微动目标雷达信号参数估计与物理特征提取
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
弹头、飞机、车辆和生命体等目标内在的动力学特性决定了其特有的微运动形式。随着雷达工艺水平的提高和先进信号处理技术的发展,目标微运动信息在目标识别领域越来越受到重视。目前,微动目标对雷达信号的频率调制—微多普勒信息的利用是国内外学术界和工程界的热点问题。论文以微动目标的雷达目标识别为背景,以微多普勒模型—微多普勒参数估计—微动目标物理特征提取为技术路线,采用理论分析和测量实验相结合的方法,系统深入地研究了微动目标雷达信号处理和特征提取等问题。
     首先,研究了微多普勒的理论模型,建立了目标运动参数、几何结构参数与雷达回波微多普勒参数的显式关系。根据目标电磁散射机理,分别推导了理想散射情况和非理想散射情况下雷达目标的微多普勒模型:在理想散射情况下,将转动、振动和锥旋三种基本的微运动引起的微多普勒模型进行了统一的表征,并分析了其频域特性、时频特性和高阶瞬时矩特性;在非理想散射情况下,分析了滑动型散射中心对微多普勒的影响,重点建立了圆环结构边缘型散射中心的锥旋微多普勒模型。结合目标的质心平动对多普勒的调制,建立了质心运动情况下微动目标回波的多普勒模型,给出了信号参数与平动、微动参数之间的关系。
     其次,以TFD(Time Frequency Distribution)-Hough变换为理论工具,研究了微多普勒的参数化估计方法及其快速算法。针对理想点散射情况下的微多普勒模型,提出了三参数正弦调频信号的TFD-Hough变换估计方法,研究了其中正弦调频信号伪魏格纳分布的窗长选择,分析了其离散数学表达式和输入输出信噪比,并设计了正弦曲线的随机Hough变换算法,提出了基于时频脊—随机Hough变换的快速处理方法;针对圆环结构边缘型散射中心的锥旋微多普勒模型,结合弹道中段目标识别等应用背景,提出了部分参数已知情况下时频曲线的Hough变换参数方程,并根据圆环结构的刚体特性和对称特性,提出了参数空间融合处理的方法,从而提高了估计精度;针对实际目标散射中心之间强度不一致的情况,提出了基于频域“CLEAN”思想的多分量微多普勒信号参数估计方法,避免了对时域信号幅度进行估计,能够有效地对不同强度信号的微多普勒参数进行估计;针对理想点散射情况下质心运动时微动目标回波的多普勒模型,利用多项式相位信号和正弦调频信号的高阶瞬时矩特性,采用多时延高阶瞬时矩处理将正弦调频分量和多项式相位分量解耦,提出了通过正弦调频信号和线性调频信号的TFD-Hough变换分步估计正弦调频—多项式相位信号参数的方法,可以同时估计出目标的微多普勒参数和平动多普勒参数,并根据正弦调频信号和线性调频信号的时频脊-随机Hough变换,提出了正弦调频—多项式相位信号参数估计的快速算法。
     最后,根据目标运动参数、几何结构参数与微多普勒参数的对应关系,研究了微动目标物理特征的提取技术,并开展了相关的微动目标动态测量实验。以毫米波导引头的目标识别为应用背景,开展了毫米波导引头旋转目标外场测量实验,验证了理想散射情况下微多普勒的参数估计算法的有效性,并通过实测数据处理提取了旋转目标物理特征;以弹道中段目标识别为应用背景,提出了一种空间进动目标宽带全极化动态散射特性的实验研究方法,并通过暗室测量实验初步验证了微波雷达对弹头进动微多普勒的可观测性,观察到空间进动目标常见结构的非理想散射引起的微多普勒,验证了圆环结构边缘型散射中心的锥旋微多普勒模型及其参数估计算法的有效性,通过实测数据处理提取了空间进动目标的物理特征。
     论文提出的微多普勒参数估计方法、微动目标特征提取方法和微动目标动态测量的实验方法将丰富微动目标雷达信息处理体系,对解决弹道导弹防御、防空作战和战场监视等领域中的目标识别应用有着一定的指导意义。
Some targets, such as wareheads, planes, vehicles and lives usually perform their unique micro-motion, which are determined by their intrinsic kinetics property. With the development of the radar technology and advanced signal processing technology, the micro-motion information is got more attraction in the area of target recognition. Currently, the application of micro-doppler, the frequency modulation to the radar signal by the micro-motion targets, is a hot problem in the field of academe and industry. In this thesis, based on the background of radar target recognition, we systematically study the radar signal processing and feature extraction of micro-motion targets by combining both the theoretical analysis and the experimental certifications. In summary, the work is composed with three parts according the study sequence: establishing micro-doppler model, parameter estimation of the micro-doppler and the physical feature extraction of the micro-motion targets.
