ZnO/SnO_2复合染料敏化太阳能电池的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
染料敏化太阳能电池(DSC)是一种新型光电化学太阳能电池,它制作工艺简单、成本低、性能稳定、并且对环境良性,具有很好的应用前景。目前,以TiO_2作导电薄膜的染料敏化纳米晶太阳能电池的光电转化效率最高已达11%。但是纳晶多孔TiO_2薄膜中存在着大量表面态,表面能级位于禁带之中,呈局域态构成陷阱,束缚了电子在薄膜中的运动,导致电子与电解质复合的概率增大,暗电流增加,效率降低,大量表面态的存在,是使DSC转换效率降低的原因之一,因此用其他半导体氧化物薄膜作为光阳极制作薄膜太阳能电池就成为了DSC研究的一个热点。本文探讨了以ZnO、SnO_2及其复合物作为半导体膜的染料敏化太阳能电池。主要研究内容为:
     (1)以结晶四氯化锡为主原料,在200℃、pH = 8-9条件下,水热结晶12小时,450℃下处理1小时后,得到了粒径为3-5 nm的金红石型SnO_2,以此组装纳米SnO_2电极和DSC太阳能电池。在模拟太阳光(100 mW/cm2)辐照下,所组装的DSC太阳能电池的开路电压为401 mV,短路电流密度6.12 mA/cm2,填充因子为46.87%,总光电转化效率为1.15%。
     (2)以乙酸锌为原料,通过溶胶-凝胶法制备ZnO凝胶,该凝胶在500℃下马弗炉中处理1小时,获得粒径为50-100 nm的ZnO膜,以此组装纳米ZnO电极和DSC太阳能电池。在模拟太阳光(100 mW/cm~2)辐照下,所组装的DSC太阳能电池的开路电压为554 mV,短路电流密度6.24 mA/cm2,填充因子为51.58%,总光电转化效率为1.78%。
     (3)以乙酸锌,结晶四氯化锡为主要原料,通过溶胶-凝胶法和水热法制备了粒径为30 nm的ZnO/SnO_2复合纳米膜,控制氧化锌和氧化锡的物质量比为n_(Zn) : n_(Sn),以此组装纳米ZnO/SnO_2复合电极和DSC太阳能电池。在模拟太阳光(100 mW/cm2)辐照下,所组装的DSC太阳能电池的开路电压为620 mV,短路电流密度14.53 mA/cm~2,填充因子为58.29%,总光电转化效率为5.25%。
Dye-sensitized nanocrystalline solar cell (DSC) is a new type of photoelectric chemical soalr cell with simple preparation procedure, low cost, stable photo-to-electric performance and friendly environment, which make it a good alternative of photo-to-electric devices. At present, the total efficiences of DSC based on nanoporous TiO_2 electrodes has been over 11%. But various surface states on the TiO_2 thin film results in the recombination between the photo-generated electrons and the holes, increases the dark current, and reduces the total efficiency of the DSCs. It becomes a hot issue for searching for other semiconductor oxide compound thin film to replace the TiO_2 porous film.
     In this paper, the dye-sensitized nanocrystalline solar cells based on the SnO_2, ZnO and ZnO/SnO_2 porous films were investigated, the primary results are shown as follow:
     (1) SnO_2 nanoporous film with a particle size of 3-5 nanometer was prepared from Tin tetrachloride hydrate by hydrothermal method at pH = 8-9, at 200oC for 12 hour, and then calcined at 450℃for 1 hour. Based on the film, a SnO_2 nanoelectrode and a DSC were assembled. Under irradiation of simulation sunlight (100 mW/cm~2), the DSC with a short-circuit intensity of 6.12 mA/cm~2, open-circuit voltage of 401 mV, fill factor of 46.87% and total efficiency of 1.15% of was obtained.
     (2) ZnO film with a particle size of 50-100 nanometer was prepared from zinc acetate by sol-gel method, and then calcined at 500℃for 1 hour. Based on the film, a ZnO nanoelectrode and a DSC were assembled. Under irradiation of simulation sunlight (100 mW/cm2), the DSC with a short-circuit intensity of 6.24 mA/cm~2, open-circuit voltage of 554 mV, fill factor of 51.58% and total efficiency of 1.78% of was obtained.
     (3) ZnO/SnO_2 complex film with a particle size of 30 nanometer was prepared by combined sol-gel method and hydrothermal method from zinc acetate and Tin tetrachloride hydrate.When the ratio of nZn: nSn was controlled at 2, a ZnO/SnO_2 complex nanoelectrode and a DSC were assembled. Based on the film, a ZnO/SnO_2 complex nanoelectrode and a DSC were assembled. Under irradiation of simulation sunlight (100 mW/cm~2), the DSC with a short-circuit intensity of 14.53 mA/cm2, open-circuit voltage of 670 mV, fill factor of 58.29% and total efficiency of 5.25% of was obtained.
引文
[1]. Regan. O, Gratzel. M. A low cost high efficiency solar cell based on dye-sensitized colloidal TiO2 films [J]. Nature, 1991, 353, 737-740.
