基于力平衡条件下等离子弧焊小孔形状分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
穿孔等离子弧焊接过程中,小孔的形成与维持涉及到复杂的物理机制。小孔的形状和尺寸直接决定着工件沿厚度方向的热作用、熔深大小以及焊缝成形质量。深入分析和研究等离子弧焊小孔的形成过程及其对焊缝成形的影响对于拓宽其工艺裕度和提高其过程稳定性,具有重要的理论意义和工程实用价值。
     本研究首先分别对6 mm和8 mm厚度的不锈钢板进行了穿孔等离子弧焊接工艺实验,测量了不同工艺条件下的等离子弧尾焰电压、焊缝轮廓形状和尺寸,为对小孔和熔池的建模获得了实验数据。
     在深入分析等离子弧焊接熔池受力状态的基础上,根据小孔壁面上的力平衡条件,建立了等离子弧焊小孔模型。利用模型,分别对6 mm和8 mm厚不锈钢板PAW焊接准稳态小孔的形状和尺寸进行了数值计算。计算结果与实验测试的穿孔情况吻合良好,证明了所建立的小孔模型的合理性和适用性。
     根据达到准稳态时小孔壁面各点的受力状态,对PAW焊接过程中小孔从“盲孔”到“穿孔”的转变机制进行了初步的探讨,分析计算了小孔壁面上各点的作用力的大小。计算结果表明,穿孔等离子弧焊接过程形成穿孔主要是由于电弧力随焊接电流增加发生剧烈变化,而小孔深度突变的原因是在一定条件下电弧力在熔池局部的进一步集中。
     采用小孔模型与组合式体积热源模型相结合的方式,利用计算出的小孔形状与尺寸,对组合式体积热源模型的热源参数进行标定。分别计算了6 mm和8 mm厚不锈钢板的焊接温度场,将焊缝横截面的实验测试结果与数值模拟结果进行了对比,结果表明,两者基本吻合。
In keyhole plasma arc welding (PAW), the forming and sustaining of the keyhole involves complicated physical mechanism. The shape and dimensions of the keyhole directly determine the heat interaction along the thickness direction of the workpiece, the penetration depth and the weld bead quality. It has theoretical and practical significance to deeply analyze and study the keyhole behaviors and its effect on the forming of the weld bead.
     First of all, the experiments of Keyhole PAW on the 6 mm-thickness and 8 mm-thickness stainless steel workpieces are conducted. And the efflux plasma voltage, and the shape and sizes of PAW welds are measured under different welding conditions in order to get the experimental data to verify the models of the keyhole and the weld pool.
     Based on in-depth analysis of the forces acting on the weld pool, the keyhole model is established according to the force-balance condition on the keyhole wall. The shape and dimensions of quasi-steady state keyhole are calculated. And the results of the simulation agree well with the experimental measured keyholing cionditions which demonstrate the rationality and applicability of keyhole model.
     Primary discussion on the transformation mechanism of the keyhole from "blind (partial)" to "open (complete)" in PAW process is conducted based on the each action force on the keyhole wall. The magnitude of each force is calculated. The results indicate that the forming of the open keyhole is caused by the drastic change of the arc force with increasing the welding current, and the sudden transformation of the depth of the keyhole is owing to the concentration of the arc force in partial areas.
     To integrate the keyhole model with the model of combined volumetric heat source, the shape and dimensions of the keyhole are used to calibrate some parameters of the combined volumetric heat source. The temperature fields of the 6 mm-thickness and 8 mm-thickness stainless steel plates are calculated respectively. The calculated fusion line at the transverse cross-section of PAW welds are compared with the experimental measurements. It is found that the predicted results are in agreement with the experimental data.
引文
[1]潘际銮.21世纪焊接科学研究的展望.第九次全国焊接会议论文集[M].哈尔滨:黑龙江人民出版社,1999:D-1-17.
    [2]Metcalfe J C and Quigley M B C. Keyhole stability in plasma arc welding [J]. Welding Journal,1975,54(11):401s-404s.
