多相平衡微乳液、模板效应与离子液调节微乳液曲率研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微乳液作为一种自发形成的热力学稳定体系,由于其独特的性质而在很多领域都有着广泛的应用。而离子液体作为一种具有诸多优良特性的化学物质,受到了化学工作者越来越多的关注。因此,本文将微乳液作为反应介质合成了纳米材料、研究了离子液调节微乳液形成的曲率,进而将离子液微乳液与纳米材料的合成等方面得以较好地结合起来,为将来相关领域研究提供了新的思路。论文的具体内容如下:
     第一章分别从表面活性剂聚集体—微乳液和离子液,以及两者构筑微乳液体系方面简要介绍了一些相关知识和研究背景,并阐述了论文选题的科学意义。
     第二章中我们分别利用阳离子表面活性剂十四烷基三甲基溴化铵(TTAB)和阴离子表面活性剂十二烷基硫酸钠(SDS)制备了多相平衡微乳液,研究了TTAB/正丁醇/异辛烷/盐水和SDS/正丁醇/异辛烷/盐水两种多相微乳液体系在不同组分浓度变化下的相形为,发现体系相形为都遵循WinsorⅠ→WinsorⅢ→WinsorⅡ相的变化,并利用界面张力考察了这两种体系在不同组分浓度变化下的微乳液与剩余水相或油相之间的界面张力变化,利用不同结构的多相微乳液为模板,制备了具有纳米尺度的CaCO_3粒子,透射电子显微镜(TEM)和场发射扫描电子显微镜(FE-SEM)观察,确认了CaCO_3纳米颗粒具有多种不同的形貌,例如树枝状、椭球状、四方状等。结果表明制备的纳米颗粒在尺寸和形貌上与模板的对应关系并不紧密。最后,我们通过X射线粉末衍射(XRD)和傅立叶变换红外光谱(FT-IR)等手段对合成的CaCO_3纳米粒子进行了表征,结果表明CaCO_3纳米颗粒结晶良好,证明以多相平衡微乳液为模板合成纳米颗粒具有一定的潜在应用价值,并且为今后纳米粒子的合成提供了一种有效的新方法。
     第三章研究了阳离子表面活性剂十四烷基三甲基溴化铵(TTAB)多相平衡微乳液,结果表明TTAB/正丁醇/异辛烷/盐水体系在不同组分浓度变化下的相形为具有与其它多相微乳液体系相形为相同的变化趋势,利用TTAB多相平衡微乳液为模板制备BaCO_3的纳米颗粒,并且通过陈化时间的变化,考察BaCO_3纳米颗粒的生长变化,从而推断得出BaCO_3纳米棒的可能生长机理。为今后以多相平衡微乳液为微反应器合成纳米材料方面提供了参考依据。
     第四章研究了阴阳离子表面活性剂双十八烷基二甲基氯化铵(DODMAC)和十二烷基硫酸钠(SDS)复配,正丁醇作为助表面活性剂,正庚烷作为油相,离子液[bmim][BF_4]溶于水相中调节多相微乳液形成,考察了不同组分浓度和温度等因素对体系的相形为的影响,测定了体系微乳液与剩余水相或油相之间的界面张力,利用电导率、小角X射线散射(SAXS)和小角中子散射(SANS)手段表征了体系的中相微乳液形成及离子液调节中相微乳液曲率变化,利用理论模型结合实验数据得到了中相微乳液的微观结构尺寸和组成,并且推论出离子液[bmim][BF_4]在中相微乳液结构中起助表面活性剂的作用,特别提出了离子液调节多相微乳液曲率的观点。研究结果为离子液微乳液的研究和应用提供了一定的理论参考价值。
     第五章确定了表面活性剂辛基苯基聚氧乙烯醚TX-100、离子液硝基乙胺(ethylammonium nitrate,EAN)以及环己烷形成微乳液的拟三元相图,利用电导率划分了IL/O、BC和O/IL三种单相微乳液相区间,且以甲基橙(methyl orange,MO)为探针,利用紫外吸收光谱研究了IL/O微乳液“极性池”的极性变化;利用红外光谱研究了IL/O微乳液中EAN与TX-100的相互作用,将无机盐CaCl_2和Na_2CO_3分别溶入IL/O微乳液的离子液中,通过将二者混合得到纳米颗粒,并利用透射电子显微镜表征了得到的CaCO_3纳米颗粒,表明了离子液型微乳液在合成纳米颗粒方面的可行性,为纳米粒子的合成提供了一种可行的新方法。
Microemulsions are thermodynamic self-assembly systems with wide-ranging applications in scientific research and industry because of their unique properties. Ionic liquids,as a class of chemical substance which have many special chemical and physical properties,have received much attention by chemists.In this doctoral dissertation,we studied three parts such as synthesis of nanomaterials through microemulsions,ionic liquid tuning microemulsions' curvature and synthesis of nanomaterials through ionic liquid microemulsions,and tried to combine them together,provided new pathways for correlative research fields.The outline and contents of this doctoral dissertation are as follows:
     ChapterⅠis a brief introduction of the research background of this work,in which the correlative knowledge and recent progress in surfactant science,ionic liquid science and their constructing microemulsion systems are reviewed from a worldwide angle of view.The objective and the scientific significance of this doctoral dissertation are also pointed out at the end of this part.
     In ChapterⅡ,we prepared multi-phase equilibrium microemulsions(MPMs) systems through cationic surfactant,tetradecyltrimethylammonium bromide(TTABr) and anionic surfactant,sodium dodecyl sulfate(SDS),then studied the phase behavior of TTABr/n-butanol/iso-octane/Na_2CO_3 or CaCl_2 and SDS/n-butanol/iso-octane/ Na_2CO_3 or CaCl_2 systems when the concentration of different composition changed. We found that the phase transition follows as:WinsorⅠ→WinsorⅢ→WinsorⅡ.For further study,we measured the interfacial tension between microemulsion and residual oil or water phase.MPMs provide a simple and versatile reaction media,i.e., upper-phase W/O,BC,and O/W structured equilibrium microemulsions to be used for synthesizing hierarchically structured CaCO_3 at the nanometer scale.The morphologies of the CaCO_3 precipitates were characterized by transmission electron microscope(TEM) and scanning electron microscope(SEM) images,it proved that hierarchically structured calcium carbonates with dendrites,ellipsoids, square-schistose cubes were synthesized through the MPM-based routes and we found that the corresponding relation between the template and the morphologies and sizes of the nanoparticles is not very close.Finally,we characterized the synthesized CaCO_3 nanoparticles through powder X-ray diffraction(XRD) and Fourier transform infrared spectroscopy(FT-IR),the shapes of the diffraction peaks show that the CaCO_3 particles were well-crystallized,demonstrating that the synthesis of nanoparticles through MPM-based routes have potential applications and we have developed a useful method of synthesizing nanometerscale inorganic particles.
