中段弹道目标ISAR成像及物理特性反演技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究中段弹道目标宽带雷达信息处理对弹道导弹防御系统中区分弹头及诱饵具有重要的实际意义。论文围绕基于宽带信息的中段弹道目标ISAR成像及物理特性反演问题进行研究,重点开展中段弹道目标ISAR成像、几何特性反演、运动特性反演三个方面的研究工作。
     在中段目标ISAR成像中,对目标高速运动补偿、相位自聚焦、回波分离、图像定标等问题进行了研究。文章首先分析了高速运动对距离像和ISAR像的影响,借助chirplet分解实现了目标径向速度估计,实现了中段目标高速运动补偿;针对ISAR成像中的相位自聚焦问题,利用初像加窗分离了散射点,构建了扩展距离像序列,进而根据扩展距离像的多普勒中心跟踪实现了相位高精度补偿;针对目标尾附体和主体信号分离问题,本文根据LFM特点构建了单频信号回波,根据两者多普勒差异,采用chirplet分解实现了信号的分离,提高了目标主体成像的清晰度;最后对ISAR像的定标问题进行了研究,分析了中段目标的成像特点,提出了基于图像配准的横向定标方法。
     在中段目标几何特性反演中,研究了目标径向长度、实际长度、目标纵截面积等几何特性的反演方法。首先研究了基于单幅距离像的目标径向长度反演,综合利用FFT算法和超分辨算法的优点,实现了目标径向长度的高精度估计;文章进一步研究了基于多幅距离像的目标实际长度反演方法,结合中段目标进动的特点,建立了径向长度统计模型,提出了实际长度的最大似然估计方法;最后对基于ISAR图像的几何特性反演进行研究,采用边缘提取、图像分割分离了背景和噪声,采用聚类算法得到了目标的散射中心位置,实现了横向长度、纵向长度、最大长度、目标纵截面积等几何特性的反演。
     在中段目标运动特性反演中,研究了目标进动参数反演方法。根据目标空间姿态和目标距离像、ISAR像的关系,提出了基于距离像相关特性和ISAR图像配准的进动参数反演方法;根据进动下目标径向长度变化特性,提出了基于极大极小值的进动角估计方法;根据特显点在距离像序列和ISAR像序列中的运动轨迹,提出了基于宽带像中散射点移动曲线的进动参数反演方法。本文提出的各种方法分别采用了仿真、暗室或实测数据进行了验证,实验结果验证了算法的有效性。
     论文针对中段弹道目标识别中存在的实际问题进行研究,在导弹防御中具有较强的现实意义,希望能够为未来的导弹防御系统建设服务,为导弹突防手段的提高提供帮助。
Researching on the wideband radar signal processing of midcourse target has practical significance for discriminating warheads from decoys. The dissertation focused on the research of the ISAR imaging and physical feature extraction based on wideband radar. Three main subjects have been researched in this dissertation, which are ISAR imaging, geometry feature extraction and micro-motion feature extraction.
     In the research of ISAR imaging of midcourse target, four issues are studied including high velocity compensation, phase auto focus, signal decomposition and cross scaling of ISAR image. Firstly, the dissertation analyzes the effect of high velocity on the HRRP and ISAR image. With the aid of chirplet presentation, the radius velocity is estimated and the phase item caused by high velocity is compensated. For phase auto focus, scattering centers are separated based on windowed rough ISAR image and expanded HRRP is constructed to get more stable Doppler center. The phase error is compensated based on expanded HRRP. For the appendix part and body part signal decomposition, single frequency radar echo is constructed. Based on the Doppler difference, the dissertation separates the echo of body and appendix by chirplet decomposition. And the ISAR image clarity of ballistic target body is improved. Lastly, the ISAR image cross scaling problem is studied. According to the ISAR image characteristic of midcourse target, a new cross scaling method based on image registration is proposed.
