纳米级InP内包层光纤及其放大性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们对信息需求的快速增长,光纤通信技术成为信息高速公路的核心和支柱。其中,点到多点的全光高速密集波分复用技术(DWDM)和光纤放大器相结合是光通信发展的主流趋势,因此DWDM系统的发展必须与光纤放大器带宽扩展技术发展同步。但如何扩大密集波分复用系统的通信容量,提高光纤放大器放大带宽范围,是当前该领域研究的热点和难点。作为光纤放大器的核心部件,放大光纤的研究也随之成为了重中之重。
     本文首先概述了光放大器和放大光纤的发展状况;考虑将纳米技术与光纤技术相结合,研究了在普通光纤的纤芯和包层之间沉积一层纳米材料的新型结构光纤。通过对Ⅲ-Ⅴ族半导体物质的性质和纳米微粒的制备方法的分析,选择了半导体材料InP物质作为掺杂材料,且采用改进的化学汽相沉积法(MCVD)作为该种光纤的制备方法,最终研制出了掺杂纳米级InP内包层光纤,该光纤在纤芯和包层之间有一层厚度为16nm-70nm的纳米级InP薄膜;针对研制出的光纤,根据其几何结构建立模型,从理论上分析计算了光纤中的光波导分布、量子尺寸效应、及量子尺寸效应对光放大的影响;通过建立载流子的运动模型,得到了输出功率随InP纳米薄膜内包层光纤长度的变化的表达式;在实验方面,设计并且搭建实验测试系统,将532nm的泵谱光注入到该光纤,利用截断法对研制出的光纤进行了损耗和增益的测试,实验结果证实:该光纤的单位长度放大系数(dB/m)分别为1.40—5.12(906—1044 nm)1.40—15.35(1080—1491 nm),1.86—7.44(1524—1596 nm)。
     最后,本文对利用纳米材料在光纤改进方面起到的作用进行了分析和展望,并对所研制的光纤的应用前景进行了多方面的探索和研究。
As the requirement of information increases quickly, optical fiber communication technology has been a tower of strength in the high speed of communication. There into, point to multi-points technology in DWDM and fiber amplifier are the leading tendency, so development of DWDM system and fiber amplifier should be at the same rate. But the access to increase communication capacity of DWDM and bandwidth of fiber amplifier are difficulties and hot spots. To be the important components of fiber amplifier, amplifying fiber is top priority in the fiber communication.
     First, this thesis gives an introduction of the development of the optical amplifier and amplifying fiber; Combining nano technology with fiber technology, a new type of fiber is fabricated by depositing nano material between the core and cladding of fiber. Through analyzing III-V semiconductor and preparation of nano particles, InP is chosen to be the doped material and MCVD is chosen to make the fiber. Inner cladding fiber doped with nano InP is manufactured, and there is a 16nm-70nm InP-film locating between core and cladding of fiber; Aiming at the structure of this fiber, a model is fabricated to analyze it. The optical guide in fiber and the mechanism of amplification are studied theoretically. Also, carrier model is established, and light propagation equation is shown in the thesis, by which the relationship between the output of light power and the length of this fiber is obtained; In experimental aspect, a testing system is designed and established, 532nm pump light is put into this fiber, and truncating method is adopted to exam the loss and gain. The final result prove that its signification amplification characteristics for wavelength between 1080nm and 1491nm, and also found in wavelengths 906-1044nm and 1524-1596nm.
     In the end, the thesis presents a positive outlook and analysis on the nano material that improving the characterization of fiber, and gives sorts of research and study on the applying future of this fiber.