     In ChapterⅢ,we studied the phase behavior of TTABr/n-butanol/iso-octane/Na_2CO_3 or BaCl_2 systems when the concentration of different composition changed,and the results confirmed that the sequence of phase transition was the same as other multi-phase microemulsions.However,unlike CaCO_3 in ChapterⅡ,we prepared BaCO_3 nanoparticles through MPMs and the effect of different aging time were obtained,so the growth mechanism of the BaCO_3 nanoparticles could be deduced.Therefore,this work can open alternative pathways to synthesize complex superstructures of inorganic materials.
     In ChapterⅣ,a MPMs system formed from cationic dioctadecyldimethylammonium chloride(DODMAC),anionic sodium dodecylsulfate (SDS),n-butanol,and n-heptane were studied.An ionic liquid(IL), 1-butyl-3-methylimidazolium tetrafluoroborate([bmim][BF_4]),was employed as the electrolyte in the aqueous media instead of inorganic salts usually used in microemulsion formulation.Studies have been carried out as a function of the concentrations of[bmim][BF_4],n-butanol,total suffactant(c_(DODMAC+SDS)),and temperature on the phase behavior and the ultralow interracial tensions in which the anionic component is present in excess in the catanionic film.Ultralow interfacial tension measurements confirmed the formation of middle-phase microemulsions and the necessary conditions for stabilizing middle-phase microemulsions.Electrical conductivity,small-angle X-ray scattering(SAXS),and smallangle neutron scattering (SANS) experiments were also performed,indicating that the typical heptane domain size has an average radius of 360(?) and the ionic liquid induces softening of the charged catanionic film.Most interestingly,the IL concentration(c_(IL)) is shown to act as an effective interfacial curvature-control parameter,representing a new approach to tuning the formulation of microemulsions and emulsions.The results expand the potential uses of ILs but also point to the design of new ILs that may achieve superefficient control over interracial and self-assembly systems.
     In ChapterⅤ,the ionic liquid ethylammonium nitrate(EAN) formed nonaqueous microemulsion with nonionic surfactant TX-100 and cyclohexane.The phase behavior of the ternary system is investigated,and three microregions of the microemulsions-ionic liquid-in-oil(IL/O),bicontinuous,and oil-in-ionic liquid(O/IL) -are identified by conductivity measurements,according to percolation theory.The micropolarity of the microemulsions is investigated by using methyl orange(MO) as a UV/Vis spectroscopic probe.A relatively constant polarity of the microemulsion droplets is obtained in the IL microemulsion.FT-IR was performed to investigate the microstructural characteristics of the microemulsions.Finally,CaCl_2 and Na_2CO_3 were solubilized in the IL phase of IL/O microemulsions respectively,and prepared nanoparticles through mixing the IL/O microemulsions solubilized the inorganic salts. The obtained nanoparticles were characterized by TEM.It indicated that ionic liquid microemulsions may have potential applications in nanoscience.
引文
[1]Adamson A.W..edited.Physical Chemistry of Surfaces.New York:John & Sons,1990.
    [2]朱步瑶,赵振国编著.界面化学基础.北京:化学工业出版社,1996.
    [3]赵国玺编著.表面活性剂物理化学(第二版).北京:北京大学出版社,1991.
    [4]周祖康,顾惕人,马季铭编著.胶体化学基础(第二版).北京:北京大学出版社,1996.
    [5]Zana R.,In M.,Levy H.,Duportail G..Alkanediyl-α,ω-bis (dimethylalkylammonium bromide) surfactants(dimeric surfactants).7.Fluorescence probing studies of micelle micropolarity and microviscisity.Langrnuir,1997,13,5552-5557.
    [6]In M.,Bee V.,Aguerre-Chariol O.,Zana R..Quaternary ammonium bromide surfactant oligomers in aqueous solution:self-association and microstructure.Langmuir,2000,16,141-148.
    [7]Yan Y.,Huang J.,Li Z.,Han F.,Ma J..Aggregates transition depending on the concentration in the cationic bolaamphiphile/SDS mixed systems.Langmuir,2003,19,972-974.
    [8]阎云,黄建滨,李子臣,赵小莉,马季铭.Bola型阴离子表面活性剂与溴化十二烷基三乙铵混合体系的表面性质与聚集行为.化学学报,2002,60.1147-1150.
    [9]Camilleri P.,Kremer A.,Edwards A.J.,Jennings K.H.,Jenkins O.,Marshall I.,McGregor C.,Neville W.,Rice S.Q.,Smith R.J.,Wilkinson M.J.,Kirby A.J..A novel class of cationic gemini surfactants showing effrcient in vitro gene transfection properties.Chem.Commun.,2000,1253-1254.
    [10]Sikiric M.,Primozic I.,Filepovic-Vincekovic N..Adsorption and association in aqueous solutions of dissymmetric Gemini surfactant.J.Colloid Interface Sci.,2002,250,221-229.
    [11]Castro M.,Griffiths D.,Patel A.,Pattrick N.,Kitson C.,Ladlow M..Effect of chain length on transfection properties of spermine-based Gemini surfactants.Org.Biomol.Chem.,2004,2,2814-2820.
    [12]Kumar A.,Alami E.,Holmberg K.,Seredyuk V.,Menger F.M..Branched zwitterionic gemini surfactants micellization and interaction with ionic surfactants.Colloids and Surfaces A:Physicochem.Eng.Aspects.,2003,228,197-207.
    [13]Kunieda H.,Masuda N.,Tsubone K..Comparsion between phase behavior of anionic dimeric(Gemini-type) and monomeric surfactants in water and water-oil.Langmuir,2000,16,6438-6444.
    [14]Maiti P.K.,Kremer K..Cross-linking of micelles by Gemini surfactants.Langmuir,2000,16:3784-3790.
    [15]Sugiyasu K.,Tamaru S.,Takeuchi M.,Berthier D.,Hue I.,Oda R.,Shinkai S..Double helical silica fibrils by sol-gel transcription of chiral aggregates of Gemini surfactants.Chem.Commun.,2002,1212-1213.
    [16]Han L.,Chen H.,Luo P..Viscosity behavior of cationic gemini surfactants with long alkyl chains.Surface Science,2004,564,141-148.
    [17]Qiu L.,Xie A.,Shen Y..Understanding the adsorption of cationic Gemini surfactants on steel surface in hydrochloric acid.Mater.Chem.Phys.,2004,87,237-240.
    [18]Wettig S.,Li X.,Verrall R.E..Thermodynamic and aggregation properties of Gemini surfactants with ethoxylated spacers in aqueous solution.Langmuir,2003,19,3666-3670.
    [19]Liang Z.,Wang C.,Huang J..The research on the vesicle formation and transformation in novel Gemini surfactant systems.Colloids and surfaces A: Physicochem.Eng.Aspects.,2003,224,213-220.
    [20]Sommerdijk N.A.J.M,Lambermon M.H.L,Feiters M.C.,Nolte R.J.M.,Zwanenburg B..Supramolecular expression of chirality in assemblies of gemini surfactants.Chem.Commun.,1997,1423-1424.
    [21]Zhai X.,Zhang L.,Liu M..Supramolecular assemblies between a new series of Gemini-type amphiphiles and TPPS at the air/water interface:aggregation,chirality,and spacer effect.J.Phys.Chem.B.,2004,108,7180-7185.