     In the geometry feature extraction, radius length, actual length, cross section area feature extraction are studied. The dissertation studies the radius length extraction based on single HRRP firstly. By the advantage of FFT algorithm and super resolution algorithm, radius length is estimated with high precision. Furthermore, the dissertation studied the actual length extraction method based on HRRP series. According to the precession effect on the HRRP, the statistical model of radius length is constructed. And an actual length estimation based on ML algorithm is raised. Lastly, the geometry feature extraction based on ISAR image is studied. The target and background is separated based on edge extraction and image segmentation. And the scattering centers are extracted based on clustering algorithm. The cross length, radius length and target cross section area are extracted.
     In the micro-motion feature extraction of midcourse target, the dissertation studies the precession feature extraction. According to the relation between target posture and HRRP or ISAR image, the dissertation proposes two kinds of precession feature extraction methods based on the HRRP coefficients and ISAR image registration. According to the radius length change under the precession, the dissertation proposes an algorithm based on the minimum and maximum radius length. Lastly, according to the dominant scattering centers motion, the paper proposes two new algorithms based on HRRP series and ISAR image series. All approaches and algorithms put forward in the dissertation have been tested with simulated data, compressed field data or measured data. And experiment results show the validity.
     The dissertation focuses on the practical problems in the midcourse ballistic target recognition, which have great significance in ballistic missile defense. The writer hopes that the researching results are helpful for constitution of the missile defense systems and improvement of the ability of missile penetration in the future.
引文
[1]今日传奇之长空利剑,纪实频道. 2007年09月.
    [2]刘永祥.导弹防御系统中的雷达目标综合识别研究[D].国防科学技术大学博士学位论文,湖南长沙, 2004.03.
    [3] http://www.newssc.org.
    [4] http://gb.cri.cn
    [5]杨华,陈昌明,高桂清,马东辉.美国反导系统的发展历史及技术现状[J].飞航导弹, 2001,(7): 11-15.
    [6] Lemnios William Z, Grometstein Alan A. Overview of the Lincoln laboratory ballistic missile defense program [J]. Lincoln Laboratory Journal, 2002, 13(1):9-32.
    [7]张光义等.空间探测相控阵雷达[M].北京:科学出版社, 2001年.
    [8]刘记红,高勋章,金光虎.美国空间监视宽带雷达系统[J].中国雷达, 2007.03.
    [9] Lincoln brochure. www.mit.edu/lincolnlabrotary.
    [10]曹敏.空间目标ISAR成像技术研究[D].国防科学技术大学博士学位论文,湖南长沙, 2008.12.
    [11] Camp William W, Joseph T Mayhan, O’Donnell Robert M. Wideband radar for ballistic missile defense and range-Doppler imaging of satellites[J]. Lincoln Laboratory Journal 2000, 12(2):267-280.
    [12]马骏声.目标识别与GBR地基成像雷达.航天电子对抗[J]. 1996, (4) : 1-5.
    [13]马骏声. NMD-GBR地基雷达初样型的技术功能.航天电子对抗[J]. 2002, (3):1-6.
    [14]李洲,尹照平.美国弹道导弹目标特性测量雷达的发展[J].飞行器测控学报. 2001, 20(1): 42-49.
    [15] Haystack Upgrade Program. www.mit.edu/lincolnlabrotary.
    [16]李斌.导弹防御系统雷达目标跟踪、成像及识别技术研究[D].国防科学技术大学博士学位论文,湖南长沙, 2008.09
    [17] Lu Guangyue, Bao Zheng. Range-Instantaneous-Doppler algorithm in ISAR based on Instant Frequency Estimation. SPIE, 1998. 198-201.
    [18]刘爱芳,朱晓华,陆锦辉等.基于解线调处理的高速运动目标ISAR距离像补偿[J].宇航学报, 2004, 25(5):541-545.
    [19] Wood John C, Barry Daniel T. Radon transformation of time-frequency distribution for Analysis of multi-component signals[J]. IEEE Trans. On Signal Processing, 1994, 42(11):3166-3177.
    [20] Wang Minsheng, Chan Andrew K. Chui Charles K. Linear frequency modulatedsignal detection using randon-ambiguity transform[J]. IEEE Trans. on Signal Processing, 1998, 46 (3):571-586.
    [21] Chen C C, Andrews H C. Target motion induced radar imaging[J]. IEEE Trans. on Aerospace and Electronic Systems, 1980, 16 (1) : 2-14.
