用户名: 密码: 验证码:
等离子熔积熔池与焊道的可视化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Q等离子熔积快速制造技术是采用等离子弧作为热源熔化焊材,在数控机床控制下,根据工艺路径直接快速堆积成形金属原型或零件的快速成形新技术。目前,该技术,在快速制造梯度功能材料方面和高温硬质合金零件方面具有独特优势,是目前解决快速制造高温合金零件的最热门的研究方向,也是最重要的发展方向。焊接的质量控制一直以来都是焊接领域最困难的问题,也是最研究的最多问题。如何保证等离子熔积的成形质量,保证焊道的均匀性是本文研究的重点。质量控制中最关键的技术是焊道的形貌检测,通过检测焊道的几何尺寸,直接有效的反馈给控制器,实现焊道宽度偏差的实时反馈,实现工艺参数的在线调整,从而达到工艺优化,堆积出尺寸符合预设要求的均匀的焊道,为最终的成形零件提供精度与质量保证。本文从机器视觉传感的角度出发,研究了图像检测技术在等离子加工中的应用。
     等离子熔积工艺复杂,加工环境极为恶劣。尤其是弧光干扰和飞溅造成了大量的噪声。给图像处理带来极大的困难。本文利用外加可见光窄带滤光镜的方法,滤除紫外光和部分可见长,其它弧光成分作光源,通过CCD获取清晰的焊道图像。图像处理软件通过Adlink公司的RTV-24图像采集卡获取图像数据。并在内存中实现图像预处理、特征识别、宽度偏差计算、图像保存与数据输出等任务。图像检测的关键在于图像处理算法。在焊道图像检测中,边缘提取是焊道尺寸计算的前提。
     本文在Windows XP系统下运用VC++6.0开发平台进行软件模块划分和代码编写。通过调用图像采集卡的提供的库函数实现了图像的采集功能。本文根据最优边缘提取的原理编写边缘提取算法程序,通过图像加窗处理方法进一步抑制背景的影响,提取出了清晰的焊道边缘。整个边缘提取算法的思想是:通过高斯滤波器平滑图象、用一阶偏导的有限差分来计算梯度的幅值和方向、对梯度幅值进行非极大值抑制、用双阈值算法检测和连接边缘。在计算机软件上,通过用户指定宽度测量方向,实现了焊道宽度的手动与自动测量。
Plasma Arc Welding technology, using rapid plasma arc as a source of heat melting and using NC machine’s control technology to follow the direct path of manufacture process, is a new kind of technology for rapidly forming metal parts or prototyping manufactur.At present, this kind of technology has unique advantages in the field of the rapid manufacturing of functionally gradient materials and high temperature carbide parts. Because it provides a good solution to the rapid manufacture of high temperature alloy parts , more and more reseach plans were carried on how to use of this technology as the same time it becomes the most popular and most important development direction of Rapid Prototyping Mafuture technology. Welding quality control has always been the most difficult problem in welding field, and also the most problematic area in the study. That How to conrtol the plasma forming welding quality to ensure uniformity of weld is the focus of this paper. weld morphology detection technology is the most critical technology in quality control application. Throught detecting the weld beam geometry shape and sending the width deviation of weld bem directly and effectively to the controller, to work out a real-time feedback and control to make online adjustment of process parameters to reach the process optimization, for forming components to provide the ultimate precision and quality assurance. In this paper, the vison sensor applications was studied, and a a passsive vision detection technology was applied in plasma processing successfully.
     Plasma welding is a complexity process and the welding environment is extremely worse. In particular the arc and splash disturbance cause a large amount of noise. These interference cause trouble and great difficulties to Image process In this paper, using a narrow-band filter method of visible light, UV filter and the rest lights reached the CCD were used as light source, then we can use a CCD cammera to grab a clear image of the weld beam. Image processing software can obtain image data. From Adlink's RTV-24 frame grabber And in memory to work out many tasks. Such as image preprocessing, feature recognition, the width of deviation, the image data output. The key factor to work a good job lies in the image detection image processing algorithms. During the weld vision detection, edge detection is the premise of the weld size calculation.