    [2]. Nazeetuddin. M. K, Gratzel. M. Conversion of light to electricity by cis-X2Bis (2, 2′-bipyridyl-4, 4′-dicarboxylate) ruthenium charge transfer sensitizes (X = Cl-, Br-, CN- and SCN-) on nanocrystalline TiO2 electrodes [J]. J. Am. Chem. Soc. 1993, 115, 6382-6390.
    [3]. Cherepy. N. J, Smesad. G. P, Gratzel. M. Calculation of the photocurrent potential characteristic for regenerative sensitized semiconductor electrodes [J]. Phys. Chem. B, 1997, 101, 342-351.
    [4]. Bach. U, Lupo. D, Gratzel. M. Solid-state dye-sensitized mesoporous TiO2 solar cell with high photon-to-electron conversion efficiencies [J]. Nature, 1998, 395, 583-585.
    [5]. 范乐庆,吴季怀,黄韵防,等. 染料敏化太阳能电池的二氧化钦膜性能研究 [J].感光科学与光化学,2003,5,45-48.
    [6]. Zhigang. Z, Jinhua. Y, Kazuhiro.S, et al. Directe splitting of water under visible light irrasiation with an oxide semiconductor photocatalyst [J]. Nature, 2001, 414, 625-627.
    [7]. Smestad. G. P, Gratzel. M. Demonstrating electron transfer and nanotechnology: a natural dye sensitized nanocrystalline energy converter [J]. Journal. Chemical. Education, 1998, 75, 752-756.
    [8]. Svetlana. L, Joseph. T. H. A new method for manufacturing nanostructured electrodes on glass substrates [J]. Chemical Physical Letter, 2000, 10, 91-l0l.
    [9]. Solbrand. A, Lindstrom. H, Rensmo. H, et al. Dye-based donor/acceptor solar cells [J]. J. Phys. Chem. B, 1997, 101, 2514-2522.
    [10]. Zhao. G, Kazuka. H, Lin. H, et al. Dye-sensitised photoelectrochemical solar cells with polyacrylonitrile based solid polymer electrolytes [J]. Thin Solid Films, 1999, 340, 125-131.
    [11]. 张莉,任众杰. 菁类染料敏化的固态纳米 TiO2 光电化学电池 [J].高等化学学报,2001,7,1105-1107.
    [12]. 张东社,等. 纳晶多孔 TiO2 薄膜电极的化学处理 [J].科学通报,2000,5,929-932.
    [13]. Tennakone. K. A dye-sensitized nano-porous solid state photovoltaic cell [J]. Semiconductor Science and Technology, 1995, 10, 1689-1693.
    [14]. Gratzel. M. Perspectives for dye sensitized nanocrystalline solar cells [J]. Prog.Photovolt.Res. Appl, 2000, 8, 171-185.
    [15]. Ishiwaki. T, moue. H, Makishima. A. Transport and interfacial transfer of electrons in dye-sensitized nanocrystalline solar cells [J].Journal of Materials Science, 2000, 35, 425-433.
    [16]. Pivovarov. A. P, Kaplunov. M. G, Yakushchenko. I. K. Nanostructure ZnO electrodes for dye-sensitized solar cell applications [J]. Russian Chemical Bulletin, International Edition, 2002, 51, 67-71.
    [17]. Ma. T, Inoue. K, Noma. H, et al. Observation of photoinduced electron transfer in dye/semconductor colloidal systems with different coupling strengths [J]. Journal of Materials Science Letters, 2002, 21, 1013-1014.
    [18]. James. C, Ogbonna. Hideo. T. Fabrication of solid-state dye-sensitized TiO2 solar cells combined with polvpyrrole [J]. Journal of Applied Phycology, 2000, 12, 207-218.
    [19]. Moon. I. S, Kim. D. S, Lee. S. H. Electron transfer via organic dyes for solar conversion [J]. Journal of Materials Science: Materials in Elexctronics, 2001, 12, 137-143.
    [20]. Srikanth. K, Marathe. V. R, Manoj. K. Role of electronic structure of ruthenium polypyridyl dyes in the photoconversion efficiency of dye-sensitized solar cells: semiempirical investigation [J]. International Journal of Quantum Chemistry, 2002, 89, 535-549.
    [21]. Gratzel. M. Sol-gel processed TiO2 films for photovoltaic applications [J]. Journal of Sol-Gel Science and Technology, 2001, 22, 7-13.
    [22]. Yanqin. W, Yanzhong. H, Humin. C. The photoelectrochemistry of transition metal-ion-doped TiO2 nanocrystalline electrodes and higher solar cell conversion efficiency based onZn2+-doped TiO2 electrode [J]. Journal of Materials Science, 1999, 34, 2773-2779.
    [23]. Labuhn. D, Kabelac. S. The spectral directional emissive of photovoltaic surfaces [J].International Journal of Thermophysics, 2001, 22(5), 1577-1592.
    [24]. Ana. F, Nogueira. M, Paoli. D. A dye sensitized TiO2 photovoltaic cell constructed with an electrometric electrolyte [J]. Solar Energy Materials and Solar Cells, 2000, 61, 135-141.