    [22] Wang J F, Liu X Z. Improved Global Range Alignment for ISAR[J]. IEEE Trans. on Aerospace and Electronic Systems. 2007, 14(21): 1070-1075
    [23] Purchla M. Range Alignment via Straight Line Fitting for ISAR Imaging[C]. 2006 International Radar Symposium. 2006: 1-4
    [24] Wang L, Zhu D Y, Zhu Z D. Range Alignment in ISAR Motion Compensation Based on Minimum Sum[C].2006 International Conference on Radar.2006: 1-4
    [25] Liu M J, Gao M G, Fu X J. A Novel Range Alignment Algorithm for Real Time ISAR Imaging[C]. The 8th International Conference on Signal Processing, 2006: 2054-2062
    [26] Zhu D Y, Ling W, Qingnian T, et al. ISAR range alignment by minimizing the entropy of the average range profile[C]. 2006 IEEE Conference on Radar, 2006: 133-144
    [27] Qiu X, Zhao Y. Maximum Likelihood-based Range Alignment for ISAR Imaging[J]. 2004 IEEE Antennas and Propagation Society Symposium, 2004, 2:2103-2105
    [28] Wang L, Zhu D, Zhu Z. Range Alignment for ISAR Using Genetic Algorithms[J]. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005, 4666-4670
    [29] Wang L, Zhu D Y, Zhu Z D. New Range Alignment Algorithm for ISAR Based on High Order Moment[J]. Journal of Electronics(China). 2007, 24(04): 509-514
    [30] Delisle G Y, Wu H. Moving Target imaging and trajectory computation using ISAR[J]. IEEE Trans. on Aerospace and Electronic Systems, 1994, 30(3):887-899.
    [31]王根源,保铮.逆合成孔径雷达运动补偿中包络对齐的新方法[J].电子学报, 1998, 26(6):5-8.
    [32]张晓玲,黄书伟,郭少南. ISAR运动参数估计和补偿改进方法[J].电子科技大学学报. 2008, 37(03):321-324.
    [33]罗贤全,于久恩,何强,尚朝轩.基于参数估计的步进频ISAR成像运动补偿方法[J].系统工程与电子技术. 2007,29(09) :1464-1468.
    [34]邱晓晖,赵阳. ISAR成像最小熵自聚焦与相位补偿的一致性分析[J].电子与信息学报. 2007, 29(08):1799-1801.
    [35] Wang Y X; Ling H; Chen V C. ISAR motion compensation via adaptive joint time-frequency technique [J]. IEEE Trans. on Aerospace and Electronic Systems,1998, 34(2): 670-677.
    [36] Trintinalia, C L, Ling H. Joint time-frequency ISAR using adaptive processing[J]. IEEE Transactions on Antennas and Propagation. 1997, 45(13): 221-227.
    [37] Wu J, Zhang Y. A new motion compensation method for ISAR based on time-frequency analysis and image processing[C]. Asia-Pacific Microwave Conference Proceedings. 2005, 1-4.
    [38] Berizzi F, Martorella M, Cacciamano A, Capria A. A Contrast-Based Algorithm For Synthetic Range-Profile Motion Compensation[J]. IEEE Trans. On geoscience and remote sensing. 2008, 46(10): 3053-3062.
    [39] Picket M J, Chen C C. Principles of inverse synthetic aperture radar ( ISAR ) imaging [A]. EA SCON Record[C]. 1980. 340-345.
    [40] Itoh T, Sueda H, Watanabe Y. Motion compensation for ISAR via centroid tracking[J]. IEEE Trans. on Aerospace and Electronic Systems, 1996, 3(1) :1192-1197.
    [41] Zhu zhaoda, Qiu xiaohui, She zhishun. ISAR motion compensation using modified Doppler centroid tracking method[J]. Acta Electronica Sinica, 1997, 25(3):65-69.
    [42] WahlD E, Eichel P H, et al. Phase gradient autofocus: a robust tool for high resolution SAR phase correction[J]. IEEE Trans. on Aerospace and Electronic Systems, 1994, 30(2):827-834.