    [22]Qiu L.,Cheng M.,Xie A.,Shen Y..Study on the viscosity of cationic Gemini surfactant-nonionic polymer complex in water.J.Colloid Interface Sci.,2004,278,40-43.
    [23]Qiu L.,Xie A.,Shen Y..The adsorption and corrosion inhibition of some cationic Gemini surfactants on carbon steel surface in hydrochloric acid.Corros.Sci.,2005,47,273-278.
    [24]Zemb Th.,Dubois M.,Deme'B.,Gulik-Krzywicki Th..Self-assembly of flat nanodiscs in salt-free catanionic surfactant solutions.Science,1999,283,816-819.
    [25]Dubois M.,Deme'B.,Gulik-Krzywicki Th.,Dediu J.C.,Vautrin C.,De'sert S.,Perez E.,Zemb Th..Self-assembly of regular hollow icosahedra in salt-free catanionic solutions.Nature,2001,411,672-675.
    [26]Zapf A.,Beck R.,Platz G.,Hoffmann H..Calcium surfactants:a review.Adv.Colloid Interface Sci.,2003,100-102,349-380.
    [27]Tanford C..The hydrophobic effect.New York:Wiley-Interscience,1973.
    [28]Winterhalter M.,Helfrich W..Bending elasticity of electrically charged bilayers:coupled monolayers,neutral surfaces,and balancing stresses.J.Phys.Chem.,1992,96,327-330.
    [29]Hoar J.P.,Schulman J.H..Transparent water-in-oil dispersions:the oleopathic hydro-micelle.Nature,1943,152,102-103.
    [30]赵国玺,朱步瑶编著.表面活性剂作用原理.北京:中国轻工业出版社,2003.
    [31]肖进新,赵振国.表面活性剂应用原理.北京:化学工业出版社,2003.
    [32]Winsor P.A..Solvent properties of amphiphilic compounds,London: Butterworth's Scientific Publication, 1954.
    [33] Friberg S. E., Lapczynska I., Gillberg G. Microemulsions containing nonionic surfactants- the importance of the PIT value. J. Colloid Inter. Sci., 1976, 56,19-32.
    
    [34] Scriven L. E.. Equilibrium bicontinuous structure. Nature, 1976, 263, 123-125.
    [35] Golden K.E., Hatton T. A.. Liquid-liquid extraction of low molecular weight proteins by selective solubilization in reversed micelles. Separation Sci. Tech.,1987,22,831-841.
    [36] Holmberg K.. Handbook of microemulsion science and technology. Kumar P.,Mittal K.L., ed. New York: Marcel Dekker, 1999, Part III, Ch 23.
    [37] Osseo-Asare K.. Handbook of microemulsion science and technology. Kumar P.,Mittal K.L., ed. New York: Marcel Dekker, 1999, Part III, Ch 18.
    [38] Sonesson C., Holmberg K.. Use of a middle phase microemulsion for enzymatic lipid hydrolysis. J. Colloid Inter. Sci., 1991, 141, 239-244.
    [39] Sasthaw M., Cheung H. M.. Characterization and polymerization of middle-phase microemulsions in styrene/water systems. Langmuir, 1991, 7, 1378-1382.
    [40] Sharma M.K., Shah D.O.. Microemulsions in enhance oil recovery, in: ACS Symposium, vol. 272, American Chemical Society,Washington, DC, 1985,p. 149.
    [41] Sugden S., Wilkins H.. The parachor and chemical constitution. Part XII. Fused metals and salts. J. Chem. Soc, 1929, 1291-1298.
    [42] Hurley H. F., Wier T. P.. Electrodeposition of metals from fused quaternary ammonium salts. J. Electrochem. Soc., 1951, 98,203-208.
    [43] Chum H. L., Koch V. R., Miller L. L., Osteryoung R. A.. Electrochemical scrutiny of organometallic iron complexes and hexamethylbenzene in a room temperature molten salt. J. Am. Chem. Soc., 1975, 97, 3264-3265.
    [44] Wilkes J. S., Levisky J. A., Wilson R. A., Hussey C. L.. Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis. Inorg. Chem., 1982, 21,1263-1264.
    [45]Scheffler T.B.,Hussey C.L.,Seddon K.R.,Kear C.M.,Armitage P.D..Molybdenum chloro complexs in room-temperature chloroaluminate ionic liquids:stablization of hexachloromolybdate(2-) and hexachlo romolybdate(3-).Inorg.Chem.,1983,22,2099-2100.
    [46]Laher T.M.,Hussey C.L..Copper(Ⅰ) and copper(Ⅱ) chloro complexes in the basic aluminum chloride-1-methyl-3-ethylimidazolium chloride ionic liquid.Inorg.Chem.,1983,22,3247-3251.
    [47]Scheffler T.B.,Hussey C.L..Electrochemical study of tungsten chloro complex chemistry in the basic aluminum chloride-1-methyl-3-ethylimidazolium chloride ionic liquid.Inorg.Chem.,1984,23,1926-1932.
    [48]Appleby D.,Hussey C.L.,Seddon K.R.,Turp J.E..Room-temperature ionic liquids as solvents for electronic absorption spectroscopy of halide complexes.Nature,1986,323,614-616.
    [49]Dent A.J.,Seddon K.R.,Welton T..The structure of halogenometallate complexs dissolved in both basic and acidic room-temperature halogenoaluminate(Ⅲ) ionic liquids,as determined by EXAFS.J.Chem.Soc.,Chem.Commun.,1990,315-316.
    [50]Wilkes J.S.,Zaworotko M.J..Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids.J.Chem.Soc.,Chem.Commun.,1992,965-966.
    [51]张星辰等著.离子液体-从理论基础到研究进展.北京:化学工业出版社,2009.
    [52]Wasserscheid P.,Keim W..Ionic liquids-New "solutions" for transition metal catalysis.Angew.Chem.Int.Ed.,2000,39,3772-3789.
    [53]Bao W.L.,Wang Z.M.,Li Y..Synthesis of chiral ionic liquids from natural amino acids.J.Org.Chem.,2003,68,591-593.
    [54]Baudequin C.,Baudoux J.,Levillain J.,Cahard D.,Gaumont A.C.,Plaqueventa J.C..Ionic liquis and chirality:opportunities and challenges.Tetrahedron:Asymmetry,2003,14,3081-3093.
    [55]Welton T..Room-temperature ionic liquids.Solvents for synthesis and catalysis.Chem.Rev.,1999,99,2071-2083.
    [56]Holbrey J.D.,Seddon K.R..Ionic liquids.Clean Products and Processes,1999,1,223-236.
    [57]Hussey R.L..Chemistry of nonaqueous solutions.VCH,Weinheim,1994,227-276.
    [58]李汝雄著.绿色溶剂—离子液体的合成与应用.北京:化学工业出版社,2004.
    [59]Larsen,A.S.,Holbrey,J.D.,Tham,F.S.,Reed,C.A..Designing ionic liquids:imidazolium melts with inert carborane anions.J.Am.Chem.Soc.,2000,122,7264-7272.