引文
[1]韩一石,现代光纤通信技术,科学出版社,2005
    [2]I.P.Alcock,A.I.Ferguson,D.C.Hanna et al.,Mode-locking of a meodymium-doped monomode fiber laser,Electron.Lett.,1986,22(5):268-269
    [3]Shiquan Yang,Evgueni A.Ponomarev and Xiaoyi Bao,80-GHz pulse generation from a repetition-rate-doubled FM mode-locking fiber laser,IEEE Photon.Technol.Lett.,2005,17(2):300-302
    [4]Zhihong Li,Caiyun Lou,Kam Tai Chan et al.,A novel actively and passively mode locked fiber laser with dispersion-imbalanced loop mirror,Opt.Commun.,2000,186:173-176
    [5]H.Chien,C.Yeh,K.Lai et al.,Stable and wavelength-tunable erbium-doped fiber double-ring laser in S-band window operation,Opt.Commun.,2005,249:261-264
    [6]S.Li,C.Lou and K.T.Chan,Rational harmonic active and passive modelocking in a figure-of-eight fiber laser,Electron.Lett.,1998,34(4):375-376
    [7]S.Kawanishi,H.Takara,K.Uchiyama et al,1.4Tbit/s(200Gbit×7 channel WDM)50kin optical transmission experiment,Electron.Lett.,1997,33(20):1716-1717
    [8]S.Kawanishi,H.Takara,K.Uchiyana,I.Shake,and K.Mori,3 Tbit/s(160Gbit/s×19ch)OTDM/WDM Transmission experiment,OFC'99,Paper PDl,1999
    [9]Takara H,Masuda H,Mori K et al.,124 nm seamless bandwidth,313×10Gbit/s DWDM transmission,IEEE Electron.Lett.,2003,39(4):382-383
    [10]Mears R J.The EDFA:past,present and future[C].APCC/OECC,99.1999,2:18-22
    [11]Choi Bo-Hun,Park Hyo-Hoon,Chu Moojung,et al;High-gain coefficient long-wavelength-band erbium-doped fiber amplifier using 1530-nm band pump[J].Photonics Technology Letters,IEEE,2001,13(2):109-111
    [11]Hwang Seongtaek,Song Kwan-Woong,Song Ki-U,et al.Comparative high power conversion efficiency of C-plus L-band EDFA[J].Electronics Letters,2001,37(25):1539-1541
    [12]Dragic P D,Little L M,Papen G C.Fiber amplification in the 940-nm water vapor absorption band using the 4F3/2 4I9/2 transition in Nd[J].Photonics Technology Letters,IEEE,1997,9(11):1478-1480
    [13]Choi Bo-Hun,Park Hyo-Hoon,Chu Moo-Jung.New pump wavelength of 1540-nm band for long-wavelength-band erbium-droped fiber amplifier(L-band EDFA)[J].Quantum Electronics,2003,39(10):1272-1280
    [14]Reiehel S,Zengerle R.Effects of nonlinear dispersion in EDFA's on optical communieation systems[J].Journal of Lightwave Technology,1999,17(7):1152-1157
    [15]Aozasa S,Masuda H,Ono H,Sakanoto T,et al.1480-1510 nm-band Tm doped fiber amplifier(TDFA)with a high power conversion efficiency[C].Optical Fiber Communication Conference and Exhibit,OFC,2001,Vol.4,pp D1-1-PD1-3
    [16]康晓东,尹树华,党利宏.喇曼和掺铒光纤放大器在WDM系统中的应用[J].半导体技术,2003,8(10):55-58
    [17]王寿泰,徐传,范明海,储九荣.塑料光纤及其放大器的研究[J].电线电缆,2001,Ⅰ:14-16
    [18]Tagaya,Teramoto S,Nihei E,et al.High-power and high-gain organic dye-doped polymer optical fiber amplifiers[J].Novel Techniques for PreParation and Spectral Investigation,Applied optics,1997,36(3):572-578
    [19]Dove John F,Russell Harry,Kim Jin-Sung,et al.Light amplification by a Cd3P2cylinder fiber[C].Optical Devices for Fiber Communication,Proceedings of SPIE,2001,4216:62-66
    [20]A.Martucci,J.Fiek,S.LeBlane,et al.Optical Properties of PbS quantum dot doped sol-gel films[J].Journal of Non-Crystalline Solids,345&346(2004):639-642
    [21]B.Capoen,A.Martucci,S.Turrell,et al.Effects of the sol-gel solution host on the chemical and optical properties of PbS quantum dots[J].Journal of Molecular Structure,651-653(2003):467-473.
    [22]Hodel W,Anliker P,Weber H P,Analysis of a single-mode evanescent-field-pumped dye amplifier,J Lightwave Technology,1983,1(3):470-475
    [1]栾野梅,安茂忠,半导体纳米材料的性质及化学法制备[J],半导体光电,2003,24(6):382-385
    [2]Richard L W,Mark F S,Andrew T M,et al.Synthesis,Characterization and Thermal Decomposition of[Cl2Ga](SiMe3)2]2,a Potential Precursor to Gallium Phosphide[J].Organometallics,1993,2832-2834.