    [43] Eichel P H,Jakowatz C V. Phase-gradient algorithm as an optimal estimator of the phase derivative[J]. Optics Letters, 1989, 14(20): 1101-1103.
    [44] Li J, Wu R, Chen V C. Robust autofocus algorithm for ISAR imaging of moving targets[J]. IEEE Trans. on Aerospace and Electronic Systems, 2001, 37(3):1056-1069
    [45] Wahl D E, Eichel P H, Ghiglia D C, Jakowatz C V. Phase gradient autofocus-a robust tool for high resolution SAR phase correction[J]. IEEE Trans. On Aerospace and Electronic Systems.1994, 3(30): 827-834.
    [46] Gao Y, Gao M G, Fu T. Modified Approach to PGA Phase Averaging for ISAR Autofocus[J]. Journal of Beijing Institute of Technology. 2003,12(S):91-95.
    [47] Eichel P H, Wahl D E. Phase gradient algorithms as an optimal estimator of the phase derivative[J]. Optical Society of America, 1989, 14 (20) :1101-1103.
    [48] Jain A, Patel I. SAR/ISAR imaging of a non-uniformly rotating target[J]. IEEE Trans. on Aerospace and Electronic Systems. 1992, 28(1): 317-320.
    [49] Thayaparan T, Lampropoulos G, Wong S K, et al., Applications of adaptive joint time-frequency algorithm for focusing distorted ISAR images from simulated and measured radar data[J]. IEE Proceedings on Radar, Sonar and Navigation, 2003,150(4):213-220.
    [50] Chen V C, Qian S. Joint time-frequency transform for radar range-Dopplor imaging[J]. IEEE Trans. on Aerospace and Electronic System. 1998, 34(2): 486-499.
    [51] Li A F, Jin L, Liu Zh. Application of fractional Fourier transform to ISAR imaging of maneuvering target[J]. Proceedings of SPIE, 2005, 6043: 221-226.
    [52]李海宁,赵健,洪文,俞卞章.基于分数傅立叶变换的SAR成像算法研究[J].遥测遥控, 2007, 28(4): 20-24.
    [53] Liu M, Gao M, Fu T. Real time ISAR imaging algorithm of maneuvering targets based on the fractional Fourier transform[C]. 1st Asian and Pacific Conference on Synthetic Aperture Radar. 2007: 59-64.
    [54] Ahmet K O, Liitjiye D, Orhan A. High resolution time-frequency analysis by fractional domain warping[J]. IEEE International Conference on Acoustics, Speech and Signal Processing. 2001, 3553-3556.
    [55] Du L, Su G. Adaptive Inverse Synthetic Aperture Radar Imaging for Non-uniformly Moving Targets [J]. IEEE Geoscience and Remote Sensing Letters. 2005, 2(3): 247-249.
    [56] Liu Ai-fang, Jin Lina, Liu Zhong. Application of fractional Fourier transform to ISAR imaging of maneuvering target[J]. Proceedings of SPIE, Vol. 6043.
    [57]刘爱芳,朱晓华,陆锦辉,刘中.基于离散匹配傅里叶变换的高速运动目标逆合成孔径雷达距离像补偿[J].兵工学报, 2004, 25(6):782-785.
    [58]刘爱芳,朱晓华,陆锦辉,刘中.基于离散匹配傅里叶变换的逆合成孔径雷达成像算法[J].兵工学报. 2004, 25(04):458-461
    [59] Walker J L. Range-Doppler imaging of rotating objects [J]. IEEE Trans. on Aerospace and Electronic Systems, 1980, 16(1):23-52.
    [60] Doemy A W. Synthetic aperture radar processing with polar formatted subapertures [C]. 1994 IEEE Conference on Signals, Systems and Computer, 1994, 1210-1215.
    [61] Ausherman D D, Kozma A. development in radar imaging[J]. IEEE Trans. on Aerospace and Electronic System, 1984, 20(4): 363-399.
    [62] Munoz-ferreras J M, Perez-martinez F. Non-uniform rotation rate estimation for ISAR in case of slant range migration induced by angular motion[J]. IEE Radar Sonar and Navigation, 2007, 1263 (1): 107-114.
    [63] Li J F. Model-based signal processing for radar imaging of targets with complex motions[D]. University of Texas at Austin, 2002.