    [25]. McConnell. R. D. Assessment of the dye-sensitized solar cell [J]. Renewable and Sustainable Energy Reviews, 2002, 6, 273-295.
    [26]. Fernando. C, Kumarawadu. I. Crystal violet dye-sensitized photocurrent by participation of surface states on p-CuSCN photocathode [J]. Solar Energy Materials and Solar Cells, 1999, 58, 337-347.
    [27]. Ferber. J, Luther. J. Computer simulations of light scattering and absorption in dye-sensitized solar cells [J]. Solar Energy Materials and Solar Cells, 1998, 54, 265-275.
    [28]. 范乐庆,吴季怀,黄韵防,等. 阴极修饰对染料敏化TiO2太阳能电池性能的影响 [J].电子元件与材料,2003,05,l-4.
    [29]. Dai. H. H, Zhu. H. Dye-sensitized anatase titanium dioxide nanocrystalline with (001) preferred orientation induced by longmuir-blodgett monolayer [J]. Chemical Physics Letters, 2002, 363, 509-514.
    [30]. Wu. J. H, Lin. J. M, Ying. S, et al. Synthesis and photocatalytic properties of layered HNbWO6/(Pt,Cd0.8Zn0.2S) nanocomposites [J]. Journal of Materials Chemistry, 2001, 12, 3343-3347.
    [31]. Wu J. H, Satoshi. U, Ying. S, et al. Synthesis and photocatalytic properties of HNbWO6/TiO2 and HNbWO6/Fe2O3 nanocomposites [J]. J of Photochem and Photobio. A Chem, 1999, 128, 129-133.
    [32]. Tennakonea. K, Bandaranayakea. P. K. M, Jayaweerab. P. V. V. Dye-sensitized composite semiconductor nanostructures [J]. Physica E, 2002, 14, 190-196.
    [33]. Jianjun. H, Lindstro. H. Aanostructure tandem cell-first demonstrated cell with a dye-sensitized photocathode [J]. Solar Energy Materials and Solar Cells, 2000, 62, 265-273.
    [34]. Tennakone. K, Bandara. J. Photocatalytic activity of dye-sensitized tin (IV) oxide nanocrystalline particles attached to zinc oxide particles: long distance electron transfervia ballistic transport of electrons across nanocrystalline [J]. Applied Catalysis A: General, 2001, 208, 335-341.
    [35]. Eichberger. R, tailing. F. Optoelectronic studies in nanocrystalline silicon schottky diodes obtained by hot-wire CVD [J]. Chem. Phys, 1990, 141, 159-167
    [36]. Winder. C, Matt. G, Hummelen. C. Sensitization of low bandgap polymer bulk heterojunction solar cells [J]. Thin Solid Films, 2002, 404, 373-379.
    [37]. Gebeyehu. D, Maennig. B, Drechsel. J. Bulk-heterojunction photovoltaic devices based on donor-acceptor organic small molecule blends [J]. Solar Energy Materials and Solar Cells, 2003, 9, 262-274.
    [38]. Pawel. W, Pierre. H. A, Lawrence. L. Conjugated polymers based on new thienylene-PPV derivatives for solar cell applications [J]. Electrochemistry Communications, 2002, 4, 912-916.
    [39]. Geens. W, Shaheen. S, Wessling. B. Dependence of field-effect hole mobility of PPV-based polymer films on the spin-casting solvent [J]. Organic Electronics, 2002, 3, 105-110.
    [40]. Geens. W, Poortmans. J, Suresh. C. Analytical study of PPV-oligomer-and C60-based devices for optimizing organic solar cells [J]. Solar Energy Materials and Solar Cells, 2000, 61, 43-51.
    [41]. Pacios. R, Bradley. D. Charge separation in ployflourene composites with internal donorlacceptor heterojunction [J]. Synthetic Metals, 2002, 127, 261-265
    [42]. Dittmer. J, Lazzaroni. R, Leclere. P. Crystal network formation in organic solar cells [J]. Solar Energy Materials and Solar Cells, 2000, 61, 53-61.
    [43]. Petritsch. K, Dittmer. J, Marseglia. E. A. Dye-based donor/acceptor solar cells [J]. Solar Energy Materials and Solar Cells, 2000, 6l, 63-72.
    [44]. Aernouts. T, Geens. W, Poortmans. J. Extraction of bulk and contact components of the series resistance in organic bulk donor acceptor heterojunction [J]. Thin Solid Films, 2002, 403,297-301.
    [45]. Jean. M, Nunzi. C. R. Organic photovoltaic materials and devices [J]. Physique, 2002, 3, 523-542.
    [46]. Kohshin. T, Noriko. K. Three layer organic solar cell with high-power conversionefficiency of 3.5% [J]. Solar energy Materials and Solar Cells, 2000, 61, 403-416.
    [47]. Aernouts. T, Geens. W, Poortmans. J. Analysis and simulation of the IV-characteristics of PPV-oligomer based schottky diodes [J]. Synthetic Metals, 2001, 122, 153-155.
    [48]. Peter. L. M, Wijayantha. K. G. U.Intensity dependence ofthe electron diffusion length in dye sensitised nanocrystalline TiO2 a photovoltaic cells [J]. Electrochemistry Communications, 1999, 576-580.