    [3]Steven R A,Andrew T M,Richard L W,et al.Preparation,Characterization and Facile Thermolysis of[X2GaP(SiMe)2]2 and(Cl3Ga2P)2:New Precursors to Nanocrystalline Gallium Phosphide[J].Chem Master,1994,6:82-86.
    [4]王广厚,韩明,物理学进展,10(3),248(1990)
    [5]卢肖,吴传贵,张万里等,射频溅射制备的BST薄膜介电击穿研究,物理学报,2006,55(5):2513-2517
    [6]蒙冕武,邓希敏,刘明登,射频溅射Sn薄膜的工艺研究,传感技术,1999,18(1):7-9
    [7]王雪敏,曾小勤,吴国松等,磁控溅射在镁合金表面处理中的应用,铸造技术,2006,27(4):412-415
    [8]李宝河,冯春,杨涛等,磁控溅射方法制备垂直取向FePt/BN颗粒膜,物理学报,2006,55(5):2562-2566
    [9]黄之杰,费逸伟,尚振锋等,溶胶-凝胶法制备纳米SiO2试验研究,精细石油化工进展,2006,7(1):34-36
    [10]李芝华,任冬燕,溶胶凝胶法制备ITO透明导电薄膜的工艺研究,材料科学与工艺,2006,14(2):174-177
    [11]邹龙江,王旭珍,曲江英等,化学气相沉积法制备定向碳纳米管及其生长机理的研究,化工新型材料,2006,34(4):9-11
    [12]闰志巧,熊翔,肖鹏等,化学气相沉积法制备Ta2O5薄膜的研究进展.功能材料,2006,37(4):511-514
    [13]冯琳,袁连山,褚莹,反胶束法制备纳米微粒.东北师大学报科学版,1999,(3):52-58
    [14]阎建辉,黄可龙,戴潇燕,反胶束微乳法制备无机功能纳米材料,精细化工中间体,2003,33(3):4-7
    [15]周富荣,郭晓洁,匡亚琴,反胶束微乳液法制备纳米ZnO,应用化工,2005,34(11):690-694
    [16]李月峰,赖琼任,反胶束微乳液法合成纳米SrTiO3研究,无机化学学报,2005,21(6):915-918
    [17]万涛,王跃川,反胶束溶胶-凝胶法制备纳米TiO2,石油化工,2005,34(5):464-468
    [18]唐人杰,光纤预制棒技术的最新发展,光通讯技术,2003.3
    [19]胡显请,制备光纤预制棒的新方法,机电部46所,2001.6
    [20]陈炳炎,光纤光缆的设计和制造,浙江:浙江大学出版社.2003
    [21]MASAO SUMI,Inner Pressure Control Method in Optical Fiber Preform Fabrication By Vapor-Phase Axial Deposition,Journal of Lightwave technology,vol.6,no.4,1988
    [22]MCVD plasma process for manufacturing single-mode optical fibers for terrestrical application.Carratc,M,Walker,S.Electrical communication no.1 1994 Alcatel Alstation publications pp.11-14.