    [60]Brown R.J.C.,Dyson P.J.,Ellis D.J.,Welton T..1-Butyl-3-methylimidazolium cobalt tetracarbonyl[bmim][Co(CO)_4]:a catalytically active organometallic ionic liquid.Chem.Commun.,2001,1862-1863.
    [61]Leone A.M.,Weathedy S.C.,Williams M.E.,Thorp,H.H.,Murray,R.W..An ionic liquid form of DNA:redox-active molten salts of nucleic acids.J.Am.Chem.Soc.,2001,123,218-222.
    [62]张振琳,王荣民,王云普,夏春谷.高分子离子液体的研究进展.高分子通报,2004,2,63-69.
    [63]Ellis B.,Keim W.,Wasserscheid P..Linear dimerisation of but-1-ene in biphasic mode using buffered chloroaluminate ionic liquids solvents.Chem.Commun.,1999,337-338.
    [64]Elaiwi A.,Hitchcock P.B.,Seddon K.R.,Srinivasan N.,Tan Y.,Welton T.,Zora J.A..Hydrogen bonding in imidazolium salts and its implications for ambient-temperature halogenoaluminate(Ⅲ) ionic liquids.J.Chem.Soc.,Dalton Trans.,1995,3467-3472.
    [65]Hanke C.G.,Price S.L.,Lynden-Bell R.M..Intermolecular potentials for simulations of liquid imidazolium salts.Mol.Physics,2001,99,801-809.
    [66]Fuller J.,Carlin R.T.,De long H.C.,Haworth D..Structure of 1-ethyl-3-methylimidazolium hexafluorophosphate:model for room temperature molten salts.J.Chem.Soc.,Chem.Commun.,1994,299-300.
    [67]Baldelli S..Influence of water on the orientation of cations at the surface of a room-temperature ionic liquid:a sum frequency generation vibrational spectroscopic study.J.Phys.Chem.B,2003,107,6148-6152.
    [68]Bonhote P.,Dias A.-P.,Papageorgiou N.,Kalyanasundaram K.,Gratzel M..Hydrophobic,highly conductive ambient-temperature molten salts.Inorg.Chem.,1996,35,1168-1178.
    [69]Fannin A.A.,Floreani Jr.D.A.,King L.A.,Landers J.S.,Piersma B.J.,Stech D.J.,Vaughn R.L.,Wilkes J.S.,Williams J.L..Properties of 1,3-dialkylimidazolium chloride-aluminum chloride ionic liquids.2.Phase transitions,densities,electrical conductivities,and viscosities.J.Phys.Chem.,1984,88,2614-2621.
    [70]Fuller J.,Carlin R.T.,Osteryoung R.A..The room temperature ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate:electrochemical couples and physical properties.J.Electrochem.Soc.,1997,144,3881-3886.
    [71]Mutch M.I.,Wilkes J.S..Thermal analysis of 1-ethyl-3-methylimidazolium tetrafluoroborate molten salt.Proc.Electrochem.Soc.,1998,98,254-260.
    [72]Hirao M.,Sugimoto H.,Ohno H..Preparation of novel room-temperature molten salts by neutralization of amines.J.Electrochem.Soc.,2000,147,4168-4172.
    [73]Dupont,J.,de Souza R.F.,Suarez P.A.Z..Ionic liquid(molten salt) phase organometallic catalysis.Chem.Rev.,2002,102,3667-3692.
    [74]Boutonnet M.,Kizhig J.,Stenius P.,Maire G..The preparation of monodisperse colloidal metal particles from microemulsions.Colloids and Surfaces,1982,5,209-225.
    [75]冯琳,袁连山,褚莹.反胶束法制备纳米颗粒.东北师大学报自然科学版,1999,3,52-58.
    [76]Tapas K.De,Amarnath M..Solution behavior of Aerosol OT in non-polar solvents.Adv.Colloid Interface Sci.,1995,59,95-193.
    [77]周富荣,郭晓洁,匡亚琴.反胶束微乳液法制备纳米ZnO.应用化工,2005,34(11),690-692.
    [78]Lisiecki I.,Pileni M.P..Synthesis of copper metallic clusters using reverse micelles as microreactors.J.Am.Chem.Soc.,1993,115,3887-3896.
    [79]Tanori J.,Pileni M.P..Controll of the shape of copper metallic particles by using a colloidal system as template.Langmuir,1997,13,639-646.
    [80]Pileni M.P..Mesostructured fluids in oil-rich regions:structural and templating approaches.Langmuir,2001,17,7476-7486.
    [81]Manoj K.M.,Jagakuma R.,Rakshits K..Physicochemical studies on reverse micelles of sodium bis(2-ethylhexyl) sulfosuccinate at low water content.Langmuir,1996,12,4068-4072.
    [82]王笃金,吴瑾光,徐光宪.反胶团或微乳液法制备超细颗粒的研究进展.化学通报,1995,58,1-5.
    [83]Chen L.C..Controlled growth of gold nanoparticles in Aerosol-OT/sorbitan monooleate/isooctane mixed reverse micelles.Jounal of Colloid and Interface Science,2000,230,60-66.
    [84]Chen L.C..Controlled growth of gold nanoparticles in AOT/C_(12)E_4/isooctane mixed reverse micelles.Jounal of Colloid and Interface Science,2001,239,334-341.
    [85]张军,孙聆东,钱程.CTAB—正己醇—正庚烷—水四元反相胶束体系制备CdS纳米微粒及其光学性质.科学通报,2001,46(17),1423-1427.
    [86]Cheng G.,Shen F.,Yang L.,Ma L.,Tang Y.,Yao K.,Sun P..On properties and structure of the AOT-water-isooctane reverse micellar microreactor for nanoparticles.Mater.Chem.Phys.,1998,56,97-101.
    [87]Lisiecki I.,Pileni M.P..Copper metallic particles synthesized "in situ" in reverse micelles:influence of various parameters on the size of the particles.J.Phys.Chem.,1995,99,5077-5082.
    [88]Cason J.P.,Miller M.E.,Thompson J.B.,Roberts C.B..Solvent effects on copper nanoparticle growth behavior in AOT reverse micelle systems.J.Phys.Chem.B,2001,105,2297-2302.
    [89]Kitchens C.L.,McLeod M.C.,Roberts C.B..Solvent effects on the growth and steric stabilization of copper metallic nanoparticles in AOT reverse micelle systems.J.Phys.Chem.B,2003,107,11331-11338.
    [90]陈龙武,王玉栋,甘礼华.同济大学学报自然科学版,2005,33(3),346-349.
    [91]Gao H.,Li J.,Han B.,Chen W.,Zhang J.,Zhang R.,Yan D..Microemulsions with ionic liquid polar domains.Phys.Chem.Chem.Phys.,2004,6,2914-2916.
    [92]Eastoe J.,Gold S.,Rogers S.E.,Paul A.,Welton T.,Heenan R.K.,Grillo I..Ionic liquid-in-oil microemulsions.J.Am.Chem.Soc.,2005,127,7302-7303.