     Under the Windows XP system platform ,we use VC + +6.0 programme software finished weld dectect programme modules division and code-preparation. We realize the image acquisition function with the library functions provided by Image acquisition card. In this paper, we firstly applied Canny algorithm Combined with image windowed processing method to finish task of weld edge detection successfully. The first step is to get a smooth image using Gaussian filter; the second step is to calculate the gradient through a first-order partial derivatives of the finite difference; The third step is to work out the non-maximum value suppression of Gradient amplitude; The last step is to make use of dual-threshold algorithm for edge detection and connection. Our programme can finish the manual and automatic measurements tasks through user-specified width measurement of the direction of the width of a weld
引文
[1]张海鸥,徐继彭,王桂兰.等离子熔积直接快速制造金属原型技术[J].中国机械工程,2003,14(12):1077-1079.
    [2]张海鸥,韩光超,王桂兰.快速模具制造技术[J].中国机械工程.2002,13(22): 1903-1906.
    [3]张海鸥.快速制造模具技术的现状[J].机械工人:冷加工. 2002(001):27-28.
    [4]单际国,董祖珏.我国熔积技术的发展及其在基础工业中的应用现状[J].中国表面工程. 2002, 15(004): 19-22.
    [5]黄永军,张海鸥,王桂兰,etal.金属模具的等离子熔积直接成形及精整加工[J].航空制造技术.2004.
    [6]罗勇.焊接发展史(四)——焊接过程控制[J].焊接技术.2007,36(2).
    [7]刘习文,王国荣,石永华,etal.焊接熔池传感与控制系统的研究现状[J].焊接. 2005(11): 5-9.
    [8]董德祥,吴林,陈定华.焊接熔深自动检测及理论研究的综述[J].压力容器. 1994(04).
    [9]王志江,张广军,梁志敏,etal.熔池表面三维检测与测量技术现状及发展趋势[J].焊接. 2007(08).
    [10]何德孚,李克海.焊接熔池的振荡和焊道成形的自适应控制[J].焊管.2000(04).
    [11]杨春利,张九海,王其隆.薄板TIG焊熔池谐振法熔透自适应控制[J].材料科学与工艺.1991(03).
    [12] SongDF,HuSS,HanJ,etal.Penetration control system for key hole pulse plasma arc welding based on reflecting plasma-flame voltage[J].Han jie Xue bao /Transactions of the China Welding Institution.2006,27(6):45-48.
    [13] Mirapeix.J,Cobo.A,Conde.O,etal.Spectroscopic analysis technique for arc- welding process control[C]. Warsaw,Poland:SPIE,2005.
    [14] Zhenguo S, Nian C, Qiang C. Realizing precision pulse TIG welding with arc lengthcontrol and visual image sensing based weld detection[J].Welding Research Abroad. 2004, 50(4): 27-32.
    [15]高向东,黄石生,吴乃优,etal.弧焊过程焊道熔深控制技术的研究[J].华南理工大学学报(自然科学版).2000(03).
    [16]陈善本,陈文杰,林涛.脉冲GTAW熔池动态过程的辨识模型[J].焊接学报.2001(03).
    [17]蒋金鹏,丁国清,颜国正,etal.主动红外技术在实时在线焊道检测系统中的应用[J].红外与毫米波学报.2003(06).
    [18]张华,潘际銮,廖宝剑.焊接温度场的实时检测及熔透闭环控制[J].焊接学报.1998(03).
    [19] Shi Y, Fan D, Huang A, etal. Visual sensing and intelligent control of weld pool dynamics in aluminum alloy pulsed MIG welding process[C]. Wuhan, China: International Society for Optical Engineering, Bellingham WA, WA 98227-0010, United States, 2005.
