共聚物微凝胶的制备及其溶胀性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前我国主干油田普遍采用线性聚丙烯酰胺类聚合物作为堵水调剖剂,取得了较明显的效果,但其存在耐温和抗盐性能差等缺点,因此研制耐温抗盐性能良好的新型聚合物具有重要的理论意义和实用价值。
     本文首先以亲水性丙烯酰胺(AM)和疏水性丙烯腈(AN)为主要单体,偶氮二异丁腈(AIBN)为引发剂,N,N’-亚甲基双丙烯酰胺(Bis-A)为交联剂,聚乙烯吡咯烷酮(PVP K-30)为稳定剂,在乙醇/水的混合介质中进行分散共聚,制得了一系列P(AM-co-AN)微凝胶,该微凝胶具有良好的溶胀性能。分别讨论了聚合反应条件对反应转化率和微凝胶粒径的影响,可将微凝胶的粒径控制在0.63~1.82μm范围内。采用扫描电子显微镜(SEM)、差示扫描量热仪(DSC)和热重分析仪(TGA)考察了AN的用量对微凝胶形态及热性能的影响,发现在一定范围内,随着反应体系中AN用量的增大,所得微凝胶粒径分布更趋于均一,热性能提高,有利于其在较高温度下使用。
     为了进一步研究共聚单体对微凝胶性能的影响,以AM为主单体,AN、2-丙烯酰胺基-2-甲基丙磺酸(AMPS)为共聚单体,2,2’-偶氮二[2-(2-咪唑啉-2-代)丙烷]二盐酸盐(VA-044)为引发剂,Bis-A为交联剂,PVP K-30为稳定剂,通过分散共聚分别制备了一系列二元共聚P(AM-co-AMPS)微凝胶和三元共聚P(AM-co-AN-co-AMPS)微凝胶。结果表明所得共聚物微凝胶具有较好的溶胀性能,最大溶胀度(V/V0)可达530,和一定的耐温抗盐性,为其作为油田堵水调剖剂提供了技术保证。
     采用分散共聚法,在适当的反应条件下,可制得球形结构完整、粒径分布均一、粒径可控的共聚物微凝胶,而共聚单体的加入有效的改善了微凝胶的耐温抗盐性能,使其适用于油田特殊开采环境中的堵水调剖。
Linear polyacrylamide polymers were widely uesd as water plugging and profile control agent in main oil fields in China. But they had poor temperature-resistance and salt-resistance. Exploring a novel polymer with favorable temperature-resistance and salt-resistance properties was significantly important both in theory and in application.
     In this paper, a series of P(AM-co-AN) microgels were prepared by dispersion copolymerization of hydrophilic monomer acrylamide (AM) and hydrophobic monomer acrylontrile (AN) using azobisisobutyronitrile (AIBN) as initiator, N,N’-methylenebisacrylamide (Bis-A) as cross-linker and polyvinylpyrrolidon (PVP K-30) as stabilizer in an aqueous alcoholic media which showed good swelling properties. The influences of copolymerization conditions on the reaction conversion rate and the average particle size of P(AM-co-AN) microgels were investigated respectively, and the average particle size of microgels was controlled in the range of 0.63 to 1.82μm. The effect of AM/AN mass ratio on the morphology and thermal properties of the microgels was also investigated by scanning electron microscopy (SEM), differential scanning calorimeter (DSC) and thermal gravimetric analysis (TGA). It was found that the size distributions of the microgels became more monodispersed and the thermal properties of the microgels was enhanced by increasing the content of AN comonomer so that they could be used at higher temperature.
     In order to study the effect of comonomers on the properties of the microgels further, P(AM-co-AMPS) and P(AM-co-AN-co-AMPS) microgels were synthesized by dispersion copolymerization using AM as main monomer, AN and 2-acrylamido-2- methylpropanesulfonic acid (AMPS) as comonomers, 2,2'-azobis[2-(2-imidazolin- 2-yl)propane] dihydrochloride (VA-044), Bis-A and PVP K-30 as initiator, cross-linker and dispersion stabilizer. The result indicated that the copolymer microgels showed good swelling properties, temperature-resistance and salt-resistance properties, and they may be used as water plugging material in oil exploitation.
     Copolymer microgels with narrow size distribution were prepared by dispersion copolymerization. The synthesized copolymer micrgels kept spherical structure and their sizes could be controlled by changing reaction parameters. Temperature-resistance and salt-resistance performances of microgels were improved by adding the comonomers, so that they could be used as water plugging and profile control agent in complex conditions in oil exploration.