    [93]Gao Y.,Han S.,Han B.,Li G.,Shen D.,Li Z.,Du J.,Hou W.,Zhang G..TX-100/water/1-butyl-3-methylimidazolium hexafluorophosphate microemulsions.Langmuir,2005,21,5681-5684.
    [94]Atkin R.,Warr G.G..Phase behavior and microstructure of microemulsions with a room-temperature ionic liquid as the polar phase.J.Phys.Chem.B,2007,111,9309-9316.
    [1]高善民,孙树声,刘兆明.纳米材料的应用前景展望.化学世界,2000,41,613-616.
    [2]Pileni M.P..Mesostructured fluids in oil-rich regions:structural and templating approaches.Langmuir,2001,17,7476-7486.
    [3]Pileni M.P..The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals.Nature Mater.,2003,2,145-150.
    [4]Li M.,Schnablegger H.,Mann S..Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization.Nature,1999,402,393-395.
    [5]Hamley I.W..Nanotechnology with soft materials.Angew.Chem.Int.Ed.,2003,42,1692-1712.
    [6]Xia Y.,Yang P..Guest editorial:chemistry and physics of nanowires.Adv.Mater.,2003,15,351-352.
    [7]Antonietti M..Surfactants for novel templating applications.Curr.Opin.Colloid Interface Sci.,2001,6,244-248.
    [8]M(u|¨)ller A.,Soy R..Linking giant molybdenum oxide based nano-objects based on well-defined surfaces in different phases. Eur. J. Inorg. Chem., 2005, 18,3561-3570.
    [9] Zarur A.J., Ying J.Y.. Reverse microemulsion synthesis of nanostructured complex oxides for catalytic combustion. Nature, 2000, 403, 65-67.
    [10] Pevzner S., Regev O., Lind A., Linden M.. Evidence for vesicle formation during the synthesis of catanionic templated mesoscopically ordered silica as studied by cryo-TEM. J. Am. Chem. Soc, 2003, 125, 652-653.
    [11] Hotz J., Meier W.. Polymer particles by templating of vesicles. Adv. Mater.,1998, 10, 1387-1390.
    [12] Hubert D.H.W., Jung M., Frederk P.M., Bomans P.H.H., Meuldijk J.,German A.L.. Vesicle-directed growth of silica. Adv. Mater., 2000, 12, 1286-1290.
    [13] Hentze H.P., Raghavan S.R., McKelvey C.A., Kaler E.W.. Silica hollow spheres by templating of catanionic vesicles. Langmuir, 2003, 19,1069-1074.
    [14] Salzemann C, Lisiecki I., Brioude A., Urban J., Pileni M.P.. Collections of copper nanocrystals characterized by different sizes and shapes: optical response of these nanoobjects. J. Phys. Chem. B, 2004,108, 13242-13248.
    [15] Cason J. P., Miller M.E., Thompson J.B., Roberts C.B.. Solvent effects on copper nanoparticle growth behavior in AOT reverse micelle systems. J. Phys. Chem. B,2001,105, 2297-2302.
    [16] Chiang C. L.. Controlled growth of gold nanoparticles in Aerosol-OT/sorbitan monooleate/isooctane mixed reverse micelles. J.Colloid Inter. Sci., 2000, 230,60-66.
    [17] Dalas E., Klepetsanis P., Koutsoukos P. G.. The overgrowth of calcium carbonate on poly(vinyl chloride-co-vinyl acetate-co-maleic acid). Langmuir,1999,15,8322-8327.
    [18] Wei S. H., Mahuli S. K., Agnihotri R., Fan L. S.. High surface area calcium carbonate: pore structural properties and sulfation characteristics. Ind. Eng.Chem. Res., 1997, 36, 2141-2148.
    [19] Zuiderduin W. C. J., Westzaan C, Huetink J., Gaymans R.. Toughening of polypropylene with calcium carbonate particles. Polymer, 2003, 44, 261-275.
    [20] Colfen H., Qi L.. A systematic examination of the morphogenesis of calcium carbonate in the presence of a double-hydrophilic block copolymer. Chem. Eur.J., 2001, 7, 106-116.
    [21] Yu S.H., Colfen H., Hartmann J., Antonietti M. Biomimetic crystallization of calcium carbonate spherules with controlled surfaces and sizes by double-hydrophilic block copolymers. Adv. Funct. Mater., 2002, 12, 541-545.
    [22] Hao J., Wang H., Shi S., Lu R., Wang T., Li G., Sun H.. Phase behavior and microstructures of microemulsions (I). Sci. China (Ser. B)., 1997, 40, 225-235.
    [23] Chan K. S., Shah D. O.. The molecular mechanism for achieving ultra low interfacial tension minimum in a petroleum sulfonate /oil/brine system. J.Dispersion Sci. Tech., 1980,1, 55-95.
    [24] Falini G., Albeck S., Weiner S., Addadi L.. Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science, 1996, 271, 67-69.
    [25] Naka K., Tanaka Y., Chujo.Y., Ito Y.. The effect of an anionic starburst dendrimer on the crystallization of CaCO_3 in aqueous solution. Chem. Commun.,1999, 1931-1932.
    [1] Pileni M.P.. Mesostructured fluids in oil-rich regions: structural and templating approaches. Langmuir, 2001, 17, 7476-7486.
    
    [2] Petit C, Taleb A., Pileni M.P.. Self-organization of magnetic nanosized cobalt particles. Adv. Mater., 1998, 10, 259-261.
    [3] Taleb A., Petit C, Pileni M.P.. Optical properties of self-assembled 2D and 3D superlattices of silver nanoparticles. J. Phys. Chem. B, 1998, 102, 2214-2220.
    [4] Li M., Schnablegger H., Mann S.. Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization. Nature, 1999, 402,393-395.
    [5] Li M., Mann S.. Emergence of morphological complexity in BaSO_4 fibers synthesized in AOT microemulsions. Langmuir, 2000, 16, 7088-7094.
    [6] Waish D., Mann S.. Fabrication of hollow porous shells of calcium carbonate from self-organizing media. Nature, 1995, 377, 320-322.
    [7] Hopwood J.D., Mann S.. Synthesis of barium sulfate nanoparticles and nanofilaments in reverse micelles and microemulsions. Chem. Mater., 1997, 9,1819-1828.
    [8] Hu J., Odom T.W., Lieber C.M.. Chemistry and physics in one dimension:synthesis and properties of nanowires and nanotubes. Acc. Chem. Res., 1999, 32,435-445.
    [9] Patzke G.R., Krumeich F.K., Nesper R.. Oxidic nanotubes and nanorods-anisotropic modules for a future nanotechnology. Angew. Chem. Int. Ed., 2002,41,2446-2461.
    
    [10] Hamley I.W.. Nanotechnology with soft materials. Angew. Chem. Int. Ed., 2003,42, 1692-1712.
    
    [11] Torigoe K., Esumi K.. Formation of nonspherical palladium nanocrystals in SDS/poly(acrylamide) gel. Langmuir, 1995, 11,4199-4201.
    
    [12] Pileni M.P.. The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nature Mater., 2003, 2, 145-150.