    [64] J Li, H Ling. Application of adaptive chirplet representation for ISAR feature extraction from targets with rotating parts[J]. IEE Proc. Radar Sonar Navig., 2003,150(4): 284-291.
    [65]罗迎,张群,封同安等.强杂波下含旋转部件的目标成像及微多普勒反演系统工程与电子技术, 2008, 31(2): 261-264.
    [66]李斌,姚康泽,王岩等.基于微动分析和chirplet分解的ISAR成像.信号处理,2009,25(2):264-269.
    [67] V. Nagesha, S Kay. Spectral analysis based on the canonical autoregressive decomposition[J]. IEEE Trans. on Signal Processing, 1996, 44 (7) :1719-1733.
    [68]李玺,顾红,刘国岁. ISAR成像中转角估计的新方法[J].电子学报, 2000, 28(6):44-47.
    [69]王勇,姜义成.一种估计ISAR成像转角的新方法[J].电子与信息学报, 2007, 29(3):521-523.
    [70]周剑雄,石志广,付强.一种GTD模型参数估计的新方法[J].电子学报, 2005, 33(9):1679-1682.
    [71]贺治华,张旭峰,黎湘,庄钊文.一种GTD模型参数估计的新方法[J].电子学报, 2005, 33(9):1679-1682.
    [72]叶伟,吴彦鸿.目标二维像散射中心模型中的参数估计[J].装备指挥技术学院学报, 2002, 13(2):68-72.
    [73] Potter L C, Chiang D M. A GTD based parametric model for radar scattering[J]. IEEE Trans. on Antennas Propagation, 1995, 43:1058-1067.
    [74]张恂.雷达目标的高分辨参数建模及其在自动目标识别中的应用[D].长沙:国防科技大学博士学位论文, 1997.
    [75] Carriere R, Moses R L. High resolution radar target modeling using a modified prony estimator. IEEE Trans. on AP, 1992, 40(1):13-18.
    [76]冯德军,王雪松,徐振海,肖顺平,王国玉.基于ESPRIT的中段弹道目标特征反演方法[J].国防科技大学学报, 2004, 26(2):41-45.
    [77] Kim K T, Seo D K, Kim H T. Efficient radar target recognition using the MUSIC algorithm and invariant features[J] . IEEE Trans on Antennas Propagation, 2002, 50(3):325-337.
    [78]贺治华,黎湘,张旭峰,庄钊文.基于MUSIC算法的GTD模型参数估计[J].系统工程与电子技术, 2005, 27(10):1685-1688.
    [79] Liao X J. Identification of ground target from sequential high Range resolution radar signatures[J]. IEEE Trans. on Aerospace and Electronic Systems, 2002, 38(2):1230-1242.
    [80] McClure M R, Carin L. Matching pursuits with a wave-based dictionary. IEEE Trans. On Signal Processing, 1997, 45(12):2912-2927.
    [81] J. Rissanen的文章“Modeling by shortest data description”
    [82] L.G.Roberts,“Machine Perception of Three-Dimension Solids,”in Optical andElectro-Optimal Information Processing, J.t. Tippett, et al., Ed. Cambridge, MA: MIT Press, 1965.
    [83]程正兴.《小波分析算法与应用》[M].西安交通大学出版社,1997.
    [84] Knott Eugexe F. Simulation of reentry vehicle motion during laboratory measurements of radar cross section[J]. IEEE Trans. on Antennas and Propagation, 1969, 17(3):242-244.
    [85] Lemnios William Z, Grometstein Alan A. Overview of the Lincoln laboratory ballistic missile defense program [J]. Lincoln Laboratory Journal, 2002;13(1):9-32.
    [86] Schultz Kenneth I, Davidson Steven A, Stein Alan J, Parker Jeffrey K. Range Doppler laser radar for midcourse discrimination[R]. The Firefly Experiments, 1993.
    [87] Gschwendtner Alfred B, Keicher William E. Development of coherent laser radar at Lincoln laboratory [J]. Lincoln Laboratory Journal, 2000, 12(2):245-266.