引文
[1] Bradley M, Ramos J, Vincent B. Equilibrium and kinetic aspects of the uptake of poly(ethylene oxide) by copolymer microgel particles of N-isopropylacrylamide and acrylic acid[J]. Langmuir, 2005, 21: 1209-1215.
    [2] Staudinger H, Husemann E. Highly polymerized compounds. CXVI. The limiting swelling capability of polystyrene[J]. Berichte der Deutschen Chemischen Gesellschaft[Abteilung]B: Abhandlungen, 1934, 68: 1620.
    [3] Sehulze W A, Croueh W W. Solution viseosity of GR-S variation with conversion[J]. Industrial & Engineering Chemistry Research, 1948, 40: 151-154.
    [4] Baker W O. Microgel, a new macromolecule. Relation to sol and gel as structural elements of synthetic rubber[J]. Industrial & Engineering Chemistry Research, 1949, 41:511-520.
    [5] Funke W E. Microgels intramolecularly crosslinked macromolecules-potent components of organtic coatings[J]. Journal of Coating Technology, 1988, 60(767): 69-76.
    [6] Pelton R. Temperature-sensitive aqueous microgel[J]. Advances in Colloid and Interface Science, 2000, 85: 1-33.
    [7]龙明策,王鹏,郑彤.高吸水性树脂溶胀热力学及吸水机理[J].化学通报, 2002, (10): 705-709
    [8] Flory P J. Principles of polymer chemistry. New York: Cornell University Press, 1954.
    [9] Mahaveer D, Kurkuri, Tekrak M. Aminabhavi. Polyacrylomitrile-poly(vinylalcohol) membrane for the pervaoration separation of dirmethy fommamide and water mixtures[J]. Journal of Applied Polymer Science, 2004, 91(6): 4091-4097.
    [10]李清华. PVA/PEO水凝胶和PAAS/PVA水凝胶的性能及应用研究[D]: [硕士学位论文].苏州:苏州大学放射医学与防护学院, 2010.
    [11]刘机关,倪忠斌,熊万斌等.聚丙烯酰胺交联微球的制备及其粒径影响因素[J].石油化工, 2008, 37(10): 1059-1063.
    [12] Shen Y H, Zhang X Y, Lu J J, et al. Effect of chemical composition on properties of pH-responsive poly(acrylamide-co-acrylic acid) microgels prepared by inverse microemulsion polymerization [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 350: 87-90.
    [13] Voorn D J, Ming W. Polymer-clay nanocomposite latex particles by inverse pickering emulsion polymerization stabilized with hydrophobic montmorillonite platelets[J]. Macromolecules, 2006, 39: 2137-2143
    [14]马海霞,林梅钦,李明远等.交联聚合物微球体系性质研究[J].应用化工, 2006, 35(6): 453-455.
    [15]蒋永华,彭晓宏,谢宇燕.反相微乳液聚合制备阳离子聚丙烯酰胺微粒的研究[J].精细与专用化学品, 2004, 12(6): 17-19.
    [16] Peng X H, Shen J R, Xiao H N. Preparation and Retention of Poly(ethylene oxide)-grafted Cationic Polyacrymide Microparticles[J]. Journal of Applied Polymer Science, 2006, 101(1): 359-363.
    [17] Amold C A, Wallace A. Small particle polyacrylamide fo soil conditioning. AU 2008200162. 2008.
    [18]王红岩,周铭.微凝胶的制备及其在涂料中的应用[J].上海涂料, 2009, 47(10): 18-20
    [19] Tanaka H, Copolymerization of cationic monomers with acrylamide in an aqueous solution[J]. Journal of Polymer Scienc Part A: Polymer Chemistry, 1986(24): 29-36.
    [20] LI X Q, Yuan J J, Liu H, et al. Microgel-silica hybrid particles: Strategies for tunable nanostructure, composition, surface property and porphyrin functionaization[J]. Journal of Colloid and Interface Science, 2010, 348: 408-415.
    [21]赵勇,何炳林,哈润华.反相微乳液中疏水缔合型聚丙烯酰胺的合成及其性能研究[J].高分子学报, 2000, (5): 550-553.
    [22]赵强,张定军,陈振斌等.反相悬浮聚合制备淀粉-丙烯酰胺-丙烯酸共聚物暂堵剂[J].石油化工, 2011, 40(3): 308-311.
