International Conference of Communications, Circuits and Systems & West Sino-Exposition, 2002, 1:119-123.
    [137] J. Gomes and V. Barroso. Time-reversed OFDM communication in underwater channels. 2004 IEEE 5th Workshop on Signal Processing Advances in Wireless Communication, 2004, 626-630.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700