    [88] Chen Victor C, Yin Li Fa, Shyang Ho Shen, Wechsler Harry. Micro-Doppler effect in radar phenomenon, model and simulation study[J]. IEEE Trans. on Aerospace and Electronic Systems, 2006, 42(1):2-21.
    [89] Thayaparan T, Abrol S, Riseborough E. Micro-Doppler radar signatures for intelligent target recognition[J]. DRDC Ottawa TM 2004-170: Defence R&D Canada Ottawa technical, 2004, 8.
    [90] LI Jian, LING Hao. Application of adaptive chirplet representation for ISAR feature extraction from targets with rotating parts[J]. 2003, 15(4):284-291.
    [91] Stankovic Ljubi Sa, Djurovic Igor, Thayaparan Thayananthan. Separation of Target Rigid Body and Micro-Doppler Effects in ISAR Imaging[J]. IEEE Trans. on Aerospace and Electronic Systems, 2006, 42(4):1496-1503.
    [92] Zhang Qun, Guan Hua, Guo Ying, Bai Youqing. Separation of micro-Doppler signal using an extended Hough transform[J]. 2006, pp: 361-364.
    [93] CHEN Hang Yong, LIU Yong Xiang, JIANG Wei Dong, GUO Gui Rong. Mathematics of synthesizing range profile of target with micro-motion[J]. ACTA Electronica Sinica, 2007, 35(3):585-589.
    [94] Bell Mark R, Grubbs Robert A. JEM modeling and measurement for radar target identification[J]. IEEE Trans. on Aerospace and Electronic Systems, 1993, 29(2):219-228.
    [95] FENG Xiao bin, HUANG Pei kang. Analysis of the spectrum signature of the radar return signal from aircraft rotating blades[J]. Systems Engineering and Electronics, 2004, 27(3):385-387.
    [96]庄钊文,刘永祥,黎湘.目标微动特性研究进展[J].电子学报, 2006,5(3):520-525.
    [97]戴征坚,郁文贤,胡卫东,杜攀.空间目标的雷达识别技术[J].系统工程与电子技术, 2000, 22(3).
    [98]章仁为.卫星轨道姿态动力学与控制[M].北京:北京航空航天大学出版社, 1997, 157-160.
    [99]罗宏.动态雷达目标的建模与识别研究[D].北京:航天工业总公司第二研究院; 2000, 4.
    [100]王涛,周颖,王雪松,肖顺平,郭桂蓉.雷达目标的章动特性与章动频率估计[J].自然科学进展, 2006, 16(3):344-350.
    [101]陈行勇,黎湘,郭桂蓉,姜斌.微进动弹道导弹目标雷达特征反演[J].电子与信息学报, 2006, 28(4):643-646.
    [102]张汉华,周智敏,常文革.反弹道导弹的雷达目标识别技术[A].中国电子科技集团第14研究所,弹道导弹防御系统发展战略研讨, 2004, 205-210.
    [103]贾沛然,沈为异.弹道导弹弹道学[M].长沙:国防科学技术大学研究生院, 1987.
    [104]刘暾,赵钧.空间飞行器动力学[M].哈尔滨:哈尔滨工业大学出出版社, 2003.
    [105]徐士良.数值分析算法[M].北京:机械工程出版社, 2006, 220-234.
    [106]金光虎,朱玉鹏,高勋章.基于一维距离像序列的弹道目标进动特征反演[J].信号处理, 2009, 25(5):771-776.
    [107]金文彬,刘永祥,任双桥,黎湘.锥体目标空间进动特性分析及其参数反演[J].宇航学报, 2004, 25(4): 408-410.
    [108]王志纲,施志佳.远程火箭与卫星轨道力学基础[M].西北工业大学出版社, 2006.
    [109]黄培康,殷红成,许小剑.雷达目标特性[M].中国北京:电子工业出版社, 2006.
    [110]保铮,刑孟道,王彤.雷达成像技术[M],北京:电子工业出版社, 2006.
    [111]高勋章.基于高阶统计量的雷达目标高分辨成像研究[D].国防科学技术大学博士学位论文,湖南长沙, 2004.