    [23]Modeling and analysis of modified chemical vapor deposition of optical fiber preform.Kim,Kuo_Seon;Sotiris E,Chemical Engineer Science V44 n.11 1998 pp.2475-2482
    [24]Robert Pafchek,A novel method for fabricating optical fiber performs.Journal of Non-Crystalline solids 213&214(1997)
    [1]V.Sukhovatkin,S.musikhin,I.Gorelikov,et al.Room-temperature amplified spontaneous emission at 1300nm in solution-processed PbS quantum-dot films[J].Optical Letters,2005,30(2):470-475
    [2]Hodel W,Anliker P,Weber H P,Analysis of a single-mode evanescent-field-pumped dye amplifier,J Lightwave Technology,1983,1(3):470:475
    [3]Mackenzie H S,Payne F P.Evanescent field amplification in a tapered single-mode optical fiber.Electronics Letters,1990,26(2):130-132
    [4]Kozlov V A,Svakhin A S,Ter-Mikirtychev V.Evanescent field thin-film optical amplifier.Electronics Letters,1994,30(1):42-43
    [5]Tsuboi T,Ter-Mikirtychev V,Kozlov V A.Luminescence of LiF:F2+ crystal excited with evanescent field and its application to fiber-optic amplification.J of Luminescence,1997,72-74:1022-1023
    [6]林如俭.光纤电视传输技术.北京:电子工业出版社.2001.9
    [7]包华育.耦合式高灵敏度光纤渐逝波传感器.上海大学硕士学位论文,2006
    [8]李玉权,崔敏.光波导理论与技术.北京:人民邮电出版社.2002,12
    [9]王廷云,陈振宜,沈育青.单模光纤渐逝波传输分析[J].光电子.激光,2003,14(2):136-139
    [10]A.W.Snyder,J.D.Love,"Optical wave guide the ory",New York:Chapman and Hall,1983
    [11]J.Alexander,Fielding and C.Davis Christopher,"Tapered Single-Mode Optical Fiber Evanescent Coupling",IEEE,photonics technology letter,vol.14,No.1,2002
    [12]陈红明.Ⅱ-Ⅳ族半导体胶体量子点、量子点量子阱及量子点的自组装的研究,南京大学博士论文.1999
    [13]张立德,牟季美.纳米材料和纳米结构[M].第一版,北京:科学出版社,2001.112-113
    [14]Sarntosh K H,Anand R M,Sharad C D.Synthesis and characterization of copper sulide nanoparticles in Triton X-100 water-in-oil microemulsion[J].J Phys Chem,1996,100:5868-5873
    [15]Tanori J,Duxin N,Petit C,et al.Sythesis of nanosize metallic and alloyed particles in ordered phased[J].Colloid Polym Sci,1995,273:886-892.
    [16]余金中.半导体光电子技术[M].化学工业出版社,2003,pp 18-93
    [17]杨祥林等.光放大器及其应用[M].电子工业出版社,1999,pp 13-116
    [18]江剑平.半导体激光器[M].电子工业出版社,2000,pp 8-46
    [19]沈学础.半导体光谱和光学性质[M].科学出版社,2002.719-730
    [20]C.Rany,E.Desurvire.Modeling Erbium-Doped Amplifier[J].Lightwave Tochnol.1991,9(2):271-283
    [21]C.R.Giles,E.Desurvire.Propagation of Signal and Noise in Concatenated Erbium-Doped Fiber Optical Amplifiers[J].Lightwave Technol.,1991,9(2),147-154
    [22]C.Barnard,P.Myslinski,J.Chrostowski,etal.Analytical Model for Rare Earth-Doped Fiber Amplifiers and Lasers[J].IEEE Journal of Quantum Electronics,1994,30(8):1817-1830
    [1]戚红亮.光纤的损耗[J].现代通信,1999,(08).
    [2]VINCENT W S C.Optical space communications[J].IEEE Journal on Selected Topics in Quantum Electroniscs,2000,6(6):959-975.
    [3]SIMON T,JEAN L.Advanced fiber coupling technologies for space and astronomical applications[C]//Proc of SPIE Photonics North 2004:Photonie Applications in Astronomy,Biomedicine,Imaging,Materials Processing,and Education,[S.l.]:SPIE,2004,5578:40-51.
    [4]DENG Ke;WANG Bing-zhong;WANG Xu;YAO Zhou-shi;HU Yu,Technology of Coupling Bearn into Single-Mode Fiber in Free Space Optical Communication System,Journal of University of Electronic Science and Technology of China,2007,(05),pp.889-891
    [5]廖延彪.光纤光学[M].北京:清华大学出版社,2000.217-225.
    [6]Suquta Tatsuya.Optical time-domain reflectometry of bent plastic optical fibers[J].Applied Optics,2001,40(6):897-905.
    [7]XU Xing-sheng,MING Hai,ZHANG Ji-fa,et al.Study on the properties of the polymer optical fiber spectrum[J].Chinese of Quantum Electronics(量子电子学报),2002,19(4):305-309.(in Chinese)
    [8]FENG Chun-yuan,JIN Yong-xing,JiN Shang-zhong,et al.Researeh of attenuation spectrum of polymer optical fiber[J].J of China Jiliang University(中国计量学院学报),2004,15(3):206-209.(in Chinese)
    [9]郑书信.光纤损耗机理研究[J].西北建筑工程学院学报,1995,(04).
    [10]邓昌盛,刘德兰.光纤损耗原因分析与减少损耗方法探讨[J].铁道通信信号,2001,(10).