    [13] Zarur A.J., Ying J.Y.. Reverse microemulsion synthesis of nanostructured complex oxides for catalytic combustion. Nature, 2000,403, 65-67.
    [14] Pevzner S., Regev O., Lind A., Linden M.. Evidence for vesicle formation during the synthesis of catanionic templated mesoscopically ordered silica as studied by cryo-TEM. J. Am. Chem. Soc., 2003, 125, 652-653.
    [15] Hotz J., Meier W.. Polymer particles by templating of vesicles. Adv. Mater.,1998,10, 1387-1390.
    [16] Hubert D.H.W., Jung M., Frederk P.M., Bomans P.H.H., Meuldijk J., German A.L.. Vesicle-directed growth of silica. Adv. Mater., 2000, 12, 1286-1290.
    [17] Hentze H.P., Raghavan S.R., McKelvey C.A., Kaler E.W.. Silica hollow spheres by templating of catanionic vesicles. Langmuir, 2003, 19, 1069-1074.
    [18] Cason J. P., Miller M.E., Thompson J.B., Roberts C.B.. Solvent effects on copper nanoparticle growth behavior in AOT reverse micelle systems. J. Phys. Chem. B,2001,105, 2297-2302.
    [19] Qi L., Ma J., Cheng H., Zhao Z.. Reverse micelle based formation of BaCO_3 nanowires. J. Phys. Chem. B, 1997, 101, 3460-3463.
    [20] Kuang D., Xu A., Fang Y., Ou H., Liu H.. Preparation of inorganic salts (CaCO_3,BaCO_3, CaSO_4) nanowires in the Triton X-100/cyclohexane/water reverse micelles. J. Cryst. Growth, 2002, 244, 379-383.
    [21] Yu S., C(?)lfen H., Xu A., Dong W.. Complex spherical BaCO_3 superstructures self-assembled by a facile mineralization process under control of simple polyelectrolytes. Cryst. Growth Des., 2004, 4, 33-37.
    [22] Hao J., Wang H., Shi S., Lu R., Wang T., Li G., Sun H.. Phase behavior and microstructures of microemulsions (I). Sci. China (Ser. B)., 1997, 40, 225-235.
    [23] Chan K. S., Shah D. O.. The molecular mechanism for achieving ultra low interfacial tension minimum in a petroleum sulfonate /oil/brine system. J.Dispersion Sci. Tech., 1980, 1, 55-95.
    [24] Penn R., Banfield J.. Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science, 1998,281, 969-971.
    [25] Banfield J., Welch S., Zhang H., Ebert T., Renn R.. Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science, 2000, 289, 751-754.
    
    [26] Li L., Chu Y, Liu Y, Dong L., Huo L., Yang F.. Microemulsion-based synthesis of BaCO_3 nanobelts and nanorods. Mater. Lett., 2006, 60, 2138-2142.
    [1]Zana,R.Dynamics of surfactant self-assemblies:micelles,microemulsions,vesicles,and lyotropic phases,Surfactant Science Series,Vol.125.Marcel Dekker:New York,2005.
    [2]Chevalier Y.,Zemb Th..The structure of micelles and microemulsions.Rep.Prog.Phys.,1990,53,279-371.
    [3]Zemb Th..The DOC model of microemulsions:microstructure,scattering,conductivity and phase limits imposed by sterical constraints.Colloids Surf.A,1997,129-130,435-454.
    [4]Salager,J.L.;Anton,R.E..Ionic microemulsions,in Handbook of Microemulsions Science and Technology,Kumar,P.;Mittal,K.Eds.;Chap.8,p247-280.Marcel Dekker:New York,1999.
    [5]Welton T..Room-temperature ionic liquids.Solvents for synthesis and catalysis.Chem.Rev.,1999,99,2071-2084.
    [6]Anderson J.L.,Ding J.,Welton T.,Armstrong D.W..Characterizing ionic liquids on the basis of multiple salvation interactions.J.Am.Chem.Soc.,2002,124,14247-14254.
    [7]Hao J.,Zemb Th..Self-assembled structures and chemical reactions in room-temperature ionic liquids.Curr.Opin.Colloid Inter.Sci.,2007,12,129-137.
    [8]Gao H.,Li J.,Han B.,Chen W.,Zhang J.,Zhang R.,Yan D..Microemulsions with ionic liquid polar domains.Phys.Chem.Chem.Phys.,2004,6,2914-2916.
    [9]Eastoe J.,Gold S.,Rogers S.E.,Paul A.,Welton T.,Heenan R.K.,Grillo I..Ionic Liquid-in-Oil Microemulsions.J.Am.Chem.Soc.,2005,127,7302-7303.
    [10]Geramita,A.V.,Seberry,J..Orthogonal designs,quadratic forms and hadamard matrices.Lecture notes in pure and applied mathematics,Vol.43.Marcel Dekker:New York and Basel,1979.
    [11]Zemb Th.,Tache O.,Ne F.,Spalla O..A high sensitivity pinhole camera for soft condensed matter.J.Appl.Crystallogr.,2003,36,800-805.
    [12]Ne F.,Gazeau D.,Taboury J.,Zemb Th..Characterization of an image-plate detector used for quantitative small-angle-scattering studies. J. Appl. Crystallogr.,1993, 26, 763-773.
    [13] N(?) F., Gabriel A., Kocsis M., Zemb Th.. Smearing effects introduced by the response function of position-sensitive gas detectors in SAXS experiments. J.Appl. Crystallogr., 1997, 30, 306-311.
    [14] Hao J., Wang H., Shi S., Lu R., Wang T., Li G., Sun H.. Phase behaviour and microstructures of microemulsions (I). Science in China (Series B), 1997, 40,225-235.
    [15] Petrache H. I., Zemb Th., Belloni L., Parsegian V. A.. Salt screening and specific ion adsorption determine neutral-lipid membrane interactions. PNAS, 2006, 103,7982-7987.
    [16] Chan K. S., Shah D. O.. The molecular mechanism for achieving ultralow interfacial tention minimum in a petroleum sulfonate/oil/brine system. J.Dispersion Sci. Tech., 1980, 1, 55-95.
    [17] Aveyard R., Binks B. P., Clark S., Mead J.. Interfacial tension minima in oil-water-surfactant systems. Behaviour of alkane-aqueous NaCl systems containing aerosol OT. J. Chem. Soc. Faraday Trans. 1, 1986, 82, 125-142.
    [18] Lindner, P.; Zemb, Th. Neutrons, X-ray and light: Scattering methods applied to soft condensed matter, North Holland, Amsterdam, 2002.
    [19] Teubner M., Strey R.. Origin of the scattering peak in microemulsions. J. Chem.Phys., 1987, 87,3195-3200.
    [20] Chen S.H., Chang S.L., Strey R., Samseth J., Mortensen K.. Structural evolution of bicontinuous microemulsions. J. Phys. Chem., 1991, 95, 7427-7432.
    [21] Zemb Th., Barnes I.S., Derian P.J., Ninham B.W.. Scattering as a critical test of microemulsion structural models. Prog. Colloid Polym. Sci., 1990, 81, 20-29.