    [23]王晓娜,岳钦艳,高宝玉等.分散聚合法合成纳米有机阳离子聚合物PDMDACC-AM[J].化工学报, 2007, 58(7): 1868-1871.
    [24] Wang L J, Wang J P, Yuan S J, et al. Gamma radiation-induced dispersion polymerization in aqueous salts solution for manufacturing a cationic flocculant[J]. Chemical Engineering Journal, 2009, 149: 118-122.
    [25]戎非,李萍,袁春伟.沉淀聚合法制备右旋邻氯扁桃酸分子印迹聚合物微球[J].功能高分子学报, 2005, 18(4): 607-612.
    [26] Liu G Y, Yang X L, Wang Y M. Preparation of monodisperse hydrophilic polymer microspheres with N,N’-methylenediacrylamide as crosslinker by distillation precipitation polymerization[J]. Polymer International, 2007, 56(7): 905-913
    [27] He Y G, Li G, Yang F, et al. Precipitation polymerization of acrylamide with quaternary ammonium cationic monomer in potassium carbonate solution initiated by plasma[J]. Journal of Applied Polymer Science, 2007, 104(6): 4060-4067.
    [28] Guha S, Ray B, Mandal B M. Anomalous solubility of Polyacrylamide prepared by dispersion(precipitation) polymerization in aqueous tert-butyl alcohol[J]. Journal of Polymer Scienc Part A: Polymer Chemistry, 2001, 39: 3434-3442.
    [29]严艳,刘莲英,杨万泰.光引发丙烯酰胺沉淀聚合研究[J].北京化工大学学报, 2007,34(4): 393-396.
    [30] He Y G, Li G, Yang F, et al. Precipitation polymerization of acrylamide with quaternary ammonium cationic monomer in potassium carbonate solution initiated by plasma[J]. Journal of Applied Polymer Science, 2007, 104(6): 4060-4067.
    [31]杨超,黎钢,何彦刚等.丙烯酰胺与2-甲基丙烯酰氧乙基三甲基氯化铵在柠檬酸钾溶液中的沉淀聚合[J].石油化工, 2006, 35(2): 151-155
    [32] Vanderhoff J W, Bradford E B, Tarkowshi H L, et al. Inverse emulsion polymerization[J]. Advances in Chemistry Series, 1962, 34: 32-51.
    [33] Kurenkov V F, Osipova T M, Kuznetsov E V, et al. Inversion emulsion polymerization of acrylamide in a water-toluene mixture[J]. Vysokomolekulyarnye Soedineniya, Seriya B: Kratkie Soobshcheniya, 1978, 20(9): 647-650.
    [34] Thakur A, Wanchoo R K, Singh P, et al. Inverse emulsion polymerization of acrylamide[J]. Journal of Polymer Materials, 2006, 23(1): 39-46.
    [35] Glukhikh V, Graillat C, Pichot C. Inverse emulsion polymerization of acrylamide.Ⅱ. Synthesis and characterization of copolymers with methacrylic acid[J]. Journal of Polymer Science, Part A: Polymer Chemistry, 1987,25(4): 1127-1161.
    [36] Lu S J, Liu R X, Sun X M. A study on the synthesis and application of an inverse emulsion of amphoteric polyacrylamide as a retention aid in papermaking[J]. Journal of Applied Polymer Science, 2002, 84(2): 343-350.
    [37]彭晓宏,彭晓春,蒋永华.反相乳液共聚合制备两性丙烯酰胺共聚物的研究[J].高分子学报, 2007, (1): 26-30.
    [38] Candau F, Leong Y S. Kinetic study of the polymerization of acrylamide in inverse microemulsion[J]. Journal of Polymer Science: Polymer Chemistry Edition, 1985, 23: 193-214.
    [39] Candau F, Zekhnini Z, Heatley F, et al. Characterization of poly(acrylamide-co-acrylates) obtained by inverse microemulsion polymerization[J]. Coloid & Polymer Science, 1986, 264: 676-682.
    [40] Holtzscherer C, Durand J P, Candau F. Polymerization of acrylamide in nonionic microemulsions: Characterization of the microlatices and polymers formed[J]. Colloid & Polymer Science, 1987, 265: 1067-1074.
    [41] Carver M T, Hirsch E, Wittmann J C, et al. Percolation and particle nucleation in inverse microemulsion polymerization[J]. Journal of Physical Chemistry, 1989, 93: 4867-4873.
