微乳液中酶催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酶是具有催化活性的蛋白质。酶催化反应具有许多优点,如反应速率快、立体选择性好、反应条件温和等。利用酶催化反应进行物质的合成与转化是生物学与化学交叉研究的热点领域。在实际体系中,酶活性的保持与提高是生物合成与转化的关键。由于酶活性依赖于其存在的介质或微环境,因此,寻找适宜于酶活性保持或提高的介质或微环境一直是科研工作者追求的目标。与单一有机溶剂相比,油包水微乳液(W/O)作为酶催化反应介质能在分子水平上分散酶,其大的界面积、增强的底物溶解性也使得疏水性底物与亲水性酶之间的反应变得极为有利。此外,由于界面膜的保护作用,有机溶剂导致的酶失活作用大大降低。因此,W/O型微乳液(低水含量W/O微乳液也称为反胶束)常常成为酶催化性能研究的首选介质。
     相对于挥发性有机溶剂,低挥发性的离子液体常常被看成是绿色溶剂。有关离子液体作为酶催化反应添加剂和介质的研究已有报导。作为添加剂,特定性质的离子液体能增强酶的催化性能。作为介质,低挥发性的离子液体比传统有机溶剂具有许多优势。譬如,在离子液体介质中,酶的催化性能(包括活性、稳定性和立体选择性)通常要优于传统有机溶剂介质;不仅如此,在离子液体介质中,产物易于分离、酶和离子液体可重复利用。为提高反胶束中酶催化性能、减少挥发性有机溶剂的使用,本文尝试开展了如下几方面创新性研究:
     1.传统反胶束中亲水离子液体增强脂肪酶催化性能研究
     传统反胶束在脂肪酶催化的生物合成和转化中应用广泛,但脂肪酶的催化性能仍需改善。已有文献表明,水介质中低浓度离子液体能增强酶的催化性能。通常认为,由结构形成阴离子和结构破坏阳离子组成的离子液体有利于蛋白结构稳定。对酶催化反应而言,离子液体的可设计性为通过选择合适的离子液体阴离子和阳离子来提高酶的催化性能(包括活性,稳定性和选择性)带来了便利。胆碱醋酸盐是由稳定蛋白的结构形成阴离子和结构破坏阳离子组成的离子液体,根据Hofmeister序列,稳定蛋白的结构形成阴离子和结构破坏阳离子有利于酶催化性能的保持。在这里,我们首次研究了胆碱醋酸盐对AOT/异辛烷/水反胶束中脂肪酶催化对-硝基苯丁酸酯水解活性和稳定性的影响。结果表明,加入的胆碱醋酸盐不影响反胶束的结构,但能提高脂肪酶的催化性能。荧光光谱研究表明高浓度胆碱醋酸盐对脂肪酶构象有一定的影响,但此时脂肪酶活性也是增强的,所以胆碱醋酸盐对反胶束中脂肪酶的激活作用主要是提高了水亲核性。红外光谱表明胆碱醋酸盐能和脂肪酶周围的水形成强氢键,提高水的亲核性,使其更容易进攻酰酶中间体,从而提高了脂肪酶催化酯水解的活性。含有胆碱醋酸盐的AOT反胶束中脂肪酶稳定性的研究也表明,由稳定蛋白的结构形成阴离子和结构破坏阳离子组成的离子液体在一定程度上能保持脂肪酶催化活性。
     2.新型疏水离子液体基微乳液的构建及其中的酶催化反应
     在疏水性离子液体介质中,酶有催化活性,但不能在单分子水平上分散,也因此大大降低了酶催化效率。因此,尝试构建一个适宜于酶活力表达的疏水性离子液体/酶均相体系是一项很有意义的工作。基于此我们绘制了新的AOT/Triton X-100/H2O/[Bmim][PF6]拟三元体系的相图。借助非离子表面活性剂Triton X-100,AOT可以分散在疏水性离子液体[Bmim][PF6]中,并形成较大区域的单相微乳液。通过探针K3Fe(CN)6在单相微乳液相区中扩散系数随含水量的显著变化,区分了water-in-[Bmim][PF6](W/IL)微乳液相区。通过探针CoCl2的紫外可见吸收光谱证明了W/IL微乳液的存在。结合W/IL微乳液各组分的红外光谱特征,通过用重水取代普通水首次用FTIR证明含有较大ω0的W/IL微乳液中本体水的存在(ω0定义为体系中水与表面活性剂的摩尔比)。该W/IL微乳液不仅能增溶无机盐CoCl2,也能增溶生物大分子(漆酶)。增溶的漆酶在该微乳液中能表现出较高的催化活力,而且通过改变反相微乳液内界面的组成漆酶的催化活性能得到很好的调控。
     在AOT和TX-100稳定的water-in-[Bmim][PF6]微乳液中,我们也研究了脂肪酶催化对-硝基苯丁酸酯(p-nitrophenyl butyrate (p-NPB))水解的活力。探讨了微乳液的结构参数和酶催化反应的条件对脂肪酶催化活性的影响,尤其是Tris-HCl缓冲液浓度的影响。在最佳条件下,该体系中脂肪酶的催化活性比水饱和的离子液体[Bmim][PF6]中高。分析表明,这是由于反相微乳液大的界面,高的水活性(分子间氢键),和水池中咪唑阳离子(Tris+阳离子与[Bmim]+|阳离子交换)的激活作用所致。当考虑底物在微乳液胶束拟相中的分配,在此新型微乳液中脂肪酶的催化效率是水饱和离子液体[Bmim][PF6]中的14.3倍。为了证明离子液体基微乳液在生物催化合成中的应用价值,我们研究了脂肪酶催化的醋酸乙烯酯和苯甲醇的转酯化反应制备芳香剂乙酸苄酯。由于反胶束大的界面,高的水活性,和水池中咪唑阳离子的激活作用使分子水平上分散的酶催化效率大大提高,加之副产品的移除,苯甲醇的转化率高达94%。
     3.传统反胶束中牛血清白蛋白构象的氰基红外探针表征方法
     反相微乳液中酶构象的表征是胶束酶学研究的一个重要内容。圆二色光谱是表征蛋白构象的常用方法,但是,反胶束中离子液体的引入可能干扰蛋白构象的测定,因此表征蛋白的各种谱学方法值得开展。红外光谱是测定生物分子结构的一种重要技术手段。它适用于不同状态、不同浓度及不同环境中蛋白质和/或多肽的测定,但是存在光谱拥挤现象。蛋白质在2500-2200cm-1区域没有红外吸收,在蛋白分子上修饰红外吸收频率在此区域的红外基团为蛋白构象研究带来了便利。非天然分子4-氰基苄基溴是一个对溶剂环境变化很敏感的红外探针。我们通过牛血清白蛋白(BSA)上半胱氨酸巯基的烷基化反应将4-氰基苄基基团修饰到牛血清白蛋白上,圆二色光谱研究表明BSA修饰前后构象基本保持。利用尿素等改变BSA构象,研究了AOT反胶束中氰基红外吸收峰对BSA构象变化的敏感性;通过改变反胶束大小,电解质浓度等探讨了氰基峰裂分的机制。氰基红外吸收峰的位移及其裂分与BSA结构的变化具有关联性。上述结果不仅为利用氰基红外探针研究增溶在离子液体基微乳液中的蛋白质或酶的构象奠定了基础,还为离子的Hofmeister序列研究提供了新思路。
The enzyme is a protein which has catalytic activity. The enzyme-catalyzed reaction has many advantages, such as fast reaction rate, good stereoselectivity, and mild reaction conditions, etc. Enzyme-catalyzed biosynthesis and biotransformation are hot topics in the intersectant research area of biology and chemistry. The maintenance and enhancement of the catalytic activity of an enzyme is the key problem of biosynthesis and biotransformation. The catalytic activity of the enzyme depends on its media or microenvironments, thus workers have always been looking for a reaction medium or microenvironment in which the enzyme can efficiently play the role. Compared with a single oil as a solvent, W/O microemulsions as microheterogeneous media could disperse enzymes at a molecular level, large interfacial area and high solubility of substrate also favors reactions between hydrophobic substrates and hydrophilic enzymes. In addition, the deactivation of enzyme by organic solvents could be greatly reduced due to the protection of the interfacial membrane.Thus W/O microemulsions (W/O microemulsions with low water content are also called reverse micelles) are more suitable for the study on the catalytic performance of an enzyme.