    [11]陈美霞.单模光纤损耗与包层模关系的研究[J].桂林电子工业学院学报,1990,(01).
    [12]周仲麒.关于我国光纤产业现状及几点看法[J].当代通信,2005,(06).
    [13]Oike Y K.High bandwidth low loss polymer optical fibers[C].ECOC92,679-686.
    [14]Oike Y K,Ishigure T,Nihei E.High bandwidth graded-index polymer optical fiber[J].Journal of Lightwave Technology,1995,13(9):1475-1489.
    [15]Takaakj Ishigur,Masataka Satoh,Osamu Takanashi,et al.Formation of the refractive index profile in the graded-index polymer optical fiber for gigabit data transmission[J].IEEE Journal of Lightwave Technology,1997,15(11):2095-2100.
    [16]Whitney R W,Pierre W,Michael D.Scattering loss in plastic optical fiber[C].LEOS Summer Topical Meeting,1998,17-18.
    [17]Toshikuni Kaino.Influence of water absorption on plastic optical fibers[C].Applied Optics,1985,24(23):4129-4195.
    [18]Andreas Weinert.Plastic optical fibers:principles,components,installation[M].1999,Publicis MCD Verlag,Edangen and Munich.35-45.
    [19]Eisuke Nihei,Takaaki Ishigure,Norihisa Tanio,et al.Present prospect of graded-index plastic optical fiber in telecommunication[J].IEICE Transactions Electron,1997,E80-C(1):117-121.
    [1]C.C.Tang,S.S.Fan,M.L.Chapelle,H.Y.Dang,P.Li,Adv.Mater.12(2000)1346.
    [2]M.S.Gudiksen,C.M.Lieber,J.Am.Chem.Soc.122(2000)8801.
    [3]J.A.Levenson,I.Abram,Th.Rivera,and P.Grungier,Reduction of quantum noise in optical parametric amplification,J.Opt.Soc.Amer.B,1993,10:2233-2238
    [4]W.Imajuku and A.Takada,Theoretical analysis of system limitation for AM-DD/NRZ optical transmission systems using in-line phase-sensitive amplifiers,J.Lightwave Techno.,1998,16:1158-1170
    [5]W.Imajuku,A.Takada,and Y.Yarnabayashi,Inline coherent optical amplifier with noise figure lower than 3 dB quantum limit,Electron.Lett.,2000,36:63-64
    [6]F.S.Yang,M.E.Marhie,and L.G.Kazovsky,CW fiber optical parametric amplifier with net gain and wavelength conversion efficiency>1,Electron.Lett.,1996,32:2336-2338
    [7]J.Hansryd and P.A.Andrekson,Wavelength tunable 40 GHz pulse source based on fiber optical parametric amplifier,Electron.Lett.,2001,37:584-585
    [8]P.O.Hedekvist,M.Karlsson,and P.A.Andrekson.Fiber four-wave mixing demultiplexing with inherent parametric amplification,J.Lightwave Techno.,1997,15:2051-2058
    [9]M.-C.Ho,K.Uesaka,M.E.Marhie,Y.Akasaka,and L.G.Kazovsky,200-nm-bandwidth fiber optical amplifier combining parametric andraman gain,J.Lightwave Technol.,2001,19:977-981
    [10]M.Westlund,J.Hansryd,P.A.Andrekson,and S.N.Knudsen,Transparent wavelength conversion in fiber with 24 nm pump tuning range,Electron.Lett.,2002,38:85-86
    [11]J.Li,J.Hansryd,P.-O.Hedekvist,P.A.Andrekson,and S.N.Knudsen,300 Gbit/s eye-diagram measurement by optical sampling using fiber based parametric amplification,Optical Fiber Communication Conf.and Exhibit,Paper PD31,2001
    [12]J.Hansryd and Peter A.Andrekson,Broad-band continuous-wave-pumped fiber optical parametric amplifier with 49-dB gain and wavelength-conversion efficiency,IEEE Photon.Technol.Lett.,2001,13(3):194-196
    [13]D.J.Jones,S.A.Diddams,J.K.Ranka et al.,Carrier envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,Science,2000,288(28):635-639
    [14]H.Takara,Multiple optical carder generation from a supercontinuum source,Opt.Photon.News,2002,13:48-51
    [15]J.W.Nicholson,M.F.Yan,P.Wisk,J.Fleming et al.,All-fiber,octave-spanning supercontinuum,Opt.Lett.,2003,28(8):643-645