    [3]何德孚.焊接与连接工程学导论[M].上海:上海交通大学出版社,1998:125-130.
    [4]Martikainen J K and Moisio T J I. Investigation of the effect of welding parameters on weld quality of plasma arc keyhole welding of structural steels[J]. Welding Journal,1993,72(7):329s-340s.
    [5]Vilkas E P. Plasma arc welding of exhaust pipe system components[J]. Welding Journal,1991,70(4):49-52.
    [6]Irving B. Why aren't airplanes welded[J].Welding Journal,1997,76(1):34-41.
    [7]Irving B. Plasma arc welding takes on the advanced solid rocket motor[J]. Welding Journal,1992,71(12):49-52.
    [8]Nunes A C. Variable polarity plasma arc welding on the space shuttle external tank[J]. Welding Journal,1984,63(9):27-35.
    [9]Keanini R G and Rubinsky B. Plasma arc welding under normal and zero gravity[J]. Welding Journal,1990,69(6):41-50.
    [10]关桥.我国现代运载工具制造工程中的特种焊接技术[A].与时俱进追求卓越-中国机械工程学会焊接学会四十周年、中国焊接协会十五周年纪念文集.2002:1-6.
    [11]Seidel T U, Reynold A P. Visualization of the material flow in AA2195 friction-stir welds using a marker insert technique[J]. Metallurgical and Materials Transaction A:Physics Metallurgical and Materials Science,2001,32(11):2879-2884.
    [12]Wu C S, Sun J S. Numerical analysis of temperature field during double-sided arc welding of thick materials[J]. Computational Materials Science,2002,25(3), 457-468.
    [13]Paul A, Debroy T. Free surface flow and heat transfer in conduction mode laser welding[J]. Metallurgical Transaction B,1988,19(4):851-858.
    [14]Zacharia T, Eraslan A H, Aidun D K, David S A. Heat transfer during Nd:Yag pulsed laser welding and its effect on solidification structure of austenitic stainless steels[J]. Metallurgical Transaction A,1989,20 (5):957-967.
    [15]Zhao H, Debroy T. Weld metal composition change during conduction mode laser welding of Aluminum alloy 5182[J]. Metallurgical and Materials Transactions B, 2001,32(1):163-172.
    [16]Robert A, Debroy T. Geometry of laser spot welds from dimensionless numbers[J]. Metallurgical and Materials Transactions B,2001,32(5):941-947.
    [17]Heiple C R, Roper J R, Stanger T, Aden R J. Surface-active element effect on the shape of GTA, Laser and Electron Beam Welds[J]. Welding Journal,1983,62(3): 72s-77s.
    [18]Yibas B S, Sami M, Nickel J, et al. Introduction into the electron beam welding of austenitic 321-type stainless steel[J]. Journal of Materials Processing Technology, 1998,82(1):13-20.
    [19]Colligan K. Material flow behavior during friction stir welding of aluminum[J]. Welding Journal,1999,78(7):229s-237s.
    [20]李志宁,常保华,都东,王力.激光—等离子弧复合焊温度场的数值模拟[J].焊接学报,2007,28(6):29-33.
    [21]李志宁,常保华,都东,王力.激光等离子弧复合焊接熔池流动和传热的数值分析[J].焊接学报,2007,28(7):37-40.
    [22]Claus Bagger, Flemming O. Olsen. Review of laser hybrid welding[J]. Journal of Laser Application,2005,17(1):2-14.
    [23]Zhang Y M, Zhang S B. Double-sided arc welding increases weld joint penetration[J]. Welding Journal,1998,77(6):57s-61s.
    [24]Lin M L, Eagar T W. Influence of surface depression and convection on arc weld pool geometry[J]. Transport Phenomena in Material Processing,1983,10(1):63-69.
    [25]Lin M L, Eagar T W. Influence of arc pressure on weld pool geometry[J], Welding Journal,1985,64(6):163s-169s.
    [26]Tsai N S, Eagar T W. Distribution of the heat and current fluxes in gas tungsten arcs[J]. Metallurgical Transaction B,1985,16 (4):841-846.