     With reference to molecular organic solvents, ILs are usually considered as "green" solvents. It is reported that ionic liquids are used as additives and media for enzyme-catalyzed reactions. As an additive, the specific ionic liquid can enhance the catalytic performance of an enzyme. And as the enzyme-catalyzed reaction medium, low-volatile ionic liquid has many advantages over volatile organic solvents, such as, the catalytic performance (including the activity, stability and stereoselectivity) of the enzyme in ionic liquids is better than that in organic solvents; moreover, using ILs as media facilitates the separation of products and the recycle of the biocatalysts and the media. In order to improve the catalytic performance of enzyme in reverse micelles and reduce the use of volatile organic solvents, the innovative researches of this article are as follows: 1. Hydrophilic ionic liquid enhanced the catalytic performance of lipase in AOT reverse micelles
     The reverse micelles are widely used in the enzyme-catalyzed biosynthesis and transformation, but the catalytic performance of lipase still needs to be improved. It has been shown that the ionic liquids can enhance the catalytic efficiency of the enzymes in diluted aqueous solutions of ILs. Generally speaking, an ionic liquid consisting of a kosmotropic anion and a chaotropic cation can stabilize proteins. For an enzyme, its catalytic performance (including activity, stability and selectivity) could be improved by selecting suitable anion and cation because of the designability of ionic liquids. Choline acetate is an ionic liquid composed of a kosmotropic anion and a chaotropic cation. According to Hofmeister series, a kosmotropic anion and/or a chaotropic cation could stabilize an enzyme, thereby facilitating the retention of the catalytic activity of the enzyme. In this work, we first report the influence of choline acetate on the activity and stability of lipase in AOT/water/isooctane reverse micelles. The indicator reaction is the lipase-catalyzed hydrolysis of4-nitrophenyl butyrate. The results show that a low level of choline acetate does not affect the microstructure of the AOT reverse micelles, but the ionic liquid can improve the catalytic efficiency of lipase. Fluorescence spectra show that a high level of choline acetate has an impact on the conformation of lipase, so the activation is mainly due to the influence of choline acetate on the nucleophilicity of water. Infrared spectra demonstrate that choline acetate can form stronger hydrogen bonds with water surrounding lipase, and therefore enhance the nucleophilicity of the water, which makes it easier to attack the acyl enzyme intermediate, thereby increasing the activity of the lipase-catalyzed hydrolysis of the ester. A study on the stability of lipase in AOT reverse micelles indicates that the ionic liquid is able to maintain the activity of lipase to a certain extent.
     2.Formation of novel ionic liquid-based microemulsions and enzyme catalysis
     In hydrophobic ionic liquids, enzyme can express the catalytic activity, but enzyme is usually not suspended at a molecular level, which reduces its catalytic efficiency. So it is of significance to construct a hydrophobic ionic liquid-enzyme (especially a surface-active enzyme) homogeneous system suitable for the expression of its catalytic activity. Therefore, the phase diagram of a new AOT/Triton X-100/H2O/[Bmim][PF6] pseudo ternary system is presented. With the aid of nonionic surfactant Triton X-100, AOT could be dissolved in hydrophobic ionic liquid [Bmim][PF6], forming a large single phase microemulsion region. The water-in-[Bmim][PF6](W/IL) microemulsion domain was identified electrochemically by using K3Fe(CN)6as a probe. The existence of W/IL microemulsions was demonstrated spectrophotometrically by using CoCl2as a probe. New evidences from the FTIR spectroscopic study, which was first introduced to the W/IL microemulsion by substituting D2O for H2O to eliminate the spectral interference, demonstrated that there existed bulk water at larger ω0values(ω0was defined as the molar ratio of water to the total surfactant) in the W/IL microemulsion, which had remained unclear before. In addition to the inorganic salts, biomacromolecule laccase could be solubilized in the W/IL microemulsion. The laccase hosted in the microemulsion exhibited a catalytic activity and the activity could be regulated by the composition of the interfacial membrane.
     In the water-in-[Bmim][PF6] microemulsion stabilized by both AOT and Triton X-100, the lipase-catalyzed hydrolysis of4-nitrophenyl butyrate (p-NPB) was investigated to evaluate the catalytic efficiency of lipase in this novel microemulsion. The structural parameters of the microemulsion and the conditions of the enzymatic reaction affect the catalytic activity of lipase, especially the concentration of Tris-HCl buffer. Under optimum conditions, the catalytic activity of lipase in the present microemulsion is much higher than that in H2O saturated [Bmim][PF6]. When the partitioning of the substrate in the microemulsion is taken into account, the catalytic efficiency of lipase in this novel microemulsion is14.3times that in H2O saturated [Bmim][PF6] due to the significant decrease of the Michaelis constant in the microemulsion. Due to the large interface, high water activity, and probably the activating effect of the imidazolium cation in the water pool, the present microemulsion is demonstrated to be a promising medium for the lipase-catalyzed hydrolytic reaction. To demonstrate an important biocatalytic application in the IL-based microemulsion, the lipase-catalyzed synthesis of the flavoring agent benzyl acetate via transesterification of vinyl acetate with benzyl alcohol was also studied in the medium. Due to the high dispersion of lipase, large interface and removal of the byproduct, a maximum yield of94%was obtained, indicating that the novel microemulsion is really important and useful.
     3. The characterization of the conformation of bovine serum albumin solubilized in reverse micelles
     The characterization of the enzyme conformation is an important content of the so-called micellar enzymology. CD (circular dichroism) spectrum is a common technique that could be used to characterize the conformation of enzyme, but the introduction of ionic liquid may interfere with the determination of protein conformation in reverse micelles. So it is worthwhile to develop some spectral characterization strategies. Infrared spectroscopy is a powerful technique for structure characterization. For a protein hosted in a reversed micellar medium, the spectral features of the protein are always interfered by the IR absorption bands of the medium in addition to the congestion in their IR spectra. Fortunately, there is a transparent window in the2500-2200cm-1region. Incorporation of a vibrational probe with IR absorption frequencies in this region into proteins represents a promising strategy for the study of the conformation of a protein in a reverse micelle. In the present work, we incorporated4-cyanobenzyl group (CN) into bovine serum albumin (BSA) via cysteine alkylation reactions under mild conditions. Circular dichroism spectroscopy showed that the C=N modified BSA (CNBSA) could retain its conformation. When CNBSA was hosted in AOT reverse micelle, it was found that the nitrile group on BSA was sensitive to the conformational change of BSA induced by urea as an additive in the reverse micelle. The peak splitting of nitrile group was also observed when the size of AOT reverse micelle and the concentration of an electrolyte were varied. Obviously, the shift of the IR absorption peak and/or peak splitting of nitrile group on BSA are correlated with the change of BSA conformation in AOT reverse micelle. So we conclude that the nitrile infrared probe can be used to study protein conformation in a reverse micelle.
引文
[1]李慧蓉,白腐真菌生物学和生物技术,北京:化学工业出版社,2005.
    [2]李光日,余惠生,漆酶催化活性中心结构及应用的研究进展,纤维素科学与技术,8(2),42-49,2000.
    [3]宋安东,王艳婕,王松江,戚元成,吴坤,漆酶的分子生物学研究及其应用,信阳师范学院学报:自然科学版,17(2),244-248,2004.
    [4]王国栋,陈晓亚,漆酶的性质、功能、催化机理和应用,植物学通报,20(4),469-475,2003.
    [5]Claus H., Laccases:Structure, reactions, distribution, Micron,35,93-96, 2004.
    [6]Duran N., Rosa M. A., D'Annibale A., Gianfreda L., Applications of laccases and tyrosinases (phenoloxidases) immobilized on different supports:A review, Enzyme Microb. Technol.,31,907-931,2002.
    [7]Messerschmidt A., Ladenstein R., Huber R., Refined crystal structure of ascorbate oxidase at 1.9 A resolution, J. Mol. Biol.,224,179-205,1992.
    [8]Sakurai T., Takahashi J., EPR spectra of type 3 coppers centers in rhus vernicifera laccase and cucumis sativus ascorbate oxidase, Biochimica. Et Biophysica. Acta,1248,143-148,1995.
    [9]Torres J., Svistunenko D., Karlsson B.,Cooper C. E., Wilson M. T., Fast reduction of a copper center in laccase by nitric oxide and formation of a peroxide intermediate, J. Am. Chem. Soc,124,963-967,2002.
    [10]Riva S., Laccases:Blue enzymes for green chemistry, Trends Biotechnol.,24, 219-226,2006.
    [11]姜标,徐向亚,李祖义,用于生物氧化的蓝色漆酶,有机化学,28(10),1715-1723,2008.
    [12]D'acunzo R, Galli C., Masci B., Oxidation of phenols by laccase and laccase-mediator systems, Eur. J. Biochem.,269,5330-5335,2002.
    [13]Li K., Xu F., Eriksson K. E., Comparison of fungal laccases and redox mediators in oxidation of a nonphenolic lignin model compound, Appl. Environ. Microbiol.,65,2654-2660,1999.
    [14]Fabbrini M., Galli C., Gentili P., Radical or electron-transfer mechanism of oxidation with some laccase/mediator systems, J. Mol. Catal. B:Enzym.,18, 169-171,2002.
    [15]Crestini C., Jurasek L., Argyropoulos D. S., On the mechanism of the laccase-mediator system in the oxidation of lignin, Chem. Eur. J.,9, 5371-5378,2003.