    [112] Qian S, Chen D, Yin Q. adaptive chirplet based signal approximation[J]. Proc. ICASSP, Seattle, WA, USA, May 1998, vol. III, pp:1871-1874.
    [113] Bultan A. A four-parameter atomic decomposition of chirplets[J]. IEEE Trans. On Signal Processing, 1999, 47: 731-745.
    [114] Yin Q, Qian S, Feng A. A fast refinement for adaptive Gaussian chirplet decomposition[J]. IEEE Trans. On Signal Processing, 2002, 50(6):1298-1306.
    [115] J Li, H Ling. Application of adaptive chirplet representation for ISAR Feature Extraction from targets with rotating parts[J]. IEE Proc. Radar Sonar Navig., 2003, 150(4): 284-291.
    [116] Chen V C, Shie Qian. Joint time-frequency transform for radar range Doppler imaging[J]. IEEE Trans. on Aerospace and Electronic Systems, 1998, 34(2): 486-499.
    [117]李斌,姚康泽,王岩等.基于微动分析和Chirplet分解的ISAR成像[J].信号处理, 2009, 25(2):264-269.
    [118] V Nagesha, S. Kay. Spectral Analysis Based on the Canonical Autorgressive Decomposition [J]. IEEE Trans. On Signal Processing, 1996, 44 (7) :1719-1733.
    [119]李玺,顾红.刘国岁. ISAR成像中转角估计的新方法[J].电子学报,2000, 28(6):44-47.
    [120]王勇,姜义成.一种估计ISAR成像转角的新方法[J].电子与信息学报, 2007, 29(3):521-523.
    [121]佘志顺,朱兆达.逆合成孔径雷达横向定标[J].电子学报, 1997,25(3),45-48.
    [122] H Li, B S Manjunanth, S K Mitra. A contour-based approach to multi-sensor image registration[J]. IEEE Trans. on Image Processing, 1995, 4(3):320-334.
    [123] Raymond J Althof, Marco G J Wind, James T Dobbins. A rapid and automatic image registration algorithm with subpixel accuracy[J]. IEEE Tans. on medical imaging. 1997, 16(3):308-316.
    [124] W H Press, S A Teukolsky, W T Vetterling, et al. Numerical recipes in C: the art of scientific computing[M]. Cambridge University Press, 1992.
    [125]孙即祥.现代模式识别[M].国防科技大学出版, 2003.
    [126] Zhang X D, Liang Y C. Prefiltering-based ESPRIT for estimating parameters of sinusoids in non-Gaussian ARMA noise [J]. IEEE Trans. On SP, 1995, 43: 349-353.
    [127] Knott Eugexe F. Simulation of reentry vehicle motion during laboratory measurements of radar cross section[J]. IEEE Transactions on Antennas And Propagation, 1969, 17(3):242-244.
    [128] Schultz Kenneth I., Davidson Steven A., Stein Alan J., Parker Jeffrey K. Range Doppler Laser Radar for Midcourse Discrimination: The Firefly Experiments;1993.
    [129] Kh. Posenbach, J. Schiller. Non co-operative air target identification using imagery: identification rate as a function of signal bandwidth[C], IEEE International Radar Conference, 2000, 305-309.
    [130] Cai-yun Wang, Xiao-jian Xu. Some new results of radar target identification using high resolution range profiles[C], Digest of 2005 IEEE AP-S intl. Symp. & URSI Meeting, Washington DC. 2005,122-125.
    [131] Hsueh-jyh Li, Sheng-hui Yang. Using range profiles as feature vectors to identify aerospace objects[J]. IEEE Trans. on Antennas and Propagation, 1993,41(3):261-268.
    [132] Hsueh-jyh Li, Yung-deh Wang, Long-huai Wang. Matching score properties between range profiles of high-resolution radar targets[J]. IEEE Trans. on Antennas and Propagation, 1996, 44(4):444-452.
    [133] Marcum J I. A statistical theory of target detection by pulsed radar[J]. IRE trans., 1960, 6(2).
    [134] Swerling P. Probability of detection for fluctuating targets[J]. IRE trans., 1960, IT-b(2).
    [135]皇甫堪,陈建文,楼生强.现代数字信号处理[M],电子工业出版社,2003.09.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700