    [27]Lin M L, Eagar T W. Pressure produced by gas tungsten arcs[J]. Metallurgical Transaction B,1986,17 (9):601-607.
    [28]Kou S, Sun D K. Fluid flow and weld penetration in stationary arc welds[J].Metallurgical Transaction A,1985,16(2):203-213.
    [29]Zacharia T, David S A, Vitek J M. Computational modeling of stationary gas-tungsten-arc weld pool and comparison to stainless steel 304 experimental result[J]. Metallurgical transaction B,1991,22 (4):243-257.
    [30]Kou S, Wang Y H. Computer simulation of convection in moving arc weld pools[J]. Metallurgical Transaction A,1986,17 (12):2271-2277.
    [31]Cao Z N, Zhang Y M, Kovacevic R. Numerical dynamic analysis of moving GTA weld pool[J]. Journal of Manufacture science and Engineering,1998,120(2): 173-178.
    [32]Chan C. A two-dimensional transient model for convection in laser melted pools[J]. Metallurgical Transaction A,1984,15(12):2175-2184.
    [33]Kou S, Wang Y H. Weld pool convection and its effect[J]. Welding Journal,1986, 65(3):63s-70s.
    [34]Goodarzi M. Mathematical modeling of gas tungsten arc welding and gas metal arc welding processes[D]. Toronto:Department of Metallurgy and Materials Science, University of Toronto,1997.
    [35]Lee S Y, Na S J. A numerical analysis of molten pool convection considering geometric parameters of cathode and anode[J]. Welding Journal,1997, 76(11):484s-497s.
    [36]Kou S, Wang Y H. Three-dimensional convection in laser melted pools[J]. Metallurgical Transaction A,1986,17(12):2265-2270.
    [37]Wu C S, Tsao K C. Modelling the Three-Dimensional Fluid Flow and Heat Transfer in a Moving Weld Pool. Engineering Computations[J].1990,7(3):241-248.
    [38]闫凤洁.基于PHOENICS的三维瞬态TIG焊接熔池数值模拟[D].济南:山东大学硕士论文,2003.
    [39]Zhao P C, Wu C S, Zhang Y M. Modelling the transient behaviors of a fully penetrated gas-tungsten arc weld pool with surface deformation[J].Journal of Engineering manufacture,2005,219(1):99-110.
    [40]孙俊生.电弧热流与熔滴热焓量分布模式对熔池行为的影响[D].济南:山东工业大学博士论文,1998.
    [41]Choo R T C, Szekely J, Westhoff R C. Modeling of high-current arcs with emphasis on free surface phenomena in the weld pool[J]. Welding Journal,1990, 69(9):346s-361s.
    [42]曹振宁TIG/MIG焊接熔透熔池流场与热场的数值模拟[D].哈尔滨:哈尔滨工业大学博士论文,1993.
    [43]赵朋成.全熔透TIG焊接熔池形态瞬时行为的数值模拟[D].济南:山东大学博士论文,2003.
    [44]Zacharia T, Eraslan A H, Aidun D K. Modeling of non-autogenous welding[J]. Welding Journal,1988,67(1):18s-27s.
    [45]Zacharia T, Eraslan A H, Aidun D K. Modeling of autogenous welding[J]. Welding Journal,1988,67(3):53s-62s.
    [46]Zacharia T, David S A, Vitek J M, Ddbroy T. Weld pool development during GTA and laser beam welding of type 304 stainless steel, part I---theoretical analysis[J]. Welding Journal,1989,68(12):499s-509s.
    [47]Zacharia T, David S A, Vitek J M, Debroy T. Weld pool development during GTA and laser beam welding of Type 304 stainless steel, Part II ---experimental correlation[J]. Welding Journal,1989,68(12):510s-519s.
    [48]Thompson M E, Szekely J. The transient behavior of weld pool with a deformed free surface[J]. International Journal of Heat and Mass Transfer,1989,32(6): 1007-1019.