    [16]Chen C. L., Potthast A., Rosenau T., Gratzl J. S., Kirkman A. G, Nagai D., Miyakoshi T., Laccase-catalyzed oxidation of 1-(3,4-dimethoxyphenyl)-1-propene using ABTS as mediator, J. Mol. Catal. B:Enzym.,8,213-219,2000.
    [17]Arends I.W. C. E., Li Y. X.,Ausan R., Sheldon R. A., Comparison of TEMPO and its derivatives as mediators in laccase catalysed oxidation of alcohols, Tetrahedron,62,6659-6665,2006.
    [18]Sheldon R. A., Arends I. W. C.E., Catalytic oxidations mediated by metal ions and nitroxyl radicals, J. Mol. Catal. A:Chem.,251,200-214,2006.
    [19]Barreca A. M., Fabbrini M., Galli C, Gentili P., Ljunggren S., Laccase/mediated oxidation of a lignin model for improved delignification procedures, J. Mol. Catal. B:Enzym.,26,105-110,2003.
    [20]Rusa M. L., Diaz-Maurino T., Fernandez V. M., Otero C., Ballesteros A., Purification and characterization of two distinct lipases from Candida cylincacea, Biochim. Biophys. Acta,1156,181-189,1993.
    [21]Grochulski P., Li Y., Schrag J. D., Bouthillier F., Smith P., Harrison D., Rubin B., Cygler M., Insights into interfacial activation from an open structure of Candida rugosa lipase, J. Biol. Chem.,268,12843-12847,1993.
    [22]Zaks A., Klibanov A. M., Enzymatic catalysis in organic media at 100 degree C, Science,224,1249-1251,1984.
    [23]Klibanov A. M., Enzymatic catalysis in anhydrous organic solvents, Trends Biochem. Sci.,14,141-144,1989.
    [24]Gupta M. N., Enzyme function in organic solvents, Eur. J. Biochem.,203, 25-32,1992.
    [25]Verma M. L., Azmi W., Kanwar S. S., Microbial lipases:At the interface of aqueous and non-aqueous media. A review, Acta Microbiol. Immunol. Hung.,55,265-294,2008.
    [26]Klibanov A. M., Improving enzymes by using them in organic solvents, Nature,409,241-246,2001.
    [27]Goto A., Yoshioka H., Manabe M., Goto R., NMR, spectroscopic study on the dissolution of water in sodium bis (2-ethylhexyl) sulfosuccinate/toluene solution, Langmiur,11,4873-4875,1995.
    [28]Klibanov A. M., Enzymes that work in organic solvents, Chem. Tech.,6, 354-359,1986.
    [29]Zaks A., Klibanov A. M., The effect of water on enzyme action in organic media, J. Biol. Chem.,263,8017-8021,1988.
    [30]Blinkovsky A. M., Martin B. D., Dordick J. S., Enzymology in monophasic organic media, Curr. Opin. Biotechnol.,3,124-129,1992.
    [31]Dordick J. S., Non-aqueous enzymology, Curr. Opin. Biotechnol.,2,401-407, 1991.
    [32]Dordick J. S., Designing enzymes for use in organic solvents, Biotechnol. Prog.,8,259-267,1992.
    [33]Martinek K., Levashov A. V., Khmelnitsky Y. L., Klyachko N. L., Berezin I. V., Colloidal solution of water in organic solvents:A microheterogeneous medium for enzymatic reactions, Science,218,889-891,1982.
    [34]Martinek K., Berezin I. V., Khmelnitski Y. L., Klyachko N. L., Levashov A. V., Enzymes entrapped into reverse micelles of surfactants in organic solvents:Key trends in applied enzymology (biotechnology), Biocatal. Biotransfor.,1,9-15,1987.
    [35]Pshezhetskii A. V., Merker S., Pepanyan G S., Llyachko N. L., Martinek K., Levashov A. V., Modelling of the membrane environment of enzymes: Superactivity of laccase entrapped into surfactants reversed micelles in organic solvents, Biokhimiya (Moscow),53,1013-1016,1988.
    [36]Levashov A. V., Klyachko N. L., Pshezhetskii A. V., Berezin I. V, Kotrikadze N. G, Lomsadze B. A., Martinek K., Superactivity of acid phosphatase entrapped into surfactant reversed micelles in organic solvents, Dokl.Akad. Nauk SSSR,289,1271-1273,1986.
    [37]Klyachko N. L., Bogdanova N. G, Levashov A. V., Martinek K., Micellar enzymology:Superactivity of enzymes in reversed micelles of surfactants solvated by water/organic solvent mixtures collect, Czech Chem. Commun., 57,625-640,1992.
    [38]Celej M. S., D'Andrea M. G, Campana P. T., Fidelio G D., Bianconi M. L., Superactivity and conformational changes on a-chymotrypsin upon interfacial binding to cationic micelles, Biochem. J.,378,1059-1066,2004.
    [39]Hanahan D. J., The enzymatic degradation of phosphatidylcholine in diethyl-ether, J. Biochem.,195,199-206,1952.
    [40]Wells M. A., Mechanism of interfacial activation of phospholipase A2, Biochemistry,13,2248-2257,1974.
    [41]Wells M. A., Phospholipase A2 model system. Calcium enhancement of the amine-catalyzed methanolysis of phosphatidylcholine, Biochemistry,13, 2258-2264,1974.
    [42]Wells M. A., Effect of pH on the kinetic and spectral properties of crotalus adamanteus phospholipase A2 in H2O and D2O, Biochemistry,13, 2265-2268,1974.
    [43]Klibanov A. M., Samokin G. P., Martinek K., Berezin I. V., A new mechanochecmical method of enzyme immobilization, Biotechnol. Bioeng., 19,211-218,1977.
    [44]Luisi P. L., Magid L., Solubilization of enzymes and nucleic acids in hydrocarbon micellar solution, CRC Crit. Rev. Biochem.,20,409-474,1986.
    [45]Naoe K., Noda K., Kawagoe M., Imai M., Higher order structure of proteins solubilized in AOT reverse micelles, Colloids Surf. B,38,179-185,2004.
    [46]Naoe K., Takeuchi C, Kawagoe M., Nagayama K., Imai M., Higher order structure of Mucor miehei lipase and micelle size in cetyltrimethylammonium bromide reverse micellar system, J, Chromatogr. B, 850,277-284,2007.
    [47]Zoumpanioti M., Stamatis H., Papadimitriou V., Xenakis A., Spectroscopic and catalytic studies of lipases in ternary hexane-1-propanol-water surfactantless microemulsion systems, Colloids Surf. B,47,1-9,2006.
    [48]Andrade S. M., Costa S. M. B., Structural changes of a-chymotrypsin in reverse micelles of AOT studied by steady state and transient state fluorescence spectroscopy, J. Mol. Struct.,565-566,219-223,2001.
    [49]Pileni M. P., Cassin G., Michel F., Pitr F., Structural study of AOT reverse micelles containing native or modified proteins:Influence of surfactant-enzyme interaction, Colloids Surf. B,3,321-332,1995.
    [50]Creagh A. L.,Prausnitz J. M., Blanch H. W., Structural and catalytic properties of enzymes in reverse micelles, Enzyme Microb. Technol.,15, 383-392,1993.
    [51]Chen J., Xia C, Niu J., Li S., FTIR study of horseradish peroxidase in reverse micelles, Biochem. Biophys. Res. Commun.,282,1220-1223,2001.
    [52]Chang Q., Liu H., Chen J., Fourier transform infrared spectra studies of protein in reverse micelles:Effect of AOT/isooctane on the secondary structure of a-chymotrypsin, Biochim. Biophys. Acta,1206,247-252,1994.
    [53]Ternstrom T., Svendsen A.,Akke M., Adlercreutz P., Unfolding and inactivation of cutinases by AOT and guanidine hydrochloride, Biochim. Biophys. Acta,1748,74-83,2005.
    [54]Melo E. P., Fojan P., Cabral J. M. S., Petersen S. B., Dynamic light scattering of cutinase in AOT reverse micelles, Chem. Phys. Lipids,106,181-189, 2000.
    [55]Shome A., Roy S., Das P. K., Nonionic surfactants:A key to enhance the enzyme activity at cationic reverse micellar interface, Langmiur,23, 4130-4136,2007.
    [56]Lopez F., Cinelli G., Ambrosone L., Colafemmina G, Ceglie A., Palazzo G, Role of the cosurfactant in water-in-oil microemulsion:Interfacial properties tune the enzymatic activity of lipase, Colloids Surf. A,237,49-59,2004.
    [57]Yang Z., Deng J., Chen L.F., Effect of ionic liquid and non-ionic surfactants on the activity and stability of mushroom tyrosinase, J. Mol. Catal. B: Enzym.,47,79-85,2007.