     Firstly, we investigate the micro-doppler model and establish the explicit relationship among the kinetic parameters, the structure parameters and the micro-doppler parameters. At the same time, two different scattering mechanisms– both the ideal scattering and the nonideal scattering, are considered in the derivation of our micro-doppler models. In the case of ideal scattering centers, three basic micro-motions– rotation, vibration and coning, are modeled into a uniform expression. Then, the frequency, time-frequency and high-order instantaneous moment characteristics of these micro-motions are studied. In the case of the nonideal scattering centers, we analyze the influence of slip-type scattering center to the micro-doppler and establish the coning micro-doppler model of the ring edge structure. Also, considering the frequency modulation of the mass translation, we establish the Doppler model of the micro-motion targets with the mass translation and then give the relationship among the parameters of the signal, the mass translation and the micro-motion.
     Secondly, we study the parametric estimation method and the fast estimation algorithm of the micro-doppler by using the tool of TFD (Time Frequency Distribution)-Hough transformation. According to the micro-doppler model in the ideal scattering centers situation, an estimation method of sinusoidal frequency modulation signal with three parameters is proposed, where the window length choice of the pseudo wigner-ville distribution is studied; the discrete expression and the improvement of signal noise ratio are analyzed; and then a fast estimation method is given based on time-frequency ridge-random Hough transformation. According to the coning micro-doppler model of the ring edge structure, the parametric function of the Hough transformation of the time frequency curve when partial parameters are known is proposed, based on the target recognition in the ballistic midcourse. At the same time, the fusion method of the parametric space is given to improve the estimation precision according to the rigidity and symmetry of the ring structure. For the situation of non-even scattering intensity, a parametric multi-component micro-doppler estimation method based on“CLEAN”in frequency domain is proposed, which can avoid estimating of the signal amplitude. According to the Doppler model of the micro-motion targets with the mass translation in the case of ideal scattering centers, the parameter estimation of the SinFM-PPS (Sinusoidal Frequency modulation-Polynomial Phase Signal) are proposed based on the high instantaneous moment character of the SinFM signal and the PPS signal. The algorithm uses the multilag high instantaneous moment transformation to decouple the SinFM and PPS components. Then, by using the TFD-Hough transformation of the SinFM and linear FM signals, we propose an estimation method to obtain the parameters of the micro-doppler and the mass Doppler step by step. Furthermore, we give a fast estimation algorithm for SimFM-PPS based on the time frequency ridge-random Hough transformation of the SinFM and linear FM signals.
     Finally, we investigate the physical feature extraction method based on the relationship among the kinetic parameters, the structure parameters and the micro-doppler parameters. In the meanwhile, two dynamic measurement experiments of the micro-motion targets are carried out. Based on the application of the target recognition of the millimeter wave seeker, an outdoor experiment to measure of the rotating target by the millimeter wave seeker was carried out. Through the experiment, the micro-doppler parameter estimation method for the ideal scattering center is verified, and the physical features of the rotating target are extracted. Based on the target recognition in the ballistic midcourse, an experimental research method of the wideband full-polarization dynamic scattering properties is proposed for the space precession target. The observability of the micro-Doppler of the precession target by microwave radar is demonstrated and also the non-ideal scattering centers caused by the normal structure of the warhead are observed.
     The coning micro-doppler model of the ring edge structure and the signal processing method are verified. The physical features of the space precession target are extracted. The parameter estimation of micro-doppler, the feature extraction of micro-motion targets and the experimental method of dynamic measurement of micro-motion targets, which are proposed in the thesis, will improve the theoretical architecture of radar information processing of micro-motion targets and furthermore support the target recognition application of ballistic missile defense, anti-aircraft combat and battlefield surveillance.
引文
[1] Rihaczk A W, Hershkowitz S J. Theory and practice of radar target identification [M]. Boston: Artech House, 2000.
    [2] V. G. Nebabin. Methods and techniques of radar recognition [M]. Boston: Artech House, 1995.
    [3]郭桂蓉,庄钊文,陈曾平.电磁特征抽取与目标识别[M].长沙:国防科技大学出版社, 1995.
    [4]黄培康.反导系统中的目标识别技术[J].战略防御. 1981(5):1-14
    [5]许小剑,黄培康.防空雷达中的目标识别技术[J].系统工程与电子技术, 1995, 17(5): 48-62
    [6]黄培康.聚焦雷达“热点”-参加2003年国际雷达会议后感[J].系统工程与电子技术, 2003, 25(10): 1131-1312
    [7] V. C. Chen, F. Li, S. Ho, H Wechsler. Micro-doppler effect in radar: phenomenon, model and simulation study[J]. IEEE Trans. AES,2006, 42(1): 2-21
    [8]黄培康,殷红成,许小剑.雷达目标特性[M].北京:电子工业出版社. 2005
    [9]罗宏.动态雷达目标的建模与识别研究[D].北京:航天工业总公司第二研究院, 2000.