    [20] Shi Y, Li J, Fan D, etal. Vision-based control system for aluminum alloy MIG welding pool width[J]. Hanjie Xuebao/Transactions of the China Welding Institution. 2007, 28(2): 9-12.
    [21] Liu P, Sun Z, Huang C, etal. Visual image sensor for arc welding with controllable exposure based on CPLD[J]. Hanjie Xuebao/Transactions of the China Welding Institution. 2008, 29(1): 17-20.
    [22] Yamane S, Yuzawa H, Kaneko Y, etal. Image processing and control of weld pool in switch back welding without backing plate[J]. Yosetsu Gakkai Ronbunshu Quarterly Journal of the Japan Welding Society. 2005, 23(1): 65-70.
    [23] Wang J J, Lin T, Chen S B. Obtaining weld pool vision information during aluminium alloy TIG welding[J]. The International Journal of Advanced Manufacturing Technology. 2005, 26(3): 219-227.
    [24] Lee C Y, Tung P C, Chu W H. Adaptive fuzzy sliding mode control for an automaticarc welding system[J]. The International Journal of Advanced Manufacturing Technology. 2006, 29(5): 481-489.
    [25] Shen H, Wu J, Lin T, etal. Arc welding robot system with seam tracking and weld pool control based on passive vision[J]. The International Journal of Advanced Manufacturing Technology.
    [26]王平.熔池信息视觉检测和图像处理研究[J].内蒙古电大学刊.2004(6):52-53.
    [27]王克鸿,熊亮同,徐越兰,etal.自动TIG熔积熔敷铜熔池图像视觉检测试验[J].焊接学报.2004,25(4):27-30.
    [28]秦国梁,齐秀滨,杨永波,etal.Acquisition and processing of coaxial image of molten pool and key hole in Nd:YAG laser welding with high power[J].中国焊接:英文版.2004,13(1):51-55.
    [29]高向东,黄石生,吴乃优.GTAW神经网络-模糊控制技术的研究[J].焊接学报.2000(01).
    [30]闫志鸿,张广军,高洪明,etal.Weld pool boundary and weld bead shapere construction based on passive vision in P-GMAW[J].中国焊接:英文版.2006,15(2):20-24.
    [31]张广军,闫志鸿,吴林.Visual sensing of weld pool in variable polarity TIG welding of aluminiumalloy[J].中国有色金属学会会刊:英文版. 2006, 16(3): 522-526.
    [32] Yang S M, Cho M H, Lee H Y, etal. Weld line detection and process control for welding automation[J]. Measurement Science and Technology. 2007, 18(3): 819-826.
    [33] Chen S B, Chen X Z, Qiu T, etal. Acquisition of Weld Seam Dimensional Position Information for Arc Welding Robot Based on Vision Computing[J]. Journal of Intelligent and Robotic Systems. 2005, 43(1): 77-97.
    [34]何德孚,李克海,HeD,etal.焊接熔池的振荡和焊道成形的自适应控制[J].焊管.2000,23(4):22-2861.
    [35]周琦.利用超声相控阵观测焊接熔池[C].昆明:20040912.
    [36]张国栋.超声传感弧焊熔深检测的研究[D].西安交通大学.
    [37]王春明,胡伦骥,胡席远,etal.激光焊接质量实时检测技术的研究现状[J].电焊机.2005,35(7):18-22
    [38]王海燕,陈强,王耀文,etal.等离子焊接小孔效应的电弧电压信号检测[J].清华大学学报(自然科学版).2001,41(8):1-4.
    [39]马立,胡绳荪,朱玉欣,etal.脉冲等离子弧焊穿孔熔池的等离子云传感[J].焊接学报.2006,27(2):73-76.
    [40]宋东风,胡绳荪,韩俭,etal.基于反翘电压的脉冲穿孔等离子弧焊熔透控制系统[J].焊接学报.2006,27(6):45-48.