    [58]Ruckenstein E., Karpe P., Enzymatic super-and subactivity in nonionic reverse micelles, J. Phys. Chem.,95,4869-4882,1991.
    [59]夏仕文,俞耀庭,童明荣,反胶束中的酶催化研究进展,化学通报,2,8-12,1998.
    [60]Sanchez-Ferrer A., Garcia-Carmona F., Biocatalysis in reverse self-assembling structures:Reverse micelles and reverse visicles, Enzyme Microb. Technol.,16,409-415,1994.
    [61]Bru R., Sanchez-Ferrer A., Garcia-Carmona F., The effect of substrate partitioning on the kinetics of enzymes acting in reverse micelles, Biochem. J.,268,679-684,1990.
    [62]Martinek K., Klyachko N. L., Kabonov A. V., Khmelnitsky Y. L., Levashov A. V.,Micellar enzymology:Its relation to membranology, Biochim. Biophys. Acta,981,161-172,1989.
    [63]Luisi P. L., Giomini M., Pileni M. P., Robinson B. H., Reverse micelles as hosts for proteins and small molecules, Bionchim. Biophys. Acta,947, 209-246,1988.
    [64]Ruckenstein E., Karpe P.,On the enzymatic superactivity in ionic reverse micelles, J Colloid Interface Sci.,139,408-436,1990.
    [65]Steinmann B., Jackle H., Luisi P. L., A comparative study of lysozyme conformation in various reverse micellar systems, Biopolymers,25, 1133-1156,1986.
    [66]Rodakiewicz-Nowak J., Maslakiewicz P., Haber J., The effect of linoeic acid on pH inside sodium bis (2-ethylhexyl) sulfosuccinate reverse miclles in isooctane and on the enzymic activity of soybean lipoxygenase, Eur. J. Biochem.,238,549-553,1996.
    [67]Smith R. E., Luisi P. L., Micellar solubilization of biopolymers in hydrocarbon solvents Ⅲ. Empirical definition of an acidity scale in reverse micelles, Helv. Chim. Acta,63,2302-2311,1980.
    [68]Yamada Y., Kuboi R., Komasawa I., Increased activity of chromobacterium viscosum lipase in aerosol OT reverse micelles in the presence of nonionic surfactants, Biotechnol. Prog.,9,468-472,1993.
    [69]Sebashao M. J., Cabral J. M. S., Aires-Barros M. R., Synthesis of fatty acid esters by a recombinant cutinase in reversed micelles, Biotechnol. Bioeng., 42,326-332,1993.
    [70]Larsson K., Adlercreutz P., Mattiasson B., Enzymatic catalysis in microemulsions:Production reuse and recovery, Biotechnol. Bioeng.,36, 135-141,1990.
    [71]Carvalho C. M. L., Cabral J. M. S., Reverse micelles as reaction media for Upases, Biochimie,82,1063-1085,2000.
    [72]Yao C. Y, Tang S. K., He Z. M., Deng X., Kinetics of lipase-catalyzed hydrolysis of olive oil in AOT/isooctane reverse micelles, J. Mol. Catal. B: Enzym.,35,108-112,2005.
    [73]Moniruzzaman M., Hayashi Y,Talukder M. M. R.,Saito E., Kawanishi T., Effect of aprotic solvents on the enzymatic activity of lipase in AOT reverse micelles, Biochem. Eng. J.,30,237-244,2006.
    [74]Rodakiewicz-nowak J., Ito M., Effect of AOT on enzymatic activity of the organic solvent resistant tyrosinase from streptomyces sp REN-21 in aqueous solutions and water-in-oil microemulsions, J. Colloid Interface Sci., 284,674-679,2005,.
    [75]Kimura M., Michizoe J., Furusaki S., Goto M.,Tanaka H., Wariishi H., Activation of lignin peroxidase in organic media by reversed micelles, Biotechnol. Bioeng.,88,495-501,2004,.
    [76]Johjima T., Wariishi H., Tanaka H., Veratryl alcohol binding sites of lignin peroxidase from phanerochaete chrysosporium, J. Mol. Catal. B:Enzym.,17, 49-57,2002.
    [77]Lan J., Zhang Y., Huang X. R., Hu M., Liu W. F., Li Y. Z., Qu Y. B., Gao P. J., Improvement of the catalytic performance of lignin peroxidase in reversed micelles, J. Chem. Technol. Biotechnol.,83,64-70,2008.
    [78]Fan K. K., Ouyang P., Wu X., Lu Z., Enhancement of the activity of papain in mixed reverse micellar systems in the presence of Tween80, J. Chem. Technol. Biotechnol.,76,27-34,2001.
    [79]Zhang D. H., Guo Z., Dong X. Y, Sun Y, Characterization of lipase in reversed micelles formulated with Cibacron Blue F-3GA modified Span 85, Biotechnol. Prog.,23,108-115,2007.
    [80]Chen D. H., Liao M. H., Effects of mixed reverse micellar structure on stability and activity of yeast alcohol dehydrogenase, J. Mol. Catal. B: Enzym.,18,155-162,2002.
    [81]Orlich B., Schomacker R., Candida rugosa lipase reactions in nonionic w/o-microemulsion with a technical surfactant, Enzyme Microb. Technol., 28,42-48,2001.
    [82]Chen N., Fan J. B., Xiang J., Chen J., Liang Y., Enzymatic hydrolysis of microcrystalline cellulose in reverse micelles, Biochim. Biophys. Acta., 1764,1029-1035,2006.
    [83]Zhang Y., Huang X. R., Huang F., Li Y Z., Qu Y B., Gao P. J., Catalytic performance of lignin peroxidase in a novel reverse micelle, Colloid Surf. B, 65,50-53,2008.
    [84]Jada A., Lang J., Zana R., Ternary water in oil microemulsions made of cationic surfactants, water, and aromatic, J. Phys. Chem.,94,381-395,1990.
    [85]Nagarajan R., Molecular packing parameter and surfactant self-assembly: The neglected role of the surfactant tail, Langmuir,18,31-38,2002.
    [86]Singh R. S., Mukherjee K., Banerjee R., Chaudhuri A., Hait S. K., Moulik S. P., Ramadas Y., Vijayalakshmi A., Rao N. M., Anchor dependency for non-glycerol based cationic lipofectins:Mixed bag of regular and anomalous transfection profiles, Chem. Eur. J.,8,900-909,2002.
    [87]Goff R. D., Gao Y., Mattner J., Zhou D. P., Yin N., Cantu C, Teyton L., Bendelac A., Savage P. B., Effects of lipid chain lengths in r-galactosylceramides on cytokine release by natural killer T cells, J. Am. Chem. Soc,126,13602-13603,2004.
    [88]Dasgupta A., Das D., Mitra R. N., Das P. K., Surfactant tail length-dependent lipase activity profile in cationic water-in-oil microemulsions, J. Colloid Interface Sci.,289,566-573,2005.
    [89]Sugden S., Wikins H., The parachor and chemical constitution. Part XJ. Fused metals and salts. J. Chem. Soc,1291-1298,1929.
    [90]Hurley F. H., Wier T. P., Electrodeposition of metals from fused quaternary ammonium salts, J. Electrochem. Soc,98 (2),203-208,1951.
    [91]Wikes J. S., Levisky J. A., Wilson R. A., Hussey C. L., Diakylimidazolium chloroaluminate melts:A new class of room-temperature ionic liquid for electrochemistry, spectroscopy and synthesis, Inorg. Chem.,21,1263-1264, 1982.
    [92]Wikes J. S., Zaworotko M. J., Air and water stable 1-ethyl-3-methylimidazolium based ionic liquid, Chem. Commun,965-967, 1992.
    [93]Welton T., Room-temperature ionic liquid. Solvents for synthesis and catalysis, Chem. Rev.,99,2071-2084,1999.
    [94]Scurto A. M., Aki S. N. V. K., Brennecke J. F., CO2 as a separation switch for ionic liquid/organic mixtures, J. Am. Chem. Soc,124,10276-10277,2002.
    [95]Bosmann A., Francio G, Janssen E., Solinas M., Leitner W., Wasserscheid P., Activation, tuning, and immobilization of homogeneous catalysts in an ionic liquid/compressed CO2 continuous-flow system, Angew. Chem. Int. Ed. Engl.,40(14),2697-2699,2001.
    [96]Yang H., Gu Y., Deng Y., Electrochemical activation of carbon di-oxide in ionic liquid:Synthesis of cyclic carbonates at mild reac-tion conditions, Chem. Commun.,274-275,2002.
    [97]Ye C. F., Liu W. M., Chen Y. X., Yu L. G., Room temperature ionic liquids: A novel versatile lubricant. Chem. Commun.,2244-2245,2001.
    [98]Liu W. M., Ye C. F., Gong Q. Y., Wang H. Z., Wang P., Tribological performance of room-temperature ionic liquids as lubricant, Tribol. Lett., 13(2),81-85,2002.