    [10] Ingwersen P.A., Lemnios W.Z., Radars for ballistic missile defense Research [J]. The Lincoln Laboratory Journal, 2000, 12(2): 245-266.
    [11] Stone M.L., Banner G.P., Radars for the detection and tracking of ballistic missiles, satellites, and Planets [J]. The Lincoln Laboratory Journal, 2000, 12(2): 217-244.
    [12] Gschwendtner A.B., Keicher W.E., Development of coherent laser radar at Lincoln Laboratory [J]. Lincoln Laboratory Journal, 2000, 12(2): 383-396.
    [13] Camp W.W., Mayhan J.T. and O’Donnell R.M., Wideband radar for ballistic missile defense and range-Doppler imaging of satellites [J]. The Lincoln Laboratory Journal, 2000, 12(2): 267-280.
    [14] Lemnios W.Z., Grometstein A.A., Overview of the Lincoln Laboratory ballistic missile defense program [J]. The Lincoln Laboratory Journal, 2002, 3(1): 9-32.
    [15] Cuomo K.M., Piou J.E. and Mayhan J.T., Ultra-wideband coherent processing [J]. The Lincoln Laboratory Journal, 1997, 10(2): 203-222.
    [16] Upton L.O., Thurman L.A., Radars for the detection and tracking of cruise missiles [J]. The Lincoln Laboratory Journal, 2000, 12(2):355-366.
    [17] K. Schultz, S. Davidson, A. Stein, J. Parker. Range doppler laser radar for midcourse discrimination: the firely experiments[C]// 2nd Annual AIAA SDIO Interceptor Technology Conference. June 6-9, 1993. Albuquerque, NM.
    [18] Baker B.D., Kendall W.B., TMR processing procedures for GSRS spin and attitudemeasurements[R]. A074947, AD, MARK RESOURCES Inc., Torrance, CA , 1979.
    [19] Nunn E.C., The US army white sands missile range development of target motion resolution[J]. In: Record of IEEE Electronics and Aerospace Systems Conventions, Arlington, VA, USA, Sep. 1980: 346-352.
    [20] Nunn E.C., Target motion resolution and its impact on the USA Army White Sands Missile Range[C]. In: Record of Asilomar Conference on Circuits, Systems & Computers, Pacific Grove, CA, USA, Nov. 1979, 589-593.
    [21] Rihaczek A.W., Hershkowitz S.J., Theory and Practice of Radar Target Identification[M]. Boston: Artech House, 2000, 581-626.
    [22] Rihaczek A.W., Hershkowitz S.J., Radar Resolution and Complex-Image Analysis[M]. Boston: Artech House, 1996.
    [23] Jaenisch H., Discrimination via Phased Derived Range[R]. MDA-02-003, Missile Defense Agency Small Business Innovation Research Program, 2002. http://www.dodsbir.net/selections/abs021/mdaabs021.htm
    [24] Holzrichter J.F., S-band radar micro-Doppler signatures for BMD discrimination[R]. MDA-04-137, Missile Defense Agency Small Business Innovation Research Program, 2004. http://www.dodsbir.net/sitis/archives_display_topic.asp?Bookmark=19463
    [25]刘永祥,黎湘,庄钊文.空间目标进动特性及在雷达识别中的应用[J].自然科学进展. 2004, 14(11): 1329-1332.
    [26]金文彬,刘永祥,任双桥等.锥体目标空间进动特性分析及其参数提取[J].宇航学报. 2004, 25(4): 408-410.
    [27]陈行勇,黎湘,郭桂蓉等.微进动弹道导弹目标雷达特征提取[J].电子与信息学报. 2006, 28(4): 643-646.
    [28]冯德军.弹道中段目标雷达识别与评估研究[D].博士学位论文,长沙:国防科技大学
    [29] He Sisan, Zhou Jianxiong, Zhao Hongzhong. Estimating the Precession Angle of Ballistic Targets in Midcourse Based on HRRP Sequence[C]. IEEE Radar Conference, 2008: 1006-1009
    [30]贺夏.基于雷达电磁散射特性的空间目标状态分析研究[D].硕士学位论文,长沙:国防科技大学, 2007
    [31]魏建功.弹道中段目标ISAR成像与特征提取研究[D].硕士学位论文,长沙:国防科技大学, 2006
    [32]王涛,周颖,王雪松.雷达目标的章动特性与章动频率估计[J].自然科学进展.2006, 16(3): 344-350
    [33]朱玉鹏.复杂运动目标ISAR及MIMO雷达成像技术研究[D].长沙:国防科技大学, 2009
    [34]金光虎.中段弹道目标ISAR成像及物理特性反演技术研究[D].长沙:国防科技大学. 2009
    [35]刘慧敏.宽带雷达空间目标物理特性反演与融合识别技术研究[D].长沙:国防科技大学. 2009
    [36]高红卫,谢良贵,文树梁等.摆动椎体目标微多普勒分析和提取.电子学报, 2008, 36(12): 2497~2502.