    [49]. Gomez. M, Magnusson E, Olsson. E, et al. Nanocrystalline Ti-oxide-based solar cells made by sputter deposition and dye sensitization: Efficiency versus film thickness [J]. Solar Energy Materials & Solar Cells, 2000, 62, 259-263.
    [50]. Mestad. G. P. S. Education and solar conversion: Demonstrating electron transfer [J]. Sol. Energy Mater. Sol. Cells, 1998, 55, 157-158.
    [51]. Anuradha, M. Eppler, Ian. M. Charge transport in porous nanocrystalline titanium dioxide Ballard [J]. J Physica E, 2002, 14, 197-202.
    [52]. Duffy. N. W, Pete. L. M, Rajapakse. R. M. G, et al. A novel charge extraction method for the study of electron transport and interfacial transfer in dye sensitized nanocrystalline solar cells [J]. J Electrochemistry Communications, 2000, 2, 658-662.
    [53]. Gratzel. M. Mesoporous oxide junctions and nanostructured solar cells [J]. J. Current Opinion in Colloid & Interface Science, 1999, 4, 314-321.
    [54]. 张建荣,高濂. 纳米晶氧化锡的水热合成与表征 [J] 化学学报,2003,61(12),l965-l968.
    [55]. Bryan. V, Bergeron, Andras Marton, Gerko Oskam. Dye-Sensitized SnO2 Electrodes with Iodide and Pseudohalide Redox Mediators [J]. J. Phys. Chem B, 2005, 109, 937-943.
    [56]. 孙明,余林,郝志峰,孙建.SnO2纳米粒子的制备与表征 [J] 无机化学学报,2005,6,1234-1240.
    [57]. 卢献忠,黄峰,雷雪梅,李思. 溶胶-凝胶法制备纳米SnO2 [J] 武汉科技大学学报(自然科学版),2006,29(1),65-71.
    [58]. 韦志仁,李军,刘超. 水热法合成SnO2金红相纳米柱晶体 [J] 人工晶体学报,2006,35(1),56-63.
    [59]. Idriss. B, Hotchandani. S and Prashant. V. Preparation and PhotoelectrochemicalCharacterization of Thin SnO2 Nanocrystalline Semiconductor Films and Their Sensitization with Bis (2, 2'- bipyridine) (2, 2'- bipyridine-4, 4'- dicarboxylic acid) ruthenium (II) Complex [J]. J. Phys. Chem, 1994, 98, 4133-4140.
    [60]. 张忠锁,赵伟,陈艳辉. SnO2纳米半导体颗粒的微区电子输运特性 [J] 郑州大学学报(理学版),2004,36(4),155-162.
    [61]. 赵鹤云,柳清菊,吴兴惠,赵怀志. SnO2纳米棒的固相反应制备与表征 [J] 功能材料与器件学报,2006,12(1),15-21.
    [62]. 赵杰,赵经贵,高山. SnO2纳米薄膜的制备、显微结构及气敏性能 [J] 应用化学,2004,21(2),55-62.
    [63]. 孙明,余林,郝志峰,孙建. SnO2纳米粒子的制备与表征 [J] 无机化学学报,2005,6,456-461.
    [64]. 赵玮婷,徐瑞芬,付国柱. 纳米SnO2/TiO2半导体薄膜电极的制备及其光电响应性能 [J] 北京化工大学学报,2004,31(6),34-39.
    [65]. 何则强,熊利芝,麻明友. 纳米SnO2的非水溶剂溶胶-凝胶法制备与表征 [J] 无机化学学报,2005,1,568-574.
    [66]. 王占和,吴海霞,蒋煜婧,邢懋腾,詹杰. 纳米晶SnO2薄膜的结晶特性 [J] 半导体学报,2003,24,163-171.
    [67]. 吴孟强,张其翼,陈艾. 凝胶-燃烧法合成纳米晶SnO2粉体 [J] 硅酸盐学报,2002,30(2),89-96.
    [68]. 沈晓冬,吕军华,周洪庆,王庭慰,蔡永明. 溶胶-凝胶法制备SnO2纳米粉体及表征研究 [J] 南京工业大学学报,2003,25(1),189-197.
    [69]. 卢献忠,黄峰,雷雪梅,李思. 溶胶-凝胶法制备纳米SnO2 [J] 武汉科技大学学报(自然科学版),2006,29(1),561-568.
    [70]. 刘杨,杨国成,张析彤,白玉白. 不同形态SnO2纳米晶的制备 [J] 高等学校化学学报,2000,21,165-172.
    [71]. Yasuhiro. T, Kohjiro. H, Shingo. T. Investigations on anodic photocurrent loss processes in dye sensitized solar cells: comparison between nanocrystalline SnO2 and TiO2 films [J]. Chemical. Physics Letters, 2002, 364, 297–302.
    [72]. Park. N. G, Kang. M G, Kwang. S. R. Photovoltaic characteristics of dye-sensitized surface-modified nanocrystalline SnO2 solar cells [J]. Journal of Photochemistry andPhotobiology A: Chemistry, 2004, 161, 105–110.