    [99]Zhao H., Effect of ions and other compatible solutes on enzyme activity, and its implication for biocatalysis using ionic liquids, J. Mol. Cat. B:Enzym., 37,16-25,2005.
    [100]Yang Z., Hofmeister effects:An explanation for the impact of ionic liquids on biocatalysis, J. Biotechnol.,144,12-22,2009.
    [101]Lau R. M., van Rantwijk F., Seddon K. R., Lipase-catalyzed reactions in ionic liquids, Org. Lett.,2,4189-4191,2000.
    [102]Merrigan T. L., Bates E. D., Dorman S. C., Davis J. H., New fluorous ionic liquids function as surfactants in conventional room-temperature ionic liquids, Chem. Commun.,2051-2052,2000.
    [103]Binks B. P., Dyab A. K. F., Fletcher P. D. I., Novel emulsions of ionic liquids stabilised solely by silica nanoparticles, Chem. Commun.,2540-2541, 2003.
    [104]Anderson J. L., Pino V., Hagberg E. C, Sheares V. V., Armstrong D. W, Surfactant solvation effects and micelle formation in ionic liquid, Chem. Commun.,2444-2445,2003.
    [105]Fletcher K. A., Pandey S., Surfactant aggregation within room-temperature ionic liquid 1-ethyl-3-methylimidazolim bis (trifloromethylsulfonyl) imide, Langmuir,20,33-36,2004.
    [106]Eastoe J., Gold S., Rogers S. E., Paul A., Welton T., Heenan R. K., Grillo I., Ionic liquid-in-oil microemulsions, J. Am. Chem. Soc.,127,7303-7304, 2005.
    [107]Gao Y. A., Li N., Zheng L. Q., Zhao X. Y., Zhang J., Cao Q., Zhao M. W., Li Z., Zhang G. Y., The effect of water on the microstructure of 1-butyl-3-methylimidazolium tetrafluoroborate/TX-100/benzene ionic liquid microemulsions, Chem. Eur. J.,13,2661-2670,2007.
    [108]Gao Y. A., Han S. B., Han B. X., Li G. Z., Shen D., Li Z. H., Du J. M., Hou W. G., Zhang G. Y., TX-100/water/1-butyl-3-methylimidazolium hexaflorophosphate microemulsions, Langmuir,21,5681-5684,2005.
    [109]Gao Y. A., Li N., Zheng L. Q., Zhao X. Y., Zhang S. H., Han B. X., Hou W. G., Li G Z., A cyclic voltammetic technique for the detection of micro-region of bmimPF6/Tween 20/H2O microemulsions and their performance characterization by UV-Vis spectroscopy, Green Chem.,8, 43-49,2006.
    [110]Zhang Y.,Huang X. R., Li Y. Z., Negative effect of [Bmim][PF6] on the catalytic activity of alcohol dehydrogenase:mechanism and prevention, J. Chem. Technol. Biotechnol.,83,1230-1235,2008.
    [111]Zhou G. P., Zhang Y., Huang X. R., Shi C. H., Liu W. F., Li Y. Z., Qu Y. B., Gao P. J., Catalytic activities of fungal oxidases in hydrophobic ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate-based microemulsion, Colloid Surf. B,66,146-149,2008.
    [112]Moniruzzaman M., Kamiya N., Nakashima K., Goto M., Water-in-ionic liquid microemulsion as a new medium for enzymatic reation, Green Chem., 10,497-500,2008.
    [113]Moniruzzaman M., Kamiva N., Goto M., Biocatalysis in water-in-ionic liquid microemulsions:A case study with horseradish peroxidase, Langmiur, 25,977-982,2009.
    [114]Cook P. F., Cleland W. W.,Mechanistic deductions from isotope effects in multi reactant enzyme mechanisms, Biochemistry,20,1790-1796,1981.
    [115]Biellmann J. F., Chemistry and structure of alcohol dehydrogenase:Some general considerations on binding mode variability, Acc. Chem. Res.,19, 321-328,1986.
    [116]Gould R. M., Plapp B. V., Substitution of arginine for histidine-47 in the coenzyme binding site of yeast alcohol dehydrogenase I, Biochemistry,29, 5463-5468,1990.
    [117]Leskovac V., Trivic S., Anderson B. M., Use of competitive dead-end inhibitors to determine the chemical mechanism of action of yeast alcohol dehydrogenase, Mol. Cell. Biochem.,178,219-227,1998.
    [118]Moniruzzaman M., Kamiya N., Nakashima K., Goto M., Formation of reverse micelles in a room-temperature ionic liquid, ChemPhysChem,9, 689-692,2008.
    [1]Welton T., Room-temperature ionic liquids. Solvents for synthesis and catalysis, Chem. Rev.,99,2071-2083,1999.
    [2]Rantwijk F. V., Sheldon R. A., Biocatalysis in ionic liquids, Chem. Rev.,107, 2757-2785,2007.
    [3]Xue L. Y., Qiu H. J., Li Y., Lu L., Huang X. R., Qu Y. B., A novel water-in-ionic liquid microemulsion and its interfacial effect on the activity of laccase, Colloid Surf. B,82,432-437,2011.
    [4]Bihari M., Russell T. P., Hoagland D. A., Dissolution and dissolved state of cytochrome c in a neat, hydrophilic ionic liquid, Biomacromolecules,11, 2944-2948,2010.
    [5]Ventura S. P. M., Santos L. D. F., Saraiva J. A., Coutinho J. A. P., Ionic liquids microemulsions:The key to candida antarctica lipase B superactivity, Green Chem.,14,1620-1625,2012.
    [6]Yang Z., Pan W. B., Ionic liquids:Green solvents for nonaqueous biocatalysis, Enzyme Microb. Tech.,37,19-28,2005.
    [7]Gonzalo G. D., Lavandera I., Durchschein K., Wurm D., Faber K., Kroutil W., Asymmetric biocatalytic reduction of ketones using hydroxyfunctionalised water-miscible ionic liquids as solvents, Tetrahedron:Asymmetr.,18, 2541-2546,2007.
    [8]Zhao H., Campbell S. M., Jackson L., Song Z. Y., Olubajo O., Hofmeister series of ionic liquids:Kosmotropic effect of ionic liquids on the enzymatic hydrolysis of enantiomeric phenylalanine methyl ester, Tetrahedron: Asymmetr.,17,377-383,2006.
    [9]Lai J. Q., Li Z., Lu Y. H., Yang Z., Specific ion effects of ionic liquids on enzyme activity and stability, Green Chem.,13,1860-1868,2011.
    [10]Salis A., Bilanicova D., Ninham B. W., Monduzzi M., Hofmeister effects in enzymatic activity:Weak and strong electrolyte influences on the activity of Candida rugosa lipase, J. Phys. Chem. B,111,1149-1156,2007.
    [11]Bauduin P., Renoncourt A., Touraud D., Kunz W., Ninham B. W., Hofmeister effect on enzymatic catalysis and colloidal structures, Curr. Opin. Colloid In,9,43-47,2004.
    [12]Zhao H.,Effect of ions and other compatible solutes on enzyme activity, and its implication for biocatalysis using ionic liquids, J. Mol. Catal. B:Enzym., 37,16-25,2005.
    [13]Weibels S., Syguda A., Herrmann C.,Weingartner H., Steering the enzymatic activity of proteins by ionic liquids. A case study of the enzyme kinetics of yeast alcohol dehydrogenase, Phys. Chem. Chem. Phys.,14, 4635-4639,2012.
    [14]Lu L., Hu Y., Huang X. R., Qu Y. B., A bioelectrochemical method for the quantitative description of the hofmeister effect of ionic liquids in aqueous solution, J. Phys. Chem. B,116,11075-11080,2012.
    [15]Li H. M., Nicell J. A., Biocatalytic oxidation of bisphenol A in a reverse micelles system using horseradish peroxidase, Bioresour. Technol.,99, 4428-4437,2008.
    [16]Zhang Y., Huang X. R., Huang F., Li Y. Z., Qu Y. B., Gao P. J., Catalytic performance of lignin peroxidase in a novel reversed micelle, Colloid Surf. B,65,50-53,2008.
    [17]Tzika E. D., Christoforou M., Pispas S., Zervou M., Papadimitriou V., Sotiroudis T. G., Leontidis E., Xenakis A., Influence of nanoreactor environment and substrate location on the activity of horseradish peroxidase in olive oil based water-in-oil microemulsions, Langmuir,27,2692-2700, 2011.
    [18]Lan J., Zhang Y., Huang X. R., Hu M., Liu W. F.5 Li Y. Z., Qu Y. B., Gao P. J., Improvement of the catalytic performance of lignin peroxidase in reversed micelles, J. Chem. Technol. Biotechnol.,83,64-70,2008.
    [19]Kudryashova E. V., Visser A. J. W. G., Berkel W. J. H. V., Monomer formation and function of p-hydroxybenzoate hydroxylase in reverse micelles and in dimethylsulfoxide/water mixtures, ChemBioChem,9, 413-419,2008.