    [37]宁超,周平.弹头微运动实验室模拟测量研究[C].第十届全国雷达学术年会论文集. 2008: 1230-1233.
    [38]刘进,李金梁,马梁等.“旋转目标微多普勒提取方法研究”会议交流PPT [C].第十届全国雷达学术年会论文集. 2008: 998-1001.
    [39]刘进,王雪松,马梁等.空间进动目标动态散射特性的实验研究[J].航空学报. 2010, 31(5): 1014-1023
    [40] Kouemou G., Opitz F., Wavelet-based radar signal processing in target classification[C]. International Radar Symposium, Berlin, Germany, 2005.
    [41] Misiurewicz J., Kulpa K. and Czekala Z., Analysis of recorded helicopter echo[C]. In: Proceedings of IEE International Conference on Radar Systems, Edinburgh, UK, Oct. 1997, 449-453.
    [42] Rajan B., Ling H., A fast algorithm for simulating doppler spectra of targets with rotating parts using the shooting and bouncing ray technique [J]. IEEE Transactions on antennas and propagation, 1998, 46(9): 1389-1391.
    [43] Wellman R.J., Silvious J.L., Doppler signature measurements of a Mi-24 Hind-D helicopter at 92 GHz[R]. ARL-TR-1637, AD, Air Research Laboratory, Adelphi, Maryland, July 1998.
    [44] S. Lawrence Marple Jr., Large dynamic range time-frequency signal to helicopter doppler radar data[C]. ISSPA Conference, 2001, 1: 260-263.
    [45] Lavielle M., Lévy-Leduc Céline, Semiparametric estimation of the frequency of unknown periodic functions and its application to laser vibrometry signals[J]. IEEE Transactions on signal processing, 2005, 53(7): 2306-2314.
    [46] Nalecz M., Rytel-Andrianik R. and Wojtkiewicz A., Micro-Doppler analysis of signal received by FMCW radar[C]. International Radar Symposium, Dresden, Germany, 2003.
    [47] Greneker E.F., Geisheimer J.L. and Asbell D., Extraction of micro-Doppler data from vehicle targets at x-band frequencies[C]. In: Proceedings of SPIE on Radar Sensor Technique, Orlando, USA, Apr. 2001, 4374: 1-9.
    [48] Stankovic LJ., Thayaparan1 T. and Djurovic I., Time-frequency representation based approach for separation of target rigid body and micro-Doppler effects in ISAR imaging[J]. http://www.etfprog.cg.ac.yu/B36.pdf
    [49] Thayaparan T., Abrol S. and Riseborough E., Micro-Doppler feature extraction of experimental helicopter data using wavelet and time-frequency analysis[C]. In: Proceedingsof International Conference on Radar Systems, Brest, France, 2004.
    [50] Kleinman R., Mack R., Scattering by linearly vibrating objects[J]. IEEE Transactions on Antennas and Propagation, 1979, 27(3): 344-352.
    [51] Subotic N.S., Thelen B.J. and Carrara D.A., Cyclostationary signal models for the detection and characterization of vibrating objects in SAR data[C]. In: Record of the Thirty-Second Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, Nov. 1998.
    [52]贺治华.机载毫米波雷达目标识别关键技术研究[D].中国长沙:国防科技大学博士学位论文,2005年12月.
    [53]丁建江.防空雷达目标识别技术[M].北京:国防工业出版社. 2008.
    [54] Shen C.N., Waeber B. and Girata L., et al., Project Radiant Outlaw[C]. In: Proceedings of SPIE on Airborne Reconnaissance XVIII, San Diego, CA, USA, Jul. 1994, 2272: 63-74.
    [55] Lovett A., Shen C.N., Radiant Outlaw technology for non-cooperative identification[C]. Proceedings of TECOM Test Technology Symposium' 97, March 1997.
    [56] Kulpa K., Continuous wave radars-monostatic, multistatic and network[C]. International Radar Symposium, Berlin, Germany, 2005.
    [57] Stove A.G., Sykes S.R., A Doppler-based automatic target classifier for a battlefield surveillance radar[J]. In: Proceedings of IEEE International Conference on Radar, Edinburgh, UK, October 2002, 419-423.
    [58] Lei J.J., Lu C., Target classification based on micro-Doppler signatures[C]. In: Proceedings of IEEE International Conference on Radar, Washington, USA, May 2005, 179-183.
    [59] Cai C, Liu W, Fu J S, et al. Empirical Mode Decomposition of Micro-Doppler Signature[C]. 2005.
    [60] Ling H., Exploitation of microdoppler and multiple scattering phenomena for radar target recognition[R]. A375771, AD, The University of Texas at Austin, Austin, USA, 2004.