    [49]赵明.全熔透GTAW焊接熔池形态数值模拟精度的改进[D].济南:山东大学博士论文,2006.
    [50]Chen Y, Cremers C J. Heat transfer and fluid flow in arc welding with full penetration[C]. Proceeding of the 4th International conference on Trends in Welding Research,13-18,1995, Gatlinburg, Tennessee.
    [51]Wu C S, Dorn L. Prediction of surface depression of a tungsten inert gas weld pool in the full-penetration condition[J]. Journal of Engineering manufacture,1995, 209(2):221-226.
    [52]Fan H G, Tsai H L, Na S J. Heat transfer and fluid flow in a partially or fully penetrated weld pool in gas tungsten arc welding[J]. International Journal of heat and Mass Transfer,2001,44(2):417-428.
    [53]宋天虎.先进制造技术的发展与焊接技术的未来.第八次全国焊接会议论 文集[M].北京:机械工业出版社,1997:1-17.
    [54]Rosenthal D. Mathematical theory of heat distribution during welding and cutting[J]. Welding Journal,1941,20(5):220s-234s.
    [55]Rykalin H H焊接热过程计算[M].北京:中国工业出版社,1958.
    [56]Metcalfe J C and Quigley M B C. Heat transfer in plasma-arc welding[J]. Welding Journal,1975,54(3):99s-103s.
    [57]Lancaster J F. The physics of welding[M], chapt.8. Oxford:Perganon Press,1984.
    [58]董春林,吴林,邵亦陈.穿孔等离子弧焊发展历史与现状[J].中国机械工程,2000,11(5):577-581.
    [59]代大山,宋永伦,江伟等.穿孔等离子弧焊接质量控制的研究概况及发展[J].焊接技术,2000,29(6):2-4.
    [60]陈裕川.等离子弧焊技术的新发展(一)[J].现代焊接,2008,(8):5-10.
    [61]中国机械工程学会,中国材料研究学会编.中国材料工程大典材料焊接工程(上)[M].北京:化学工业出版社,2005:554-562
    [62]Zhang Y M, Zhang S B. Observation of the keyhole during plasma arc welding[J]. Welding Journal,1999,78(2):53s-58s.
    [63]代大山.等离子弧焊接过程小孔形成机理及其信息的特征[D].广州:华南理工大学博士论文,2002:5-6
    [64]中国机械工程学会,中国材料研究学会编.中国材料工程大典材料焊接工程(上)[M].北京:化学工业出版社,2005:554-562
    [65]何德孚.焊接与连接工程学导论[M].上海:上海交通大学出版社,1998:125-130.
    [66]Keanini R G and Rubinsky B. Three-dimensional simulation of the plasma arc welding process[J]. International Journal of Heat Mass Transfer,1993,36(13): 3283-3298.
    [67]Fan H G and Kovacevic R. Keyhole formation and collapse in plasma arc welding[J]. Journal of Physics D:Applied Physics,1999,32(22):2902-2909.
    [68]董洪刚,高洪明,吴林.固定电弧等离子弧焊接热传导的数值计算[J].焊接学报,2002,23(4):24-26.
    [69]陈焕明,江淑园,熊震宇.等离子穿孔熔池的数值模拟[J].南昌航空工业学院学报,1999,13(2):23-30..
    [70]陈焕明,江淑园,谢美蓉.穿孔等离子弧焊熔池形成过程的仿真[J].航空制 造技术,2003,46(7):28-30.
    [71]雷玉成,郑惠锦,程晓农.铝合金等离子弧立焊穿孔熔池的计算机模拟[J],焊接学报,2003,24(1):44-47.
    [72]郑惠锦.铝合金穿孔型等离子弧焊接过程模拟[D],镇江:江苏大学硕士论文,2002.
    [73]孙俊生,武传松.等离子与钨极双面电弧焊热过程的数值模拟[J].金属学报,2003,39(5):499-504.
    [74]Nehad A K. Enthalpy technique for solution of Stefan problems:application to the keyhole plasma arc welding process involving moving heat source[J]. International Communications in Heat and Mass Transfer,1995,22(6):779-790.