    [22] Welberry T. R., Zemb Th.. Scattering of two-dimensional models of microemulsions. J. Colloid Interface Sci., 1988, 123,413-426.
    [23] Milner S. T., Safran S. A., Andelman D., Cates M. E., Roux D.. Correlations and structure factor of bicontinuous microemulsions. J. Phys., 1988, 49, 1065-1075.
    [24] Zemb Th., Welberry T. R.. Scattering of two-dimensional analogs of disordered lamellae. Colloid Polym. Sci., 1993,271, 124-132.
    [25] Zemb Th.. "Scattering of micelles and microemulsions" in X-ray, neutron and light scattering; Lindner P., Zemb Th. Eds.; Elsevier, 2002.
    [26] Hellweg Th.. Phase structures of microemulsions. Curr. Opin. Colloid Inter. Sci.,2002, 7, 50-56.
    [1]Gao H.,Li J.,Han B.,Chen W.,Zhang J.,Zhang R.,Yan D..Microemulsions with ionic liquid polar domains.Phys.Chem.Chem.Phys.,2004,6,2914-2916.
    [2]Eastoe J.,Gold S.,Rogers S.E.,Paul A.,Welton T.,Heenan R.K.,Grillo I..Ionic liquid-in-oil microemulsions.J.Am.Chem.Soc.,2005,127,7302-7303.
    [3]Li N.,Gao Y.,Zheng L.,Zhang J.,Yu L.,Li X..Studies on the micropolarities of bmimBF_4/TX-100/toluene ionic liquid microemulsions and their behaviors characterized by UV-Visible spectroscopy.Langmuir,2007,23,1091-1097.
    [4]Atkin R.,Warr G,.Phase behavior and microstructure of microemulsions with a room-temperature ionic liquid as the polar phase.J.Phys.Chem.B,2007,111,9309-9316.
    [5]Gao Y.,Zhang J.,Xu H.,Zhao X.,Zheng L.,Li X.,Yu L..Structural studies of 1-butyl-3-methylimidazolium tetrafluoroborate/TX-100/p-xylene ionic liquid microemulsions.Chem.Phys.Chem.,2006,7,1554-1561.
    [6]Gao Y.,Wang S.,Zheng L.,Han S.,Zhang X.,Lu D.,Yu L.,Ji Y.,Zhang G..Microregion detection of ionic liquid microemulsions.Jounal of Colloid and Interface Science,2006,301,612-616.v[7]Gao Y.,Li N.,Zheng L.,Zhao X.,Zhang S.,Han B.,Hou W.,Li G..A cyclic voltammetric technique for the detection of micro-regions of bmimPF_6/Tween 20/H_2O microemulsions and their performance characterization by UV-Vis spectroscopy.Green Chemistry,2006,8,43-49.
    [8]Gao Y.,Han S.,Han B.,Li G.,Shen D.,Li Z.,Du J.,Hou W.,Zhang G..TX-100/water/1-butyl-3-methylimidazolium hexafluorophosphate microemulsions.Langmuir,2005,21,5681-5684.
    [9]Welton T..Room-temperature ionic liquids.Solvents for synthesis and catalysis.Chem.Rev.,1999,99,2071-2084.
    [10]Huddleston J.G.,Willauer H.D.,Swatloski R.P.,Visser A.E.,Rogers R.D..Room temperature ionic liquids as novel media for "clean" liquid-liquid extraction.Chem.Commun.,1998,1765-1766.
    [11]Dickinson E.V.,Williams M.E.,Hendrickson S.M.,Masui H.,Murray R.W..Hybrid redox polyether melts based on polyether-tailed counterions.J.Am.Chem.Soc.,1999,121,613-616.
    [12]Evans D.F.,Yamauchi A.,Roman R.,Casassa E.Z..Micelle formation in ethylammonium nitrate,a low-melting fused salt.J.Colloid Inter.Sci.,1982,88,89-96.
    [13]Evans D.F.,Yamauchl A.,Wel G.J.,Bloomfield V.A..Micelle size in ethylammonium nitrate as determined by classical and quasi-elastic light scattering.J.Phys.Chem.,1983,87,3537-3541.
    [14]Beyaz A.,Oh W.S.,Reddy V.P..Ionic liquids as modulators of the critical micelle concentration of sodium dodecyl sulfate.Colloids and Surfaces B,2004,35,119-124.
    [15]Patrascu C.,Gauffre F.,Nallet F.,Bordes R.,Oberdisse J.,Lauth-Viguerie N.,Mingotaud C..Micelles in ionic liquids:aggregation behavior of alkyl poly(ethyleneglycol)-ethers in 1-butyl-3-methyl-imidazolium type ionic liquids.Chem.Phys.Chem.,2006,7,99-101.
    [16]Chakrabarty D.,Seth D.,Chakraborty A.,Sarkar N..Dynamics of salvation and rotational relaxation of coumarin 153 in ionic liquid confined nanometer-sized microemulsions.J.Phys.Chem.B,2005,109,5753-5758.
    [17]Li G.,Friberg S.E..Surfactant cosurfactant association and emulsion stability.J.Amer.Oil Chem.Soc.,1982,59,569-572.
    [18]Gennes P.G.,Taupin C..Microemulsions and the flexibility of oil/water interfaces.J.Phys.Chem.,1982,86,2294-2304.
    [19]Mackay R.A.,Myers S.A.,Bodalbhai L.,Brajter-Toth A..Microemulsion structure and its effect on electrochemical reactions.Anal.Chem.,1990,62,1084-1090.
    [20]Zhu D.M.,Schelly Z.A..Investigation of the microenvironment in Triton X-100 reverse micelles in cyclohexane,using methyl orange as a probe.Langmuir,1992,8,48-50.
    [21]Li Q.,Weng S.,Wu J.,Zhou.N..Comparative study on structure of solubilized water in reversed micelles.1.FT-IR spectroscopic evidence of water/AOT/n-heptane and water/NaDEHP/n-heptane systems.J.Phys.Chem.B,1998,102,3168-3174.
    [22]Zhou G.,Li G.,Chen W..Fourier transform infrared investigation on water states and the conformations of Aerosol-OT in reverse microemulsions.Langmuir,2002,18,4566-4571.
    [23]Onori G.,Santucci A..IR investigations of water structure in Aerosol OT reverse micellar aggregates.J.Phys..Chem.,1993,97,5430-5434.
    [24]Temsamani M.B.,Maeck M.,Hassani I.E.,Hurwitz H.D..Fourier transform infrared investigation of water states in Aerosol-OT reverse micelles as a function of counterionic nature.J.Phys.Chem.B,1998,102,3335-3340.
    [25]Zhou N.F.,Li Q.,Wu J.G.,Chen J.,Weng S.F.,Xu G.X..Spectroscopic characterization of solubilized water in reversed micelles and microemulsions:sodium bis(2-ethylhexyl) sulfosuccinate and sodium bis(2-ethylhexyl) phosphate in n-heptane.Langmuir,2001,17,4505-4509.
    [26]Andrade S.M.,Costa S.M.B.,Pansu R..Structural changes in W/O triton X-100/cyclohexane-hexanol/water microemulsions probed by a fluorescent drug piroxicam.J.Colloid Interface Sci.,2000,226,260-268.