    [61]张焕胜.机载SAR地面运动目标检测与成像技术研究[D].中国科学院电子学研究所,2006.
    [62]张翼.人体微动雷达特征研究[D].长沙:国防科技大学研究生院, 2009.
    [63]孙光才,白雪茹,周峰等.一种新的无源压制性SAR干扰方法[J].电子与信息学报. 2009, 31(3): 610-613.
    [64]吴晓芳. SAR-GMTI运动调制干扰技术研究[D].长沙:国防科技大学研究生院, 2009.
    [65] Ruegg M, Meier E, Nuesch D. Vibration and Rotation in Millimeter-Wave SAR. IEEE trans GRS, 2007, 45(2): 293~304.
    [66] Chen V.C., Ling H., Time-Frequency Transforms for Radar Imaging and Signal Analysis[M]. Boston: Artech House, 2002, 93-104.
    [67] Chen V.C., Time-frequency analysis for radar imaging, target detection, and feature extraction[R]. 2004 IEEE Radar Conference -Workshop 2.3, 2004.
    [68] Li J.F., Model-based Signal Processing for Radar Imaging of Targets with Complex Motions [D]. Doctor Degree Thesis, University of Texas at Austin, Austin, USA, August 2002.
    [69] Sparr T, Krane B. Micro-Doppler analysis of vibrating target in SAR[J]. IEE Proc.-Radar Sonar Navig. 2003, 150(4): 277-283.
    [70] L. Stankovic, I. Djurovic, T. Thayaparan. Separation of target rigid body and micro-doppler effects in ISAR imaging[J]. IEEE trans on AES,2006, 42(4): 1496-1506
    [71]张群,罗斌凤,管桦等.基于微Doppler提取的具有旋转部件雷达目标成像[J].自然科学进展. 2007, 17(10): 1410-14170.
    [72] P. Setlur, M. Amin, F. Ahmad, et al. Indoor Imaging of Targets Enduring Simple Harmonic Motion Using Doppler Radars[C].In: 2005 IEEE International Symposium on Signal Processing and Information Technology,2005.
    [73]孙照强,李宝柱,鲁耀兵.弹道目标章动特性及其微多普勒研究[J].现代雷达. 2009, 31(4): 24-27.
    [74]陈行勇.微动目标雷达特征提取技术研究[D].长沙:国防科技大学研究生院, 2006.
    [75] Zhang Z, Pouliquen P O. Acoustic micro-Doppler radar for human gait imaging[J]. J. Acoust. Soc. Am, 2007, 121(3): 110~113.
    [76] Anderson M G, Rogers R L. Micro-Doppler analysis of multiple frequency continuous wave radar signatures[C]. Radar Sensor Technology XI. Proc. of SPIE Vol. 6547, 2007.
    [77] Stove A.G., Sykes S.R., A Doppler-based automatic target classifier for a battlefield surveillance radar[C]. In: Proceedings of IEEE International Conference on Radar, Edinburgh, UK, October 2002, 419-423.
    [78] G. E. Smith, K. Woodbridge, C. J. Baker. Micro-Doppler Signature Classification[C], In: Proceedings of the 3rd European Radar Conference . 2006
    [79] V. C. Chen. Spatial and Temporal Independent Component Analysis of Micro-Doppler Features[C].
    [80] Y. Yang, J. Lei, W. Zhang, et al. Target Classification and Pattern Using Micro-Doppler Radar Signatures[C].In: SNPD' 06,2006
    [81] T. Thayaparan, et al. Micro-Doppler-based target detection and feature extraction in indoor and outdoor environments, J. Franklin Inst. (2008), (doi:10.1016/j.jfranklin.2008.01.003)
    [82]白雪茹,孙光才,周峰,邢孟道,保铮.基于旋转角反射器的ISAR干扰新方法[J].电波科学学报,2008,23(5):867-872
    [83] Drain I E. The laser doppler technique[M] . New York : John Wiley , 1980. 36-45.
    [84] Ghaleb A, Vignaud L, Nicolas J M. Micro-Doppler analysis of wheels and pedestrians in ISAR imaging[J]. IET Signal Processing. 2008, 2(3): 301-311.
    [85] Setlur P, Amin M, Thayaparan T. Micro-Doppler Signal Estimation for Vibrating and Rotating Targets. 2005.