    [73]. Weon. P T, Kozo. Inoue. Eosin Y-sensitized nanostructured SnO2/TiO2 solar cells [J]. Materials Letters, 2003, 57, 1508-1513.
    [74]. Bandara. J, Divarathne C. M, Nanayakkara S. D. Fabrication of n–pjunction electrodes made of n-type SnO2 and p-type NiO for control of charge recombination in dye sensitized solar cells [J]. Solar Energy Materials & Solar Cells, 2004, 81, 429–437.
    [75]. Bandara. J, Divarathne. C. M, Nanayakkara. S. D. Corrigendum to ‘‘Fabrication of n–p junction electrodes made of n-type SnO2 and p-type NiO for control of charge recombination in dye-sensitized solar cells [J] Solar Energy Materials & Solar Cells,2005,85,141-142.
    [76]. Chappel. S, Zaban. A. Nanoporous SnO2 electrodes for dye-sensitized solar cells: improved cell performance by the synthesis of 18nm SnO2 colloids Solar [J]. Energy Materials & Solar Cells, 2002, 71, 141-152.
    [77]. Weon. P. T, Kozo I, Jae. H. O. Ruthenium dye-sensitized SnO2/TiO2 coupled solar cells [J]. Solar Energy Materials & Solar Cells, 2002, 71, 553-557.
    [78]. Weon. P. T. Photoelectrochemical properties of ruthenium dye-sensitized nanocrystalline SnO2:TiO2 solar cells [J]. Solar Energy Materials & Solar Cells, 2003, 65, 66-73.
    [79]. Richard. D. L, Fessenden. W, Gordon. L. H and Prashant. V. Kamat. Dye Capped Semiconductor Nanoclusters. Role of Back Electron Transfer in the Photosensitization of SnO2 Nanocrystallites with Cresyl Violet Aggregates [J]. J Phys Chem B, 1997, 101, 2583-2590.
    [80]. 朱归胜,徐华蕊,廖春图. 单分散纳米氧化铟锡粉末的水热合成 [J] 无机材料学报,2005,20(2),890-897.
    [81]. 高红旭,赵凤起,罗阳. 纳米复合氧化物CuO/SnO2的制备与结构表征 [J] 无机化学学报,2005,8,235-240.
    [82]. Peartona. S. J, Norton. D. P, Ipae. K. Recent progress in processing and properties of ZnO [J]. Progress in Materials Science, 2005, 50, 293-340.
    [83]. Zhang. J, Sun. L. D, Yin J. L. Control of ZnO Morphology via a Simple Solution Route [J]. Chem Mater, 2002, 14, 4172-4177.
    [84]. Li Q. C, Vageesh. K, Li. Y. Fabrication of ZnO Nanorods and Nanotubes in Aqueous Solutions [J]. Chem Mater 2005, 17, 1001-1006.
    [85]. Liu. X, Alexey. Y, Wu. X. H. Effect of ZnO Nanostructures on 2-Dimensional Random Lasing Properties [J]. Chem Mater 2004, 16, 5414-5419.
    [86]. Pavle, Radovanovic. V, Nick. S. Norberg Colloidal Transition-Metal-Doped ZnO Quantum Dots [J].Jam.chem.soc, 2002, 124, 15192-15193.
    [87]. Liu B and Zeng H C. Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50nm [J]. J.am chem. soc, 2003, 125, 4430-4431.
    [88]. Giuseppe Marc?, Vincenzo Augugliaro, Mar?a. Preparation Characterization and Photocatalytic Activity of Polycrystalline ZnO/TiO2 Systems Surface and Bulk Characterization [J]. J. Phys. Chem. B, 2001, 105, 1026-1032.
    [89]. Geonel Rodrguez-Gattorno, Patricia Santiago-Jacinto. Novel Synthesis Pathway of ZnO Nanoparticles from the Spontaneous Hydrolysis of Zinc Carboxylate Salts [J]. J. Phy. Chem B, 2003, 107, 12597-12604.
    [90]. Zhang. H, Deren. Y, Yujie Ji. Low Temperature Synthesis of Flowerlike ZnO Nanostructures by Cetyltrimethylammonium Bromide Assisted Hydrothermal Process [J]. J. Phys. Chem B, 2004, 108, 3955-3958.
    [91]. Kong. X. Y, Ding. Y and Wang. Z. L. Metal-Semiconductor Zn-ZnO Core-Shell Nanobelts and Nanotubes [J]. J. Phys. Chem. B, 2004, 108, 570-574.
    [92]. Zhang. Y. S, Wang. L. S, Liu. X. H. Synthesis of Nano/Micro Zinc Oxide Rods and Arrays by Thermal Evaporation Approach on Cylindrical Shape Substrate [J]. J. Phys. Chem. B, 2005, 109, 13091-13093.
    [93]. Zhang. H, Deren. Y, Ma. X. Y and Duanlin Que. Synthesis and Field Emission Characteristics of Bilayered ZnO Nanorod Array Prepared by Chemical Reaction [J]. J. Phys. Chem. B, 2005, 109, 17055-17059.