    [16]A.B.Rulkov,M.Y.Vyatkin,S.V.Popov et al.,High brightness picosecond all-fiber generation in 525-1800nm range with picosecond Yb pumping,Opt.Express,2005,13(2):377-381
    [17]A.Mussot,T.Sylvestre,L.Provino,and H.Maillote,Generation of a broadband single-mode supercontinuum in a conventional dispersion-shifted fiber by use of a subnanoseeond mierochip laser,Opt.Lett.,2003,28(19):1820-1822
    [18]P.-A.Chmpert,V.Couderc,P.Leproux,et al.,white-light supercontinuum generation in normally dispersive optical fiber using original multi-wavelength pumping system,Opt.Express,2004,12(19):4366-4371
    [19]P.-L.Hsiung,Y.Chen,T.H.Ko,et al.,Optical coherence tomography using a continuous-wave,high-power,Raman continuum light source,Opt.Express,2004,12(22):5287-5295
    [20]A.K.A beeluek,C.Headley,and C.G Jorgensen,high-power supercontinuum generation in highly nonlinear,dispersion-shifted fibers by use of a continuum-wave Raman fiber laser,Opt.Lett.,2004,29(18):2163-2165
    [21]Mori K,Takara H,Kawanishi S et al.,Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fiber with convex dispersion profile.Electron.Lett.,1997,33(21):1806- 1807
    [22]Futami F,Generation of wide band and flat supercontinuum over a 280-nm spectral range from a dispersion-flattened optical fiber with normal group-velocity dispersion,IEICE Trans Electron,1999,E82-C(8):1531 - 1538
    [23]A.K.Abeeluck,C.Headley,and C.G Jφrgensen,High-power supercontinuum generation in highly nonlinear dispersion-shifted fibers by use of a continuous-wave Raman fiber laser,Opt.Lett.,2004,29:2163-2165
    [24]A.Mussot,T.Sylvestre,L.Provino,and H.Maillote,Generation of a broadband single-mode supercontinuum in a conventional dispersion-shifted fiber by use of a subnanosecond microchip laser,Opt.Lett.,2003,28:1820-1822
    [25]J.M.Harbold,F.O.Ilday,F.W.Wise,T.A.Birks,W.J.Wadsworth,and Z.Chen,Long-wavelength continuum generation about the second dispersion zero of a tapered fiber,Opt.Lett.2002,27:1558-1560
    [26]J.Teipel,D.Tiirke,H.Giessen,A.Killi,U.Morgner,M.Lederer,D.Kopf,and M.Kolesik,Diode-pumped,ultrafast,multi-octave supercontinuum source at repetition rates between 500 kHz and 20 MHz using Yb:glass lasers and tapered fiber,Opt.Express,2005,13:1477-1485
    [27]T.A.Birks,W.J.Wadsworth,and P.St.J.Russell,Supercontinuum generation in tapered fibers,Opt.Lett.2000,25:1415-1417
    [28]J.Teipel,K.Franke,D.Tiirke,F.Warken,D.Meiser,M.Leuschner,and H.Giessen,Characteristics of supercontinuum generation in tapered fibers using femtosecond laser pulses,Apply.Phys.B,2003,77,245-250
    [29]J.K.Ranka,R.S.Windeler,and A.J.Stentz,Visible continuum generation in air silica microstructure optical fiber with anomalous dispersion at 800nm,Opt.Lett.2000,25:25-27
    [30]S.Coen,A.H.L.Chau,R.Leonhardt,J.D.Harvey,J.C.Knight,W.J.Wadsworth,and P.St.J.Russell,White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber,Opt.Lett.2001,26:1356-1358
    [31]S.Coen,A.H.L.Chau,R.Leonhardt,J.D.Harvey,J.C.Knight,W.J.Wadsworth,and P.St.J.Russell,Supercontinuum generation by stimulated Rarnan scattering and parametric four-wave mixing in photonic crystal fibers,J.Opt.Soc.Am.B 2002,19:753-764
    [32]W.J.Wadsworth,N.Joly,J.C.Knight,T.A.Birks,F.Biancalana,and P.St.J.Russell,Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibers,Opt.Express 2004,12,299-309

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700