    [86] Jaakko T. Astola, Karen O. Egiazarian, Pavel A. Molchanov, Alexander V. Totsky. Doppler radar signatures analysis by using joint bispectrum-based time-frequency distrubutions[C]. 2009:137-144
    [87]陈行勇,黎湘,郭桂蓉等.基于旋翼微动雷达特征的空中目标识别[J].系统工程与电子技术. 2006, 28(2): 372-375
    [88]陈行勇,刘永祥,姜卫东,黎湘,郭桂蓉.微动目标多普勒谱分析和参数估计[J].信号处理. 2008,24(1):1-6
    [89]孙照强,鲁耀兵,李宝柱,彭军.宽带信号及其特征的微多普勒提取技术研究[J].系统工程与电子技术. 2008,30(11):2040-2044
    [90]苏婷婷,孔令讲,杨建宇.基于多谐波微多普勒信号分析的目标摄动参数提取方法[J].电子与信息学报. 2008,30(11):2646-2649
    [91] T. Thayaparan, S. Abrol, E. Riseborough. Micro-Doppler radar signatures for intelligent target recognition[R]. DRDC Ottawa TM 2004-170.
    [92] T. Thayaparan, S. Abrol, S. Qian. Micro-Doppler Analysis of Rotating Target in SAR[R]. DRDC Ottawa TM 2005-204
    [93] Li J., Ling H., Application of adaptive chirplet representation for ISAR feature extraction from targets with rotating parts[J]. IEE Proceedings on Radar, Sonar and Navigation, 2003, 150(4): 284-291.
    [94]陈行勇,刘永祥,黎湘等.雷达目标微多普勒特征提取[J].信号处理, 2007, 23(2): 222-226
    [95]陈行勇,刘永祥,黎湘等.微多普勒分析与参数估计[J].红外与毫米波学报, 2006, 25(5): 360-363
    [96]李康乐,姜卫东,黎湘.弹道目标微动特征分析与提取方法[J].系统工程与电子技术,2010,32(1):115-118
    [97]魏玺章,姚辉伟,丁小峰,黎湘.变区间分组检验相乘积累进动周期估计[J].电子学报,2010,38(1):135-140
    [98]罗迎,张群,柏又青,朱丰.线性调频步进信号雷达微多普勒效应分析及目标特征提取[J].电子学报,2009,37(12):2741-2746
    [99]周剑雄.光学区雷达目标三维散射中心重构理论与技术[D].长沙:国防科技大学研究生院, 2006
    [100]贺思三.雷达成像中的非理想散射中心分析及特征提取技术[D].长沙:国防科技大学研究生院, 2005
    [101]黄培康,殷红成,许小剑.雷达目标特性[M].北京:电子工业出版社. 2005
    [102] M. E. Bechtel. Short pulse target characteristics. Atmospheric effects on radar targetidentification and imaging, H. E. Jesle(ed.). Bosten/Holland: Reidel Publishing, 1976:3-53
    [103]Л.Т.图契科夫主编,马清海等译.飞行器的雷达特性. 1988
    [104] Peter N. Stoyle. ISAR image interpretation[C]. Non-cooperative air target identification using radar, NATO RTO meeting proceedings. Mannheim, Germany. April, 1998
    [105] Barbarossa S. Analysis of Multicomponent LFM Signals by a Combined Wigner-Hough Transform. IEEE trans on Signal Processing, 1995, 43(6): 1511~1515.
    [106] Barbarossa S, Lemoine O. Analysis of Nonlinear FM Signal by Pattern Recognition of Their Time-Frequency Reprensentation. IEEE Signal Processing Letters, 1996, 3(4): 112~115.
    [107] S. Krishnan, R.M. Rangayyan, Detection of nonlinear frequency modulated components in the time-frequency plane by using an array of accumulators, Proceedings of IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis, Pittsburgh, PA, October 1998, pp. 557-560.
    [108]张子瑜,吴镇扬,李想等.基于Hough变换的任意时频分布线条提取.电子学报, 2001, 29(4): 434~435.
    [109] Rangayyan R M, Krishnan S. Feature identification in the time-frequency plane by using the Hough-Radon transform. Pattern Recognition, 2001, 34(2001): 1147~1158.
    [110] Cirillo L A, Zoubir A M. Direction Finding of Nonstationary Signals Using a Time-Freqency Hough Transform. ICASSP 2005. 2005.
    [111] Cirilo L A, Zoubir A M, Amin M G. Estimation of FM Parameters Using a Time-Frequency Hough Transform. ICASSP 2006. 2006.
    [112] Katkovnik V, Stankovic L. Instantaneous frequency estimation using the Wigner distribution with varying and data-driven window length. IEEE Trans. Signal Processing, 1998, 46(9): 2315~2326.
    [113] Ivanovic V N, Dakovic M, Stankovic L. Performance of Quadratic Time–Frequency Distributions as Instantaneous Frequency Estimators. IEEE trans on SP, 2003, 51(1): 77~88.
    [114] Stankovi L, Katkovnik V. Algorithm for the Instantaneous Frequency Estimation Using Time-Frequency Distributions with Adaptive Window Width. IEEE SIGNAL PROCESSING LETTERS, 1998, 5(9): 224~227.