    [94]. Miyauchi. M, Shimai. A and Tsuru. Y. Photoinduced Hydrophilicity of Heteroepitaxially Grown ZnO Thin Films [J]. J. Phys. Chem. B, 2005, 109, 13307-13311.
    [95]. Zhang. H, Deren. Y, Ma. X. Y. Straight and Thin ZnO Nanorods: Hectogram-Scale Synthesis at Low Temperature and Cathodoluminescence [J]. J. Phys. Chem. B, 2006,110, 827-830.
    [96]. Li. J. H, Zhao. D. X, Meng. X. Q. Enhanced Ultraviolet Emission from ZnS-Coated ZnO Nanowires Fabricated by Self-Assembling Method [J]. J. Phys. Chem. B, 2006, 110, 14685-14687.
    [97]. Sun. Y, Jason. D. R and Michael. N. R. A shfold Mechanism of ZnO Nanotube Growth by Hydrothermal Methods on ZnO Film-Coated Si Substrates [J]. J. Phys. Chem. B, 2006, 110, 15186-15192.
    [98]. Elena Galoppini and Jonathan Rochford. Fast Electron Transport in Metal Organic Vapor Deposition Grown Dye-sensitized ZnO Nanorod Solar Cells [J]. J. Phys. Chem B C, 16188-16194.
    [99]. Xia. H. L and Tang F. Q. Surface Synthesis of Zinc Oxide Nanoparticles on Silica Spheres: Preparation and Characterization [J]. J. Phys. Chem. B, 2003, 107, 9175-9178.
    [100]. Wang. D. B and Song. C. X. Controllable Synthesis of ZnO Nanorod and Prism Arrays in a Large Area [J]. J. Phys. Chem. B, 2005, 109, 12697-12700.
    [101]. Punniamoorthy Ravirajan, Ana. M, Peiro Mohammad. K. Nazeeruddin Hybrid Polymer/Zinc Oxide Photovoltaic Devices with Vertically Oriented ZnO Nanorods and an Amphiphilic Molecular Interface Layer [J]. J. Phys. Chem. B, 2006, 110, 7635-7639.
    [102]. Liu. T. Y, Liao. H. C, Lin. C. C. Biofunctional ZnO Nanorod Arrays Grown on Flexible Substrates [J]. Langmuir, 2006, 22, 5804-5809.
    [103]. Daisuke Kaneko, Hideki Shouji, Takeshi Kawai. Synthesis of ZnO Particles by Ammonia-Catalyzed Hydrolysis of Zinc Dibutoxide in Nonionic Reversed Micelles [J]. Langmuir, 2000, 16, 4086-4089.
    [104]. Roberta Brayner, Roselyne Ferrari-Iliou, Nicolas Brivois. Toxicological Impact Studies Based on Escherichia coli Bacteria in Ultrafine ZnO Nanoparticles Colloidal Medium [J]. Nano Lett, 2006, 6(4), 866-870.
    [105]. 周富荣,郭晓洁,匡亚琴. 反胶束微乳液法制备纳米ZnO [J] 应用化工,2005,34(11),346-252.
    [106]. 司晓燕,卫英慧,胡兰青. 纳米ZnO粉体的制备及其表征 [J] 太原科技大学学报(自然科学版),2005,26,2-7.
    [107]. 杨卉,张幼珠. 纳米氧化锌的分散性研究 [J] 印染助剂,2005,22:246-253
    [108]. 兰伟,朋兴平,刘雪芹,何志巍,王印月. 溶胶凝胶法制备ZnO薄膜及性质研究 [J] 兰州大学学报(自然科学版).2006,42(1),37-45.
    [109]. 李莹,王英连. 溶胶-凝胶法制备纳米ZnO薄膜及其光催化性能 [J].人工晶体学报,2005,34(4),243-251.
    [110]. 宋词,杭寅,张昌龙. 水热法ZnO晶体特征研究 [J] 人工晶体学报,2005,34(1),144-152.
    [111]. 谷坤明,汤皎宁,李均钦,杨钦鹏,李翠华. 退火温度对sol-gel制备的ZnO薄膜的结构影响 [J] 功能材料与器件学报,2005,11(3),345-351.
    [112]. 洪若瑜,沈智豪. 微波均相沉淀法制备纳米 ZnO 及其光催化性能 [J] 过程工程学报,2005,5(1),162-170.
    [113]. 唐利斌,郑云,吴 刚,姬荣斌,宋炳文,黄晖. 一种新型溶胶-凝胶方法制备ZnO薄膜的椭圆偏振光谱研究 [J] 红外技术,2006,28(1),263-271.
    [114]. Hoyert. P and WeUer. H. Potential-Dependent Electron Injection in Nanoporous Colloidal ZnO Films [J]. J. Phys. Chem, 1995, 99, 14096-14100.
    [115]. 李瑛,冯士维,杨集,张跃宗. ZnO单晶薄膜光电响应特 [J] 半导体学报,2006,27(1),261-270.
    [116]. 华素坤,仲维卓. 热液条件下 ZnO晶体形成那个机理 [J] 报人工晶体学报1994,23(3),133-141.