    [27]Christenson H.,Friberg S.E.,Larsen D.W..NMR investigations of aggregation of nonionic surfactants in a hydrocarbon medium.J.Phys.Chem.,1980,84,3633-3638.
    [28]Tasaki K..Poly(oxyethylene)-water interactions:a molecular dynamics study.J.Am.Chem.Soc.,1996,118,8459-8469.
    [1] (a) Pileni M. P.. Langmuir, 2001,17, 7476-7486. (b) Pileni M. P.. Nature Materials, 2003,2,145-150.
    [2] Li M, Schnablegger H., Mann S.. Nature, 1999,402,393-395.
    [3] Hamley I. W.. Angew. Chem. Int. Ed., 2003,42,1692-1712.
    [4] Xia Y., Yang P.. Adv. Mater., 2003,15,351-352.
    [5] Antonietti M.. Curr. Opin. Colloid Interface Sci., 2001,6,244-248.
    [6] Muller A., Soy R.. Eur. J. Inorg. Chem., 2005, 18, 3561-3570.
    [7] See a number of references from the American Chemical Society's Nano Lett
    [8] Colfen H., Yu S.. MRS BULLETIN 2005,30,727-735.
    [9] Zarur A.J., Ying J.Y.. Nature, 2000,403,65-67.
    [10] (a) Pevzner S., Regev O., Lind A., Linden M.. J. Am. Chem. Soc., 2003, 125, 652-653. (b) Hotz J., Meier W.. Adv. Mater., 1998, 10, 1387-1390. (c) Hubert D.H.W., Jung M., Frederic P.M., Bomans P.H.H., Meuldijk J.,German A.L.. Adv. Mater., 2000, 12, 1286-1290. (d) Hentze H.P., Raghavan S.R., McKelvey C.A., Kaler E.W.. Langmuir, 2003,19,1069-1074.
    [11] Sharma M. K., Shah D. O.. Microemulsions in enhance oil recovery, in ACS Symposium, Washington, D. C: American Chemical Society, 1985, 272,149.
    [12] Li D., Wu H., Li Z., Cong X., Sun J, Ren Z, Liu L, Li Y, Fan D., Hao J.. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2006,274,18-23.
    [13] Colfen H., Qi L.. Chem. Eur. J., 2001,7,106-116.
    [14] Hao J., Wang H, Shi S., Lu R, Wang T., Li G., Sun K. Sci. China (Ser. B)., 1997,40,225-235.
    [15] Chan K. S., Shah D. O.. J. Dispersion Sci. Tech., 1980,1, 55-95.
    [16] Falini G., Albeck S., Weiner S., Addadi L.. Science, 1996,271,67-69.
    [17] Naka K., Tanaka Y., Chujo Y., Ito Y.. Chem. Commun., 1999,1931-1932.
    [1] Zana, R... Dynamics of surfactant self-assemblies: micelles, microemulsions,vesicles, and lyotropic phases, Surfactant Science Series, Vol. 125. Marcel Dekker: New York, 2005.
    [2]Chevalier Y.,Zemb Th..The structure of micelles and microemulsions.Rep.Prog Phys.,1990,53,279-371.
    [3]Zemb Th..Colloids Surf.A,1997,129-130,435-454.
    [4]Salager,J.L.;Anton,R.E.Ionic microemulsions,in Handbook of Microemulsions Science and Technology,Kumar,P.;Mittal,K.Eds.;Marcel Dekker:New York,1999;Chap.8,p247-280.
    [5]Welton T..Chem.Rev.,1999,99,2071-2084.
    [6]Anderson J.L.,Ding J.,Welton T.,Armstrong D.W..J.Am.Chem.Soc.,2002,124,14247-14254.
    [7]Hao J.,Zemb Th..Curr.Opin.Colloid Inter.Sci.,2007,12,129-137.
    [8]Gao H.,Li J.,Han B.,Chen W.,Zhang J.,Zhang R.,Yan D..Phys.Chem.Chem.Phys.,2004,6,2914-2916.
    [9]Eastoe J.,Gold S.,Rogers S.E.,Paul A.,Welton T.,Heenan R.K.,Grillo I..J.Am.Chem.Soc.,2005,127,7302-7303.
    [10]Geramita,A.V.;Seberry,J.Orthogonal designs,quadratic forms and hadamard matrices.Lecture notes in pure and applied mathematics,Marcel Dekker:New York and Basel,1979,Vol.43.
    [11]Princen,H.M.;Zia,I.Y.Z.;Mason,S.G.J.Colloid Interface Sci.1967,23,99.
    [12]Cayias,J.L.;Schechter,R.S.;Wade,W.H.In Adsorption at Interfaces;ACS Symposium Series;Mittal,K.L.,Ed.;American Chemical Society:Washington,DC,1975;Vol.8,pp 234-247.
    [13]Zemb Th.,Tache O.,Ne F.,Spalla O..J.Appl.Crystallogr.,2003,36,800-805.
    [14]Ne F.,Gabriel A.,Kocsis M.,Zemb Th..J.Appl.Crystallogr.,1997,30,306-311.
    [15]Ne F.,Gazeau D.,Taboury J.,Zemb Th..J.Appl.Crystallogr.,1993,26,763-773.
    [16]Teubner M.,Strey R..J.Chem.Phys.,1987,87,3195-3200.
    [17]Chen S.H.,Chang S.L.,Strey R.,Samseth J.,Mortensen K..J.Phys.Chem.,1991,95,7427-7432.
    [18]Zemb Th.,Barnes I.S.,Derian P.J.,Ninham B.W..Prog.Colloid Polym.Sci.,1990,81,20-29.
    [19]Hao J.,Wang H.,Shi S.,Lu R.,Wang T.,Li G.,Sun H..Science in China(Series B),1997,40,225-235.
    [20]Petrache H.I.,Zemb Th.,Belloni L.,Parsegian V.A..Proc.Natl.Acad.Sci.U.S.A.2006,103,7982-7987.
    [21]Chan K.S.,Shah D.O..J.Dispersion Sci.Tech.,1980,1,55-95.
    [22]Aveyard R.,Binks B.P.,Clark S.,Mead J..J.Chem.Soc.Faraday Trans.1,1986,82,125-142.
    [23]Zemb,Th.C.R.Chim.2008,doi:10.1016/j.crci.2008.10.008.
    [24]Welberry T.R.,Zemb Th..J.Colloid Interface Sci.,1988,123,413-426.
    [25]Milner S.T.,Safran S.A.,Andelman D.,Cates M.E.,Roux D..J.Phys.(Paris),1988,49,1065-1075.
    [26]Zemb Th.,Welberry T.R..Colloid Polym.Sci.,1993,271,124-132.
    [27]Zemb,Th."Scattering of micelles and microemulsions" in X-ray,neutron and light scattering;Lindner P.,Zemb Th.Eds.;Elsevier,2002.
    [28]Hellweg Th..Curr.Opin.Colloid Inter.Sci.,2002,7,50-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700