    [75]王怀刚,武传松,张明贤.小孔等离子弧焊接热场的有限元模拟[J].焊接学报,2005,26(7):47-53.
    [76]Hsu Y F and Rubinsky B. Two-dimensional heat transfer study on the keyhole plasma arc welding process. International Journal of Heat and Mass Transfer,1987, 31(7):1409-1421.
    [77]殷凤良.等离子弧焊接过程的数值模拟[D].天津:天津大学博士论文,2007.
    [78]Hu Q X, Wu C S, Zhand Y M. Finite element analysis of keyhole plasma arc welding based on an adaptive heat source mode. China Welding,2007,16(2):55-58.
    [79]Hu Q X, Wu C S. Analysis of keyhole geometry in plasma arc welding. China Welding,2006,15(4):43-45.
    [80]Steffens H D, Kayser H. Automatic control for plasma arc welding [J]. Welding Journal,1972,51(6):408-418.
    [81]Zhang S B and Zhang Y M. Efflux plasma charge-based sensing and control of joint penetration during keyhole plasma arc welding [J]. Welding Journal,2001,80(7): 157-162.
    [82]胡百僖,黄从达,陶爱龙,李少平.利用声音信号进行脉冲等离子弧全位置焊接质量控制系统的研究[J].焊接,1980,(5):17-20.
    [83]Manz A F. Welding arc sounds [J]. Welding Journal,1981,60(5):23-27
    [84]黄从达,胡白喜,陶爱龙.锅炉蛇型管等离子弧声控焊的微型计算机控制[J].电焊机,1984,(3):10-14.
    [85]王耀文,陈强,孙振国,孙久文,王海燕.等离子弧焊接穿孔行为的声信号传感[J].机械工程学报,2001,37(1):53-56.
    [86]王慧钧.图像传感变极性等离子弧焊缝稳定成形闭环控制[D].哈尔滨:哈尔滨工业大学博士学位论文,1998:36-78.
    [87]王慧钧,王其隆等.铝合金等离子弧焊穿孔熔池正面图向检测与处理[J].材料科学与工艺,1998,6(3):92-96.
    [88]Zhang Y M, Zhang S B, Liu Y C. A plasma cloud charge sensor for pulse keyhole process control [J]. Measurement Science and Technology,2001,12(8):1365-1370.
    [89]Zhang Y M, Liu Y C. Control of dynamic keyhole welding process[J]. Automa-tica,2007,43:876-884.
    [90]殷凤良,胡绳荪等.利用等离子体反翘控制穿孔等离子弧焊中小孔的稳定性[J].焊接学报,2006,(7):21-24.
    [91]胡春红.PLC控制等离子弧焊机的研究与等离子云信号的检测[D].天津:天津大学硕士学位论文,2003:19-42.
    [92]易小林,单平等.等离子弧焊中小孔检测的研究[J].焊接技术,2003,(1):12-14.
    [93]易小林.等离子弧焊中等离子云检测机理与模糊控制的研究[D].天津:天津大学博士学位论文,2002:36-48.
    [94]贾传宝.受控脉冲穿孔等离子弧焊接控制系统的研究[D].济南:山东大学博士论文,2009.
    [95]董红刚PAW+GTA双面电弧小孔焊工艺研究及热过程数值模拟[D].哈尔滨:哈尔滨工业大学博士论文,2004.
    [96]孙俊生,武传松,Zhang Y M.双面电弧焊的传热模型.物理学报,2002,51(2):286-290.
    [97]孙俊生,武传松,董博玲,Zhang Y M.PAW+TIG电弧双面焊接小孔形成过程的数值模拟[J].金属学报,2003,39(1):79-84.
    [98]孙俊生,武传松,高进强.穿孔型双面电弧焊的传热与小孔形成[J].机械工程学报,2004,40(3):88-92.
    [99]胡庆贤.穿孔等离子弧焊接温度场的有限元分析[D].济南:山东大学博士论文,2007.