    [20]Roy S., Dasgupta A., Das P. K., Tailoring of horseradish peroxidase activity in cationic water-in-oil microemulsions, Langmuir,22,4567-4573,2006.
    [21]Debnath S., Das D., Dutta S., Das P. K.,Imidazolium bromide-based ionic liquid assisted improved activity of trypsin in cationic reverse micelles, Langmuir,26,4080-4086,2010.
    [22]Pernak J., Syguda A., Mirska I., Pernak A., Nawrot J., Pradzynska A., Griffin S. T.,Rogers R. D., Choline-derivative-based ionic liquids, Chem. Eur.J.,13,6817-6827,2007.
    [23]Voinescu A. E., Bauduin P., Pinna M. C.,Touraud D., Ninham B. W., Kunz W., Similarity of salt influences on the pH of buffers, polyelectrolytes, and proteins, J. Phys. Chem. B,110,8870-8876,2006.
    [24]Pinna M. C., Bauduin P., Touraud D., Monduzzi M., Ninham B. W., Kunz W., Hofmeister effects in biology:Effect of choline addition on the salt-induced super activity of horseradish peroxidase and its implication for salt resistance of plants, J. Phys. Chem. B,109,16511-16514,2005.
    [25]Fletcher P. I., Robinson B. H., Activity of lipase in water-in-oil microemulsions, J. Chem. Soc. Faraday Trans.,1,81,2667-2679,1985.
    [26]Das D., Das D., Das P. K., Improved activity of enzymes in mixed cationic reverse micelles with imidazolium-based surfactants, Biochimie,90, 820-829,2008.
    [27]Martinek K., Levashov A. V., Klyachko N. L., Pantin V. I., Berezin I. V., The principles of enzymes stabilization:Ⅵ. Catalysis by water-soluble enzymes entrapped into reversed micelles of surfactants in organic solvents, Biochim. Biophys. Acta,657,277-294,1981.
    [28]Kumaran R., Ramamurthy P., Denaturation mechanism of BSA by urea derivatives:Evidence for hydrogen-bonding mode from fluorescence tools, J. Fluoresc,21,1499-1508,2011.
    [29]Graupner M, Haalck L., Spener F., Lindner H., Glatter O., Paltauf F., Hermetter A., Molecular dynamics of microbial lipases as determined from their intrinsic tryptophan fluorescence, Biophys. J.,77,493-504,1999.
    [30]Lahari C., Jasti L. S., Fadnavis N. W., Sontakke K., Ingavle G., Deokar S., Ponrathnam S., Adsorption induced enzyme denaturation:The role of polymer hydrophobicity in adsorption and denaturation of r-chymotrypsin on allyl glycidyl ether (AGE)-ethylene glycol dimethacrylate (EGDM) copolymers, Langmuir,26,1096-1106,2010.
    [31]Reis P., Holmberg K., Watzke H., Leser M. E., Miller R., Lipases at interfaces:A review, Adv. Colloid Interface Sci.,147-148,237-250,2009.
    [32]Johnston K. P., Harrison K. L., Clarke M. J., Howdle S. M., Heitz M. P., Bright F. V., Carlier C, Randolph T. W., Water-in-carbon dioxide microemulsions:An environment for hydrophiles including proteins, Science,271,624-626,1996.
    [33]Zheng Y. J., Eli W., Li G., FTIR study of Tween80/1-butyl-3-methylimidazolium hexafluorophosphate/toluene microemulsions, Colloid Polym. Sci.,287,871-876,2009.
    [34]Weingartner H., Cabreleb C, Herrmann C, How ionic liquids can help to stabilize native proteins, Phys. Chem. Chem. Phys.,14,415-426,2012.
    [35]Zhao H., Jackson L., Song Z. Y., Olubajo O., Using ionic liquid [Emirn][CH3COO] as an enzyme-'friendly'co-solvent for resolution of amino acids, Tetrahedron:Asymmetr.,17,2491-2498,2006.
    [36]Yang Z., Hofmeister effects:An explanation for the impact of ionic liquids on biocatalysis, J. Biotechnol.,144,12-22,2009.
    [1]Welton T., Room-temperature ionic liquids. Solvents for synthesis and catalysis, Chem. Rev.,99,2071-2084,1999.
    [2]Rantwijk F. V., Sheldon R. A., Biocatalysis in ionic liquids, Chem. Rev.,107, 2757-2785,2007.
    [3]Moniruzzaman M, Nakashima K., Kamiya N., Goto M., Recent advances of enzymatic reactions in ionic liquids, Biochem. Eng. J.,48,295-314,2010.
    [4]Sureshkumar M., Lee C. K., Biocatalytic reaction in hydrophobic ionic liquids, J. Mol. Catal. B,60,1-12,2009.
    [5]Zhao H., Methods for stabilizing and activating enzymes in ionic liquids, J. Chem. Technol. Biotechnol.,85,891-907,2010.
    [6]Luisi P. L., Enzymes hosted in reverse micelles in hydrocarbon solution, Angew. Chem. Int. Ed.,24,439-450,1985.
    [7]Martinek K., Levashov A. V., Klyachko N., Khmelnitski Y. L., Berezin I. V., Micellar enzymology, Eur. J. Biochem.,155,453-468,1986.
    [8]Carvalho C. M. L., Cabral J. M. S., Reverse micelles as reaction media for Upases, Biochimie,82,1063-1085,2000.
    [9]Biasutti M. A., Abuin E. B., Silber J. J., Correa N. M., Lissi E. A., Kinetics of reactions catalyzed by enzymes in solutions of surfactants, Adv. Colloid Interface Sci.,136,1-24,2008.
    [10]Gao Y. A., Han S. B., Han B. X., Li G Z., Shen D., Li Z. H., Du J., Hou W. G, Zhang G Y, TX-100/water/1-butyl-3-methyllimidazolium hexafluorophosphate microemulsion, Langmiur,21,5681-5684,2005.
    [11]Zhang Y., Huang X. R., Li Y. Z., Negative effect of [bmim][PF6] on the catalytic activity of alcohol dehydrogenase:Mechanism and prevention, J. Chem. Technol. Biotechnol,83,1230-1235,2008.
    [12]Zhou G P., Zhang Y, Huang X. R., Shi C. H., Liu W. F., Li Y. Z., Qu Y. B., Gao P. J., Catalytic activities of fungal oxidases in hydrophobic ionic liquid l-butyl-3-methylimidazolium hexafluorophosphate-based microemulsion, Colloid Surf. B,66,146-149,2008.
    [13]Pavlidis I. V., Gouris D., Papadopoulos G. K., Stamatis H., Lipases in water-in-ionic liquid microemulsions:Structural and activity studies, J. Mol. Catal. B,60,50-56,2009.
    [14]Moniruzzaman M., Kamiya N., Nakashima K., Goto M., Water-in-ionic liquid microemulsion as a new medium for enzymatic reation, Green Chem., 10,497-500,2008.
    [15]Moniruzzaman M., Kamiva N., Goto M., Biocatalysis in water-in-ionic liquid microemulsions:A case study with horseradish peroxidase, Langmiur, 25,977-982,2009.
    [16]Gao H. X., Li J. C, Han B. X., Chen W. N., Zhang J. L., Zhang R., Yan D. D., Microemulsions with ionic liquid polar domains, Phys. Chem. Chem. Phys.,6,2914-2916,2004.
    [17]Qiu Z. M., Texter J., Ionic liquids in microemulsions, Curr. Opin. Colloid Interface Sci.,13,252-262,2008.
    [18]Moniruzzaman M., Kamiy N., Nakashima K., Goto M., Formation of reverse micelles in a room-temperature ionic liquid, ChemPhysChem,9,689-692, 2008.
    [19]Safavi A., Maleki N., Farjami F., Phase behavior and characterization of ionic liquids based microemulsions, Colloid Surf. A,355,61-66,2010.
    [20]Mo C. S.,1.5-Order differential electroanalysis on Triton X-100 microemulsion, Langmiur,18,4047-4053,2002.
    [21]Chokshi K., Qutubuddin S., Hussam A.,Electrochemical investigation of microemulsion, J. Colloid Interface Sci.,129,315-326,1989.
    [22]Molina P. G, Silber J. J., Correa N. M., Sereno L., Electrochemistry in AOT reverse micelles. A powerful technique to characterize organized media, J. Phys. Chem. C,111,4269-4276,2007.
    [23]Guering P., Lindman B., Droplet and bicontinuous structures in microemulsions from multicomponent self-diffusion measurements, Langmuir,1,464-468,1985.
    [24]Mackay R. A., Myers S. A., Bodalbhai L., Brajter-Toth A., Microemulsion structure and its effect on electrochemical reactions, Anal. Chem.,62, 1084-1090,1990.