    [117]. 陈建刚,郭常新,张琳丽,胡俊涛. 一步溶液法制备ZnO亚微米晶体棒及其发光性能 [J] 发光学报,2006,27(1),235-241.
    [118]. Wu. L. I, Shi Y. H and Wei. H. Y. Synthesis of ZnO nanorods and their optical absorption in visible-light region [J]. Rare metals, 2006, 25(1), 68-73.
    [119]. 王丹丹,杨丽丽,孔翠兰,刘文彦,郎集会,杨景海. ZnO纳米线的制备及结构表征 [J] 吉林师范大学学报(自然科学版),2006,1,336-341.
    [120]. 林铁军,郭建,丁书龙,李新宇,董敬桃. ZnO微纳米球的生长机制 [J] 无机化学学报,2006,4,136-140.
    [121]. 丁书龙,郭建,颜晓红,宣凯,林铁军. 定向氧化锌纳米线的制备和生长机理的研究 [J] 材料导报,2005,19(4),437-441.
    [122]. 李梅,孙海燕,刘秀琳,徐红燕,王成建,崔得良,蒋民华. 共溶剂对ZnO多孔纳米块体孔径均匀性的影响 [J] 高等学校化学学报,2006,27,237-243.
    [123]. Hao. Y, et al. A photo-electro-chemical solar cell based on ZnO dye polypyrrole electrode as photo anode [J]. Solar Energy Materials & Solar Cells, 2000, 60, 349-359.
    [124]. Todd, A. Heimer, Samuel, et al. An Acetylacetonate Based Semiconductor Sensitizer Linkage [J]. Inorg. Chem. 1996, 35, 5319-5324.
    [125]. Reza Dabestani, Allen, J. Bard, et al. Sensitization of Titanium Dioxide and Strontium Titanate Electrodes by Ruthenium (II) Trls(2, 2’-bipyridine-4,4’-dicar boxylic acid) and Zinc Tetrakis(4-carboxyphenyl) porphyrin:An Evaluation of Sensitization Efficiency for Component Photoelectrodes in a Muitipanei Device [J]. J. Phys. Chem, 1988, 92, 1872-1878.
    [126]. Rensmo. H, Keis. K, Lindstro1m. H, So1dergren. S. High Light-to-Energy Conversion Efficiencies for Solar Cells Based on Nanostructured ZnO Electrodes [J]. J. Phys. Chem. B, 1997, 101, 2598-2601.
    [127]. Donald. J, Fitzmaurice and Heinz Frei. Transient Near-Infrared Spectroscopy of Visible Light Sensitized Oxidation of I- at Colloidal TiO2 [J]. Langmuir 1991, 7, 1129-1137.
    [128]. Prashant. V, Kamat, Idriss Bedja, et al. Photosensitization of Nanocrystalline Semiconductor Films Modulation of Electron Transfer between Excited Ruthenium Complex and SnO2 Nanocrystallites with an Externally Applied Bias [J]. J. Phys. Chem, 1996, 100, 4900-4908.
    [129]. Wang. Z. S, Huang. C. H, Huang. Y. Y. A Highly Efficient Solar Cell Made from a Dye-Modified ZnO-Covered TiO2 Nanoporous Electrode [J]. Chem Mater. 2001, 13, 678-682.
    [130]. 鲁厚芳,等. 光敏染料在Gratzel型太阳能电池上的应用及其研究进展 [J] 化学试剂,2005,27(1),11-15.
    [131]. Seigo Ito, Yuki Makari, Takayuki Kitamura. Fabrication and characterization of mesoporous SnO2/ZnO composite electrodes for efficient dye solar cells [J]. J Mater Chem, 2004, 14, 385–390.
    [132]. Liu. Z. Y, Pan. K, Zhang. Q. L. The performances of the mercurochrome-sensitizedcomposite semiconductor photoelectrochemical cells based on TiO2/SnO2 and ZnO/SnO2 composites [J]. Thin Solid Films, 2004, 291-297.
    [133]. Hayashia. Y, Kondoa. K, Muraia. K. ZnO-SnO2 transparent conductive films deposited by opposed target sputtering system of ZnO and SnO2 targets [J]. Vacuum, 2004, 74, 607-611.
    [134]. Park. N. G, Kang. M. G, Kim. K. M. Morphological and Photo electro chemical Characterization of Core-Shell Nanoparticle Films for Dye-Sensitized SolarCells: ZnO Type Shell on SnO2 and TiO2 Cores [J]. Langmuir, 2004, 20, 4246-4253.
    [135]. Yu.W. D, Li. X. M, Gao. X. D. Large-Scale Synthesis and Microstructure of SnO2 Nanowires Coated with Quantum-Sized ZnO Nanocrystals on a Mesh Substrate [J]. J. Phys. Chem. B, 2005, 109, 17078-17081.
    [136]. Tennakone. K, Kumara. G. R. A, Kottegoda. I. R. M. An efficient dye sensitized photoelectrochemical solar cell made from oxides of tin and zinc [J]. Chem. Commun, 1999, 15-16.