    [115] Sekhar S C, Sreeniva T V. Adaptive spectrogram vs. adaptive pseudo-Wigner–Ville distribution for instantaneous frequency estimation. Signal Processing, 2003, 83: 1529~1543.
    [116] Hussain Z M, Boashash B. Adaptive Instantaneous Frequency Estimation of Multicomponent FM Signals Using Quadratic Time-Frequency Distributions. IEEE trans Signal Process., 2002, 50(8): 1866~1876.
    [117] Barkat B. Instantaneous Frequency Estimation of Nolinear Frequency-ModulatedSignals in the Presence of Multiplicative and Additive Noise. IEEE trnas on S.P., 2001, 49(10): 2214~2222.
    [118] Hough P. V. C. Method and means for recognizing complex patterns. U. S. Patent 3,069,654. Dec, 1962
    [119] Hogbom J A. Aperture synthesis with non-rectangular distribution of interferometric baselines [J]. Aston. Astropys. Suppl. 1974, 15(3): 417-426.
    [120] Gough P T. A Fast Spectral Estimation Algorithm Based on the FFT [J]. IEEE Trans. SP. 1994, 42(6): 1317-1322.
    [121]邹虹.多分量线性调频信号的时频分析[D].西安:西安电子科技大学, 2000.
    [122]李英祥.低截获概率信号非平稳处理技术研究[D].成都:电子科技大学, 2002.
    [123] Peleg S, Borat B. The Cramer-Rao Lower Bound for Signals With Constant Amplitude and Polynomial Phase. IEEE trans on Signal Processing, 1991, 39(3): 749~752.
    [124] Barbarossa S, Scalione A, Giannakis G B. Product High-Order Ambiguity Function for Multicomponent Polynomial-Phase Signal Modeling. IEEE trans SP, 1998, 46(3): 691~707.
    [125] Barbarossa S, Petrone V. Analysis of Polynomial-Phase Signals by the Integrated Generalized Ambiguity Function[J]. IEEE trans SP. 1997, 45(2): 316-327.
    [126]高红卫,谢良贵,文树梁等.加速度对微多普勒的影响及其补偿研究[J].系统工程与电子技术. 2009, 30(3): 705-711.
    [127] Gini F, Giannakis G B. Hybrid FM-Polynomial Phase Signal Modeling: Parameter Estimation and Cramer-Rao Bounds[J]. IEEE Trans on Signal Processing. 1999, 47(2): 363-377.
    [128]丁康,谢明,杨志坚.离散频谱分析校正理论与技术[M].北京:科学出版社, 2008
    [129] V. C. Chen, F. Li, S. Ho, H Wechsler. Micro-doppler effect in radar: phenomenon, model and simulation study[J]. IEEE Trans on AES,2006, 42(1): 2-21
    [130] P. Setlur, M. Amin, F. Ahmad, et al. Indoor Imaging of Targets Enduring Simple Harmonic Motion Using Doppler Radars[C].In: 2005 IEEE International Symposium on Signal Processing and Information Technology,2005
    [131]邹长春,史謌.一类正弦曲线的Hough变换快速检测方法[J].计算机工程与应用,2002,: 1-3
    [132] Duda R. O, Hart P. E. Use fo the Hough transformation to detect lines and curved in pictures[J]. Communication of the ACM,1972,15(1): 11-15
    [133] L. Xu, E. Oja, P. Kultanen. A new curve detection method: Randomized Hough Transform(RHT)[J]. Pattern Recognition Letters, 11(1990): 331-338
    [134] L. Xu, E. Oja. Randomized Hough Transform(RHT): basic mechanisms, algorithms, and computational complexities[J]. CVGIP: Image Understanding,1993, 57(2): 131-154
    [135]李泉林,周渊.随机Hough变换的概率模型:有限数据点[J].计算机学报,2002, 25(3): 238-246
    [136] N. Kiryati, H. Kalviainen, S. Alaoutinen. Randomized or probabilistic Hough transform: unified performance evaluation[J]. Pattern Recognition Letters , 21(2000): 1157-1164
    [137]王国宏,孔敏,何友. Hough变换及其在信息处理中的应用[M].北京:兵器工业出版社,2005
    [138] A. Torii, A. Imiya. The randomized-Hough-transform-based method for great-circle detection on shpere[J]. Pattern Recognition Letters, 28(2007): 1186-1192
    [139]胡正平,王成儒,于莉娜.基于改进随机Hough变换的虹膜定位算法[J].仪器仪表学报,2003, 24(5): 477-489
    [140] R. A. McLaughlin. Randomized Hough Transform: improved ellipse detection with comparison[J]. Pattern Recognition Letters, 19(1998): 299-305
    [141] Z. Cheng, Y. Liu. Efficient technique for ellipse detection using restricted randomized Hough transform[C].In: proceedings of international conference on information technology: coding and computing( ITCC'04),2004