    [25]Falcone R. D., Correa N. M., Silber J. J., On the formation of new reverse micelles:A comparative study of benzene/surfactants/ionic liquids systems using UV-Visible absorption spectroscopy and dynamic light scattering, Langmuir,25,10426-10429,2009.
    [26]Falcone R. D., Silber J. J., Correa N. M., What are the factors that control non-aqueous/AOT/n-heptane reverse micelle sizes? A dynamic light scattering study, Phys. Chem. Chem. Phys.,11,11096-11100,2009.
    [27]Behera K., Malek N., Pandey S., Visual evidence for formation of water-in-ionic liquid microemulsions, ChemPhysChem,10,3204-3208, 2009.
    [28]D'Angelo M., Onori G, Santucci A., Study of aerosol OT reverse micelle formation by infrared spectroscopy, J. Phys. Chem.,98,3189-3193,1994.
    [29]Sechler T. D., DelSole E. M., Deak J. C, Measuring properties of interfacial and bulk water regions in a reverse micelle with IR spectroscopy:A volumetric analysis of the inhomogeneously broadened OH band, J. Colloid Interface Sci.,346,391-397,2010.
    [30]Clarke M. J., Harrison K. L., Johnston K. P., Howdle S. M., Water in supercritical carbon dioxide microemulsion:Spectroscopic investigation of a new environment for aqueous inorganic chemistry, J. Am. Chem. Soc,119, 6399-6406,1997.
    [31]Rodakiewicz-Nowak J., Ito M., Effect of AOT on enzymatic activity of the organic solvent resistant tyrosinase from Streptomyces sp. REN-21 in aqueous solutions and water-in-oil microemulsions, J. Colloid Interface Sci., 284,674-679,2005.
    [32]Moniruzzaman M., Hayashi Y., Talukder M. M. R., Saito E., Kawanishi T., Effect of aprotic solvents on the enzymatic activity of lipase in AOT reverse micelles, Biochem. Eng. J.,30,237-244,2006.
    [33]Chen N., Fan J. B., Xiang J., Chen J., Liang Y., Enzymatic hydrolysis of microcrystalline cellulose in reverse micelles, Biochim. Biophys. Acta,1764, 1029-1035,2006.
    [34]Das S., Mozumdar S., Maitral A., Activity and conformation of yeast alcohol dehydrogenase (YADH) entrapped in reverse micelles, J. Colloid Interface Sci.,230,328-333,2000.
    [35]Zhang D., Guo Z., Dong X., Sun Y, Characterization of lipase in reversed micelles formulated with cibacron blue F-3GA modified span 85, Biotechnol. Prog.,23,108-115,2007.
    [36]Debnath S., Das D., Dutta S., Das P. K., Imidazolium bromide-based ionic liquid assisted improved activity of trypsin in cationic reverse micelles, Langmuir,26,4080-4086,2010.
    [37]Das D., Roy S., Mitra R. N., Dasgupta A., Das P. K., Head-group size or hydrophilicity of surfactants:The major regulator of lipase activity in cationic water-in-oil microemulsions, Chem. Eur. J.,11,4881-4889,2005.
    [38]Das D., Das D., Das P. K., Improved activity of enzymes in mixed cationic reverse micelles with imidazolium-based surfactants,Biochimie,90, 820-829,2008.
    [1]Erbeldinger M., Mesiano M., Russell A. J., Enzymatic catalysis of formation of Z-aspartame in ionic liquid-an alternative to enzymatic catalysis in organic solvents, Biotechnol. Prog.,16,1129-1131,2000.
    [2]Yang Z., Pan W. B., Ionic liquids:Green solvents for nonaqueous biocatalysis, Enzyme Microb. Technol.,37,19-28,2005.
    [3]Rantwijk F. V., Sheldon R. A., Biocatalysis in ionic liquids, Chem. Rev.,107, 2757-2785,2007.
    [4]Sureshkumar M., Lee C. K., Biocatalytic reaction in hydrophobic ionic liquids, J. Mol. Catal. B:Enzym.,60,1-12,2009.
    [5]Zhao H., Methods for stabilizing and activating enzymes in ionic liquids, J. Chem. Technol. Biotechnol.,85,891-907,2010.
    [6]Moniruzzaman M., Nakashima K., Kamiyaa N., Goto M., Recent advances of enzymatic reactions in ionic liquids, Biochem. Eng. J.,48,295-314,2010.
    [7]Raghavendra T., Sayania D., Madamwar D., Synthesis of the'green apple ester'ethyl valerate in organic solvents by Candida rugosa lipase immobilized in MBGs in organic solvents:Effects of immobilization and reaction parameters, J. Mol. Catal. B:Enzym.,63,31-38,2010.
    [8]Zhou H. C, Chen J., Ye L. M., Lin H. Q., Yuan Y. Z., Enhanced performance of lipase-catalyzed kinetic resolution of secondary alcohols in monoether-functionalized ionic liquids, Bioresour. Technol.,102,5562-5566, 2011.
    [9]Mutschler J., Rausis T., Bourgeois J-M., Bastian C, Zufferey D., Mohrenza I. V., Fischer F., Ionic liquid-coated immobilized lipase for the synthesis of methylglucose fatty acid esters, Green Chem.,.11,1793-1800,2009.
    [10]Kaar J. L., Jesionowski A. M., Berberich J. A.,Moulton R., Russell A. J., Impact of ionic liquid physical properties on lipase activity and stability, J. Am. Chem. Soc.,125,4125-4131,2003.
    [11]Nara S. J., Harjani J, R., Salunkhe M. M., Lipase-catalyzed transesterification in ionic liquids and organic solvents:A comparative study, Tetrahedron Lett.,43,2979-2982,2002.
    [12]Sunitha S., Kanjilal S., Reddy P. S., Prasad R. B. N., Ionic liquids as a reaction medium for lipase-catalyzed methanolysis of sunflower oil, Biotechnol. Lett.,29,1881-1885,2007.
    [13]Zhang Y, Huang X. R., Huang F., Li Y. Z., Qu Y. B., Gao P. J., Catalytic performance of lignin peroxidase in a novel reverse micelle, Colloid Surf. B, 65,50-53,2008.
    [14]Zhou G. P., Zhang Y, Huang X. R., Shi C. H., Liu W. F., Li Y Z., Qu Y B., Gao P. J., Catalytic activities of fungal oxidases in hydrophobic ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate-based microemulsion, Colloid Surf. B,66,146-149,2008.
    [15]Moniruzzaman M., Kamiya N., Nakashima K., Goto M., Water-in-ionic liquid microemulsion as a new medium for enzymatic reaction, Green Chem.,10,497-500,2008.
    [16]Moniruzzaman M., Kamiya N., Goto M., Biocatalysis in water-in-ionic liquid microemulsion:A case study with horseradish peroxidase, Langmiur, 25,977-982,2009.
    [17]Xue L. Y., Qiu H. J., Li Y., Lu L., Huang X. R., Qu Y. B., A novel water-in-ionic liquid microemulsion and its interfacial effect on the activity of laccase, Colloid Surf. B,82,432-437,2010.
    [18]Hung H. C, Chang G. G., Partitioning of 4-nitrophenol in aerosol-OT reverse micelles, J. Chem. Soc. Perkin Trans.,2,2177-2182,1999.
    [19]Carvalho C. M. L., Cabral J. M. S., Reverse micelles as reaction media for lipases, Biochimie,82,1063-1085,2000.
    [20]Moniruzzaman M., Kamiya N., Goto M., Activation and stabilization of enzymes in ionic liquids, Org. Biomol. Chem.,8,2887-2899,2010.
    [21]Falcone R. D., Correa N. M., Silber J. J., On the formation of new reverse micelles:A comparative study of benzene/surfactants/ionic liquids systems using UV-Visible absorption spectroscopy and dynamic light scattering, Langmuir,25,10426-10429,2009.
    [22]Falcone R. D., Silber J. J., Correa N. M., What are the factors that control non-aqueous/AOT/n-heptane reverse micelle sizes? A dynamic light scattering study, Phys.Chem. Chem. Phys.,11,11096-11100,2009.
    [23]Tonova K., Lazarova Z., Reversed micelle solvents as tools of enzyme purification and enzyme-catalyzed conversion, Biotechnol. Adv.,26, 516-532,2008.
    [24]Pavlidis I. V., Gournis D., Papadopoulos G. K., Stamatis H. J., Lipases in water-in-ionic liquid microemulsions:Structural and activity studies, J. Mol. Catal. B:Enzym.,60,50-56,2009.
    [25]Das D., Das D., Das P. K., Improved activity of enzymes in mixed cationic reverse micelles with imidazolium-based surfactants, Biochimie,90, 820-829,2008.
    [26]Dupont J., Spencer J., On the noninnocent nature of 1,3-dialkylimidazolium ionic liquids, Angew. Chem. Int. Ed.,43,5296-5297,2004.