    [41]赵冬斌,陈善本,吴林,etal.填丝脉冲GTAW熔池形状定义和图像处理[J].焊接学报.2001(02).
    [42]张丽玲,薛家祥,王振民,etal.基于数学形态学图像处理的TIG焊接过程正面熔宽控制[J].焊接学报.2007,28(2):51-54.
    [43] Salzburger H J, Mohrbacher H. In-line quality control of laser welds of tailored blanks by couplant free ultrasonic inspection - EMUS-LASUS[J]. Welding Research Abroad. 2003, 49(5): 1-8.
    [44] Jezersek M, Polajnar I, Diaci J. Feasibility study of in-process weld quality control by means of scanning laser profilometry[C]. Munich, Germany: SPIE, Bellingham WA, WA 98227-0010, United States, 2007.
    [45]林树清,袁小川.模糊逻辑控制在焊接中的应用进展[J].山东冶金.2004,26(6):54-56.
    [46]高向东,黄石生,余英林.GTAW熔深神经网络-模糊控制技术的研究[J].焊接技术.1999(06).
    [47]裴浩东,苏宏业,等.BP算法的改进及其在焊接过程控制中的应用[J].浙江大学学报:工学版.2002,36(1):32-35.
    [48] Jezersek M, Polajnar I, Diaci J. Feasibility study of in-process weld quality control by means of scanning laser profilometry[C]. Munich, Germany: SPIE, Bellingham WA, WA 98227-0010, United States, 2007.
    [49]沈威,陈俐,胡伦骥,etal.人工神经网络在焊道形状预测中的应用现状与发展趋势[J].电焊机.2005,35(4):1-5.
    [50]熊建钢,段爱琴,等.基于人工神经网络模型的钛合金YAG激光焊接工艺参数优化[J].应用激光.2001,21(4):243-246.
    [51]于有生,李文杰,陈俐.神经网络在脉冲激光焊焊道建模中的应用[J].激光技术.2004,28(6):585-587.
    [52] Chang W S, Na S J. A study on the prediction of the laser weld shape with varying heat source equations and the thermal distortion of a small structure in micro-joining[J]. Journal of Materials Processing Technology. 2002, 120(1-3): 208-214.
    [53] Nagesh D S, Datta G L. Prediction of weld bead geometry and penetration in shielded metal-arc welding using artificial neural networks[J]. Journal of Materials Processing Technology. 2002, 123(2): 303-312.
    [54] Tarng Y S, Tsai H L, Yeh S S. Modeling, optimization and classification of weld quality in tungsten inert gas welding[J]. International Journal of Machine Tools and Manufacture. 1999, 39(9): 1427-1438.
    [55] Shi Y, Fan D, Huang A, etal. Visual sensing and intelligent control of weld pool dynamics in aluminum alloy pulsed MIG welding process[C]. SPIE, 2005.
    [56] Kawahito Y, Katayama S. In-process monitoring and adaptive control for stable production of sound welds in laser microspot lap welding of aluminum alloy[J]. Journal of Laser Applications. 2005, 17(1): 30-37.
    [57] Chen S B, Zhang Y, Qiu T, etal. Robotic Welding Systems with Vision-Sensing and Self-learning Neuron Control of Arc Welding Dynamic Process[J]. Journal of Intelligent and Robotic Systems. 2003, 36(2): 191-208.
    [58]徐培全,唐新华,李莉娜,etal.视觉传感机器人焊道跟踪系统[J].上海交通大学学报.2008,42(1):28-31.
    [59]郑相锋,胡小建,李蕴泽.弧焊自动控制系统传感与控制的研究现状[J].焊接技术.2005,34(5):3-5.
    [60] Canny.A Computational Approach To Edge Detection, IEEE Trans. Pattern Analysis and Machine Intelligence[J] 1986,8:679-714

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700