    [142] W. Lu, J. Tan. Detection of incomplete ellipse in images with strong noise by iterative randomized Hough transform( IRHT)[J]. Pattern Recognition , 41(2008): 1268-1279
    [143]薛国新,孙玉强.正弦曲线三点拟合问题的一种新方法[J].计算机仿真,2006, 23(2): 107-109
    [144]李世忠,李相平,李亚昆.毫米波导引头的技术特点及发展趋势.制导与引信, 2007, 28(1): 11-20
    [145]付强.毫米波导引头智能化信息处理技术研究.国防科技大学博士学位论文, 2004
    [146]贺志毅.合成宽带毫米波雷达导引头的理论及实现.博士学位论文,北京:航天科工集团二院,2002
    [147]韩文勇,王东进.转动对细长体目标一维成像的影响.红外与毫米波学报,2001, 20(2): 127-132
    [148]张冠杰,张群,张涛等.直升机振动环境下的毫米波调频步进信号仿真分析.西安电子科技大学学报,2005, 32(2): 247-252
    [149]庄钊文,刘永祥,黎湘.目标微动特性研究进展.电子学报,2007, 35(3): 520-525
    [150] M. Rüegg, E. Meier, D. Nüesch. Vibration and Rotation in Millimeter-Wave SAR. IEEE Trans GRS, 2007, 45(2): 293~304
    [151]陈军科.频率步进+PD毫米波制导雷达的工作模式分析.弹箭与制导学报,2003, 23(1): 27-30
    [152] V. C. Chen. Spatial and Temporal Independent Component Analysis ofMicro-Doppler Features[C]. Proceedings of International Radar Conference, 2005
    [153] C. Cai, W. Liu, J. S. Fu, et al. Empirical Mode Decomposition of Micro-Doppler Signature[C], Proceedings of International Radar Conference, 2005
    [154] T. Sparr, B. Krane. Micro-Doppler analysis of vibrating target in SAR[J]. IEE Proc.-Radar Sonar Navig.,2003, 150(4): 277-283
    [155] S. Barbarossa, O. Lemoine. Analysis of Nonlinear FM Signer by Pattern Recognition of Their Time-Frequency Reprensentation[J]. IEEE Signal Processing Letters,1996, 3(4): 112-115
    [156] P. Setlur, M. Amin, F. Ahmad, et al. Indoor Imaging of Targets Enduring Simple Harmonic Motion Using Doppler Radars[C].In: 2005 IEEE International Symposium on Signal Processing and Information Technology,2005
    [157] B. Boashash. Time Frequency Signal Analysis and Processing: A Comprehensive Reference[M]. Elsevier,2003
    [158] F. Hlawatsch, T. G. Manickam, R. L. Urbanke, et al. Smoothed pseudo-Wigner distribution, Choi-Willianms distribution, and cone-kernel representation: Ambiguity-domain analysis and experimental comparison[J]. Signal Processing,, 43 (1995): 149-168
    [159]马梁,刘进,王涛,李永祯,王雪松.旋转对称目标滑动型散射中心的微多普勒特性[J].中国科学.已录用
    [160]以光衡.陀螺理论与应用[M].北京:航空航天大学出版社. 1990.
    [161]张为华.导弹总体、控制与推进技术[M].国防科技大学航天与材料工程学院, 2003.
    [162]马鹏飞.弹头设计[M].宇航出版社, 1999.
    [163]李贞柱等.雷达散射截面常用计算法[M].目标特性研究编辑部, 1981.
    [164] Ross R A. Investigation of Scattering Principles-Ⅲ: Analytical Investigation General Dynamics. Forth-Worth, Texas, AD 856560, 1969.
    [165] P. A. Ingwersen, William Z. Lemnios. Radars for Ballistic Missile Defense Research[J]. Lincoln Laboratory Journal. 2000, 12(2):245-266
    [166] D. R. Wehner. High Resolution Radar 2nd[M]. London: Artech House. 1994
    [167]王雪松.宽带极化信息处理的研究[D].博士学位论文,长沙:国防科技大学研究生院,1999
    [168] Agilent Technologies. E836B, E8363B, E8364B Agilent Technologies PNA Series Microwave Network Analyzers: Service Guide[M]. 2008
    [169]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社,2005
    [170] Z. Bao, C. Sun, M. Xing. Time-Frequency approaches to ISAR imaging of maneuvering targets and their limitations[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(3): 1091-1099
    [171] Jackson J A, Moses R L. A feature extraction algorithm for 3D scene modeling andvisualization using monostatic SAR[C]. Algorithms for Synthetic Aperture Radar Imagery XIII, E. G. Zelnio and F. D. Garber, eds, Proceedings of SPIE, 2006, vol. 6237
    [172] F. G. Stremler, Introduction to Communication Systems[M], 3rd ed. Reading, MA: Addison Wesley, 1990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700