    [137]. Tennakone. K, Senadeera. G. K. R, Perera. V. P. S. Dye Sensitized Photo electro chemical Cells Based on Porous SnO2/ZnO Composite and TiO2 Films with a Polymer Electrolyte [J]. Chem. Mater, 1999, 11, 2474-2477.
    [138]. 李朝林,秋菊. SnO2-ZnO复合膜特性研究 [J] 传感器技术 2005,10(24),12-18
    [139]. 黄晓东 白守礼 李殿卿. ZnO-SnO2纳米复合氧化物的制备、表征及其气敏性质的研究 [J] 无机化学学报,2005,(21)8,235-243.
    [140]. 黄树来,马瑾,刘晓梅. ZnO-SnO2 透明导电膜的低温制备及性质 [J] 半导体学报2004,25(1),123-129.
    [141]. Karin Keis, Eva Magnusson, Henrik Lindstrom. A 5% efficient photoelectrochemical solar cell based on nanostructured ZnO electrodes [J]. Solar Energy Materials & Solar Cells, 2002, 73, 51-58.
    [142]. 马灵芝,唐祯安,王岚,孟霜鹤. 纳米晶体SnO、ZnO的低温热容及热稳定性研究 [J] 功能材料,2001,32(6),245-253.
    [143]. Eric. A, Meulenkamp. Electron Transport in Nanoparticulate ZnO Films [J]. J. Phys. Chem. B, 1999, 103, 7831-7838.
    [144]. 牟柏林,侯天意,霍丽娟,孙申美. 天然沸石负载ZnO/SnO2复合半导体的光催化活性 [J] 硅酸盐学报,2005,(33)11,143-159.
    [145]. Daisuke Niinobe, Yuki Makari, Takayuki Kitamura, Origin of Enhancement in Open-Circuit Voltage by Adding ZnO to Nanocrystalline SnO2 in Dye-Sensitized Solar Cells [J]. J. Phys. Chem. B, 2005, 109, 17892-17900.
    [146]. Mauro Epifani, Jordi Arbiol, Mariano. J, Synthesis of SnO2 and ZnO Colloidal Nanocrystals from the Decomposition of Tin (II) 2-Ethylhexanoate and Zinc (II) 2-Ethylhexanoate [J]. Chem. Mater. 2005, 17, 6468-6472.
    [147]. Palmer. G. B and Poeppelmeier. K. R. Conductivity and Transparency of ZnO/SnO2-Cosubstituted In2O3 [J]. Chem. Mater, 1997, 9, 3121-3126.
    [148]. Y?ld?r?m. T, et al. Wide-bandgap modification of polycrystalline ZnO using Sn component on the basis of developing quantum-well hetero-structure [J]. Physica. E, 2005, 27, 290-295.
    [149]. Kuang. Q, Jiang. Z. Y, Xie. Z. X. Tailoring the Optical Property by a Three-Dimensional Epitaxial Heterostructure: A Case of ZnO/SnO2 [J]. J. Am. Chem. soc. 2005, 127, 11777-11784.
    [150]. John. B, Asbury, Encai Hao, Yongqiang Wang. Ultrafast Electron Transfer Dynamics from Molecular Adsorbates to Semiconductor Nanocrystalline Thin Films [J]. J. Phys. Chem. B, 2001, 105, 4545-4557.
    [151]. Ryuzi. K, Akihiro. F, Toshitada Y. Efficiencies of Electron Injection from Excited N3 Dye into Nanocrystalline Semiconductor (ZrO2, TiO2, ZnO, Nb2O5, SnO2, In2O3) Films [J], J Phys Chem B. 2004, 108, 4818-4822.
    [152]. Xin. A, Neil. A, Anderson, Electron Injection Dynamics of Ru Polypyridyl Complexes on SnO2 Nanocrystalline Thin Films [J]. J. Phys. Chem. B, 2005, 109, 7088-7094.
    [153]. Han. X. H, Wang. G. Z, Jie. J. S. Controllable Synthesis and Optical Properties of Novel ZnO Cone Arrays via Vapor Transport at Low Temperature [J]. J. Phys. Chem. B, 2005, 109, 2733-2738.
    [154]. Richard, W. Fessenden and Prashant V. Kamat, Rate Constants for Charge Injection from Excited Sensitizer into SnO2, ZnO, and TiO2 Semiconductor Nanocrystallites [J]. J. Phys. Chem, 1995, 99, 12902-12906.
    [155]. Tennakone. K, Kumare. G. R. A, Kottegoda. I. R. M, et al. An efficient dye-sensitized photoelectrochemical solar cell made from oxides of tin and zinc [J]. Chem. Commun, 1999, 15-16.
    [156]. Hoyer. P, Weller. H. Potential-Dependent Electron Injection in Nanoporous Colloidal ZnO Films [J]. J. Phys. Chem, 1995, 99, 14096-14100.
    [157]. Tennakone. K, Kumare. G. R. A, Kottegoda. I. R. M, et al. Dye-Sensitized Photoelectrochemical Cells Based on Porous SnO2/ZnO Composite and TiO2 Films with a Polymer Electrolyte [J]. Chem. mater, 1999, 11, 2474-2477.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700