    [42] Carver M T, Candau F, Fitch R M. Effect of solution components on the termination mechanism in acrylamide microemulsion polymerizations[J]. Journal of Polymer Science, Part A: Polymer Chemistry, 1989, 27(7): 2179-2188.
    [43] Candau F, Zekhnini Z, Heatley F. Carbon-13 NMR study of the sequence distribution of poly(acrylamide-co-sodium acrylates) prepared in inverse microemulsions[J]. Macromolecules, 1986, 19(7): 1895-1902.
    [44] Omidian H, Zohuriaan-Mehr M J, Bouhendi H. Polymerization of sodium acrylate in inverse suspension stabilized by sorbitan atty esters[J]. European Polymer Journal, 2003, 39: 1013-1018.
    [45]刘海峰,薛屏.反相悬浮聚合技术的研究进展与应用[J].应用化工, 2005, 34(8): 460-463.
    [46] Kiatkamjornwong S, Siwarungson N, Nganbunsri A. In situ immobilization of alkalin protease during inverse suspension polymerization of polyacrylamide and poly(acrylamide-co-methacrylic acid) hydrogel beads[J]. Journal of Applied Polymer Science, 1999, 73(11): 2273-2291.
    [47] Niyazi B, David C S. Mercury sorption by“non-functional”crosslinked polyacrylamide[J]. Reactive and Functiona Polymers, 1995, 27(3): 155-161.
    [48] Ray B, Mandal B M. Dispersion polymerization of acrylamide[J]. Langmuir, 1997, 13: 2191-2196.
    [49] Cho M S, Yoon K J, Song B K. Dispersion polymerization of acrylamide in aqueous solution of Ammonium sulfate: synthesis and characterization[J]. Journal of Applied Polymer Science, 83: 1397-1405.
    [50]霍国华.化学工程领域发展报告[M].浙江:浙江大学出版社, 2011. 39
    [51]刘翔鹗.采油工程技术论文集[M].北京:石油工业出版社, 1999. 43, 82, 111, 164, 208, 229
    [52] Coste J P, Li Y, Bai B, et al. In-depth fluid diversion by pre-gelled particles. Laboratory study and pilot testing[C]. In: SPE/DOE Improved oil recovery symposium, Oklahoma: SPE 59362, 2000, 4.
    [53] Peng B, LI M Y, Ji S L, et al. Determination of the structure of polyacrylamide/aluminum citrate colloidal dispersion gel system[J]. Chinese Journal of Chemical Engineering, 1998, 6(2): 171-173.
    [54]彭勃,李明远,纪淑玲等.聚丙烯酰胺胶态分散凝胶微观形态研究[J].油田化学, 1998, 15(4): 358-361, 353.
    [55]董朝霞,吴肇亮,林梅钦等.交联聚合物线团的形态和尺寸研究[J].高分子学报, 2002, (4): 493-497.
    [56]李明远,董朝霞,吴肇亮.部分水解聚丙烯酰胺/柠檬酸铝交联体系分类探讨[J].油田化学, 2000, 17(4): 343-345.
    [57] Kheradmand H, Francois J. Hydrolysis of polyacrylamide and acrylic acid-acrylamide copolymers at neutral pH and high temperature[J]. Polymer, 1988, 29(5): 860-870.
    [58]王玮,王新龙,张跃军.反相乳液聚合法制备阳离子聚丙烯酰胺及其絮凝性能研究[J].石油与天然气化工, 2006, 35(2): 127-129.
    [59]吴雪平,杨永刚,凌立成等.丙烯腈-丙烯酰胺溶液共聚合及其产物热性能研究[J].新型炭材料, 2003, 18(3): 196-201.
    [60]罗开富,叶林,黄荣华. AM/MEDMDA阳离子型疏水缔合水溶性聚合物溶液性能的研究[J].高分子材料科学与工程, 1999, 15(1): 145-148.
    [61]王中华.国内油田用水溶性AMPS共聚物[J].油田化学, 1999, 16(1): 81-85.
    [62]林梅钦,董朝霞,彭勃等.交联聚丙烯酰胺微球的形状与大小及封堵特性研究[J].高分子学报, 2011, (1): 48-53.
    [63]蒋留峰,钟传蓉,徐敏等.接枝丙烯酰胺共聚物的溶液性能和微结构[J].物理化学学报, 2010, 26(3): 535-440.
    [64]花兴艳,王源升,赵培仲等.聚(丙烯酸-丙烯酰胺)高吸水剂的溶胀[J].石油化工高等学校学报, 2006, 19(4): 51-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700