    [27 Hamada K., Ikeda T., Kawai T., Kon-No K. J., Ionic strength effects of electrolytes on solubilized states of water in AOT reversed micelles, J. Colloid Interface Sci.,233,166-170,2001.
    [28]Naoe K., Takeuchi C, Kawagoe M., Nagayama K., Imai M. J., Higher order structure of Mucor miehei lipase and micelle size in cetyltrimethylammonium bromide reverse micellar system, J. Chromatogr. B, 850,2007,277-284.
    [29]Debnath S., Das D., Dutta S.,Das P. K., Imidazolium bromide-based ionic liquid assisted improved activity of trypsin in cationic reverse micelles, Langmuir,26,4080-4086,2010.
    [30]Lissi E. A., Abuin E. B.,A General treatment for meaningful comparison of rate parameters of enzyme-catalyzed reactions in aqueous and reverse micellar solutions, Langmuir,16,10084-10086,2000.
    [31]Aguilar L. F., Abuin E., Lissi E., A procedure for the joint evaluation of substrate partitioning and kinetic parameters for reactions catalyzed by enzymes in reverse micellar solutions, Arch. Biochem. Biophys.,388, 231-236,2001.
    [32]Augustine R. L., Tanielyan S. K., Acetoxylation of toluene catalyzed by supported Pd-Sn catalysts, J. Mol. Catal,87,311-328,1994.
    [33]Singh M., Singh S., Singh R. S., Chisti Y., Banerjee U. C, Transesterification of primary and secondary alcohols using pseudomonas aeruginosa lipase, Bioresour. Technol.,99,2116-2120,2008.
    [34]Lu J. K., Nie K. L., Wang F., Tan T. W., Immobilized lipase Candida sp. 99-125 catalyzed methanolysis of glycerol trioleate:Solvent effect, Bioresour. Technol.,99,6070-6074,2008.
    [1]Li H. M., Nicell J. A., Biocatalytic oxidation of bisphenol A in a reverse micelle system using horseradish peroxidase, Bioresour. Technol.,99, 4428-4437,2008.
    [2]Yao C. Y., Tang S. K., He Z. M., Deng X., Kinetics of lipase-catalyzed hydrolysis of olive oil in AOT/isooctane reversed micelles, J. Mol. Catal. B: Enzym.,35,108-112,2005.
    [3]Lan J., Zhang Y., Huang X. R., Hu M., Liu W. F, Li Y. Z., Qu Y. B., Gao P. J., Improvement of the catalytic performance of lignin peroxidase in reversed micelles, J. Chem. Technol. Biotechnol.,83,64-70,2008.
    [4]Kudryashova E. V., Visser A. J. W. G., Berkel W. J. H. van, Monomer formation and function of p-hydroxybenzoate hydroxylase in reverse micelles and in dimethylsulfoxide/water mixtures, ChemBioChem,9, 413-419,2008.
    [5]Cho M., Coherent two-dimensional optical spectroscopy, Chem. Rev.,108, 1331-1418,2008.
    [6]Lindquist B. A., Furse K. E., Corcelli S. A., Nitrile groups as vibrational probes of biomolecular structure and dynamics:An overview, Phys. Chem. Chem. Phys.,11,8119-8132,2009.
    [7]Haris P. I., Severcan F., FTIR spectroscopic characterization of protein structure in aqueous and non-aqueous media, J. Mol. Catal. B:Enzym.,7, 207-221,1999.
    [8]Kozin Ski M., Garrett-Roe S., Hamm P.,2D-IR spectroscopy of the sulfhydryl band of cysteines in the hydrophobic core of proteins, J. Phys. Chem. B,112, 7645-7650,2008.
    [9]Kandori H., Kinoshita N., Shichida Y., Maeda A., Needleman R., Lanyi J. K., Cysteine S-H as a hydrogen-bonding probe in proteins, J. Am. Chem. Soc, 120,5828-5829,1998.
    [10]Arkin I. T., Isotope-edited IR spectroscopy for the study of membrane proteins, Curr. Opin. Chem. Biol,10,394-401,2006.
    [11]Mirkin N. G., Krimm S., Peptide CαDα stretch frequencies in a hydrated conformation are perturbed mainly by Cα-Dα···O hydrogen bonding, J. Phys. Chem. B,112,15267-15268,2008.
    [12]Oh K. I., Lee J. H., Joo C, Han H., Cho M., p-Azidoalanine as an IR probe: application to amyloid aP (16-22) aggregation, J. Phys. Chem. B,112, 10352-10357,2008.
    [13]Schultz K. C, Supekova L., Ryu Y., Xie J. M., Perera R., Schultz P. G., A genetically encoded infrared probe, J. Am. Chem. Soc,128,13984-13985, 2006.
    [14]Oh K. I., Choi J. H., Lee J. H., Han J. B., Lee H., Cho M., Nitrile and thiocyanate IR probes:Molecular dynamics simulation studies, J. Chem. Phys.,128,154504,2008.
    [15]Mukherjee S., Chowdhury P., DeGrado W. F., Gai F., Site-specific hydration status of an amphipathic peptide in AOT reverse micelles, Langmuir,23, 11174-11179,2007.
    [16]Fafarman A. T., Webb L. J., Chuang J. I., Boxer S. G., Site-specific conversion of cysteine thiols into thiocyanate creates an IR probe for electric fields in proteins, J. Am. Chem. Soc,128,13356-13357,2006.
    [17]Getahun Z., Huang C.Y., Wang T., Leon B. D., DeGrado W. F., Gai F., Using nitrile-derivatized amino acids as infrared probes of local environment, J. Am. Chem. Soc,125,405-411,2003.
    [18]Tucker M. J., Tang J., Gai F., Probing the kinetics of membrane-mediated helix folding, J. Phys. Chem. B,110,8105-8109,2006.
    [19]Tucker M. J., Getahun Z., Nanda V., DeGrado W. F., Gai F., A new method for determining the local environment and orientation of individual side chains of membrane-binding peptides, J. Am. Chem. Soc,126,5078-5079, 2004.
    [20]Andrews S. S., Boxer S. G., Vibrational stark effects of nitriles I. Methods and experimental results, J. Phys. Chem. A,104,11853-11863,2000.
    [21]Jo H., Culik R. M., Korendovych I. V., DeGrado W. F., Gai F., Selective incorporation of nitrile-based infrared probes into proteins via cysteine alkylation, Biochemistry,49,10354-10356,2010.
    [22]Itri R., Caetano W., Barbosa L. R. S., Baptista M. S., Effect of urea on bovine serum albumin in aqueous and reverse micelle environments investigated by small angle X-ray scattering, fluorescence and circular dichroism, Braz. J. Phys.,34,58-65,2004.
    [23]Amaral C. L. C, Itri R., Politi M. J., Structure determination of AOT/w-hexane/water/urea reversed micelles by light and small angle X-ray scattering, Langmuir,12,4638-4643,1996.
    [24]Kumaran R., Ramamurthy P., Denaturation mechanism of BSA by urea derivatives:Evidence for hydrogen-bonding mode from fluorescence Tools, J. Fluoresc,21,1499-1508,2011.
    [25]Gull N., Kumar S., Ahmad B., Khan R. H., Kabir-ud-Din, Influence of urea additives on micellar morphology/protein conformation, Colloids Surf. B,51, 10-15,2006.
    [26]Khodarahmi R., Karimi S. A., Kooshk M. R. A., Ghadami S. A., Ghobadi S., Amani M., Comparative spectroscopic studies on drug binding characteristics and protein surface hydrophobicity of native and modified forms of bovine serum albumin:Possible relevance to change in protein structure/function upon non-enzymatic glycation, Spectrochimica Acta Part A,89,177-186,2012.
    [27]Krummel A. T., Zanni M. T., Evidence for coupling between nitrile groups using DNA templates:A promising new method for monitoring structures with infrared spectroscopy, J. Phys. Chem. B,112,1336-1338,2008.
    [28]Xue L. Y., Li Y., Zou F. X., Lu L., Zhao Y., Huang X. R., Qu Y. B., The catalytic efficiency of lipase in a novel water-in-[Bmim][PF6] microemulsion stabilized by both AOT and Triton X-100, Colloids Surf. B, 92,360-366,2012.
    [29]Yang Z., Hofmeister effects:An explanation for the impact of ionic liquids on biocatalysis, J. Biotechnol.,144,12-22,2009.
    [30]Vrbka L., Vondrasek J., Jagoda-Cwiklik B., Vacha R., Jungwirth P., Quantification and rationalization of the higher affinity of sodium over potassium to protein surfaces, Proc. Natl. Acad. Sci. U.S.A.,103, 15440-15444,2006.
    [31]Hamada K., Ikeda T., Kawai T., Kon-No K., Ionic strength effects of electrolytes on solubilized states of water in AOT reversed micelles, J. Colloid Interface Sci.,233,166-170,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700