    [100]王小杰.等离子弧焊接小孔界面的Level-Set法追踪[D].济南:山东大学硕士论文,2010
    [101]Andrews J G and Atthey D R. Hydrodynamic limit to penetration of a material by a high-power beam[J]. Journal of Physics D:Applied Physics,1976, 9(12):2181-2194.
    [102]Dowden J, Postacioglu N, Davis M and Kapadia P D. A keyhole model in penetration welding with a laser[J]. Journal of Physics D:Applied Physics,1987, 20(1):36-44.
    [103]Lampa C, Kaplan A, Powell J and Magnusson C. An analytical thermodynamic model of laser welding[J]. Journal of Physics D:Applied Physics,1997,30(9): 1293-1299.
    [104]Kaplan A. A model of deep Penetration laser welding based on calculation of the keyhole profile[J]. Journal of Physics D:Applied Physics,1994,27(9): 1805-1814.
    [105]Lankalapalli K N, Tu J F and Gartner M. A model for estimating penetration depth of laser welding processes[J]. Journal of Physics D:Applied Physics,1996, 29(7):1831-1841.
    [106]Colla T J, Vicanek M and Simon G. Heat transfer in melt flowing past the keyhole in deep penetrating welding[J]. Journal of Physics D:Applied Physics, 1994,26(10):2035-2040.
    [107]Kroos J, Gratzke U and Simon G. Towards a self-consistent model of the keyhole in penetration laser beam welding[J]. Journal of Physics D:Applied Physics, 1993,26(3):474-480.
    [108]Ducharme R, Willians K, Kapadia P, Dowden J, Steen B and Glowacki M. The laser welding of thin metal sheets:a integrated keyhole and weld pool model with supporting experiments[J]. Journal of Physics D:Applied Physics,1994,27(8): 1619-1627.
    [109]Solana P and Ocana J L. A mathematical model for penetration laser welding as a free-boundary problem. Journal of Physics D:Applied Physics,1997,30(6): 1300-1313.
    [110]Sudnik W, Radaj D and Erofeew W. Computerized simulation of laser beam welding, modeling and verification[J]. Journal of Physics D:Applied Physics, 1996,29(11):2811-2817.
    [111]Sudnik W, Radaj D, Breitschwerd S and Erofeew W. Numerical simulation of weld pool geometry in laser welding[J]. Journal of Physics D:Applied Physics,2000, 33(6):662-671.
    [112]Pecharapa W and Kar A. Effects of phase changes on weld pool shape in laser welding[J]. Journal of Physics D:Applied Physics,1997,30(24):3322-3329.
    [113]Kutsuna M, Chen L. Interaction of both plasma in CO2 laser-MAG hybrid welding of carbon steel[C]. SPIE,2003,4831:341-346.
    [114]Lee J Y, Ko S H, Farson D F, Yoo C D. Mechanism of keyhole formation and stability in stationary laser welding. Journal of Physics D:Applied Physics,2002, 35(13):1570-1576.
    [115]Ki H, Pravansu S, Mohanty, Jyoti M. Modeling of laser keyhole welding: Part I.Mathermatical Modeling, Numercial Methodology,Role of Recoil Pressure, Multiple Rflections,and Free Surface Evolution. Metallurgical and Materials Transactions A,2002,33(6):1817-1830.
    [116]Zhou J, Tsai H L, Wang P C. Transport phenomena and keyhole dynamics during pulsed laser welding. Journal of Heat Transfer,2006,128(7):680-690.
    [117]Cho J H, Na S J. Implementation of real-time multiple reflection and Fresnel absorption of laser beam in keyhole. Journal of Physics D:Applied Physics,2006, 39(24):5372-5378.
    [118]胥国祥.激光+GMAW-P复合热源焊焊缝成形的数值模拟[D].济南:山东大学博士论文,2009.
    [119]武传松.焊接热过程与熔池形态[M].北京:机械工业出版社,2007.
    [120]陶文铨.数值传热学[M].西安:西安交通大学出版社,2001.
    [121]王怀刚.三维瞬态小孔等离子弧焊接温度场的数值模拟[D],济南:山东大学硕士论文,2005.
    [122]Domey J, Aidun D K, Ahmadi G., Regel L. Numerical simulation of the effect of gravity on weld pool shape[J]. Welding Journal.1995,74(8):263s-268s.
    [123]郑炜.脉冲TIG焊接熔池流场与热场动态过程的数值模拟[J],焊接学报,1997,18(4):227-231.
    [124]赵衍华,林三宝,吴林.2014铝合金搅拌摩擦焊接过程塑性流变可视化[J].焊接学报,2005,26(6):73-76.
    [125]赵衍华,林三宝,贺紫秋,吴林.2014铝合金搅拌摩擦焊接过程数值模拟[J].机械工程学报,2006,42(7):92-97.
    [126]Brown D J, Chandler H W, Evans J T, et al. Computer simulation of resistance spot welding in aluminum[J]. Welding Journal,1995,74(10):132-s-140-s.
    [127]Sun X. Modeling of projection welding process using coupled finite element analysis[J]. Welding Journal,2000,79(9):244s-251s.
    [128]朱文峰,林忠钦,来新民,等.基于多场耦合的车门铰链凸焊过程有限元 仿真[J].焊接学报,2005,26(1):64-68.
    [129]Tsirkas S A, Papanikos P, Kermanidis Th. Numerical simulation of the laser welding process in butt-joint specimens[J]. Materials Processing Technology, 2003,134(1):59-69.
    [130]张明贤DE-GMAW焊接温度场与热变形的有限元分析[D].济南:山东大学硕士论文,2006.
    [131]马立,胡绳荪,尹凤良,宋东风.等离子弧焊接过程数值模拟的现状及发展[J].焊接,2005,8(1):8-10.
    [132]翟瑞彩,谢伟松.数值分析[M],2003:223-263.
    [133]史万明,杨桦飞,吴裕树,孙新.数值分析[M],2002:191-231.
    [134]Chatterjee J. Prediction of coupled menisci shapes by Young-Laplace equation an the resultant variability in capillary retention[J], Journal of Colloid and Interface science,2007,314(2):199-206.
    [135]Heiple C R, Roper J R. Mechanism for minor element effect on GTA fusion zone geometry[J]. Welding Journal,1982,61(4):97s-102s.
    [136]Heiple C R, Roper J R. Effect of selenium on GTAW fusion zone geometry[J]. Welding Journal,1982,61(8):143s-145s.
    [137]Heiple C R, Burgardt P. Effect of SO2 shielding gas assitions on GTA weld shape[J]. Welding Journal,1985,64(6):159s-162s.
    [138]Wang Y, Shi Q, Tsai H L. Modeling of the effects of surface-active elements on flow patterns and weld penetration[J]. Metallurgical and Materials Transaction B, 2001,32(1):145-161.
    [139]Toit M D, Pistorius P C. The influence of oxygen on the Nitrogen content of autogenous stainless steel arc welds[J]. Welding Journal,2007,86(8):222s-230s.
    [140]Lu S P, Hidetoshi F J, Kiyoshi N. Influence of welding parameters and shielding gas composition on GTA weld shape[J]. ISIJ International,2005,45(1): 66-70.
    [141]Zacharia T, David S A, Vitek J M, etc. Modeling of interfacial phenomena in welding[J]. Metallurgical Transactions B,1990,21(3):600-603.
    [142]David S A, Debroy T, Vitek J M. Phenomenological modeling of fusion welding processes[J]. Materials Research Society,1994,19(1):29-35.
    [143]Xiao Y H, Quden G D. Measurement of surface tension of liquid metals and alloys under arc welding conditions[J]. Material Science and Technology,1997, 13(9):791-794.
    [144]Sahoo P, Debroy T, Mcnallan M J. Surface tension on binary metal surface active solute systems under conduction relevant to welding metallurgy[J]. Metallurgical Transaction B,1988,19(2):483-491.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700