反胶束体系中铁氧体纳米粒子的合成及表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁氧体磁性纳米粒子不仅在基本理论上具有特殊的意义,而且在实际应用中有着广泛的用途,因此在过去的十年中,这一领域的研究工作获得广泛重视。
     反胶束是一种油包水型胶体分散体系。表面活性剂会在非水溶剂中自发排列形成纳米尺寸的“水池”,这为纳米粒子的制备提供了优良的微反应空间。由于反胶束法制备纳米粒子具有粒径均匀,大小可控等优点,在铁氧体纳米粒子的制备方面具有广阔的发展前景。
     本文分别采用通常被认为最佳的阴离子表面活性剂——二(2-乙基己基)丁二酸酯磺酸钠(AOT),和我们课题组自己设计合成的新型阴离子表面活性剂——二(2-乙基己基)羟基丁二酸酯磺酸钠(AHOT)所构成的反胶束体系为微反应器,成功制备了MnFe_2O_4纳米粒子、CoFe_2O_4纳米粒子和ZnFe_2O_4纳米粒子;还以阳离子型表面活性剂——十六烷基三甲基溴化铵(CTAB)构成的反胶束体系为微反应器,成功制备了ZnFe_2O_4纳米粒子;并探讨了表面活性剂的种类和结构对反胶束法制备铁氧体纳米粒子反应的影响。
     结果表明,在铁氧体纳米粒子的合成方面,阴离子型表面活性剂优于阳离子型表面活性剂;对于两种阴离子型表面活性剂,AOT和AHOT在产物形态和制备过程等方面表现出各自的优势。
In the past decade, many investigations have been performed on the magnetic nanoparticles of spinel ferrites. It has not only the great potentials for basic science, but also for the applications in materials.
    Reverse micelles are water-in-oil microemlsions. The "water pool" in reverse micelle is formed by surfactant spontaneously arraying in non-aqueous solvent. This provides an excellent micro-reactor for the preparation of nanoparticles. It has many advantages, such as the particles size is well distributed, and its diameter can be well controlled, etc. Because of this virtue, reverse micelle shows broad prospects in the preparation of ferrite nanoparticles.
    hi this work, the syntheses of MnFe2O4 nanoparticles, CoFe2O4 nanoparticles and ZnFe2O4 nanoparticles are prepared by the reverse micelle method, these preparations employed reverse micelles formed with anionic surfactant bis-(2-ethylhexyl) sodium sulosuccinate(AOT), which is considered the most effective surfactant, and another anionic surfactant bis-(2-ethylhexyl) sodium hydroxy sulosuccinate(AHOT), which is a new surfactant, and was synthesized by our own research group. We also synthesized ZnFe2O4 nanoparticles using the cationic surfactant cetyltrimethylammonium bromide (CTAB). Finally, we discussed the effect of surfactant on the fabrication of ferrite nanoparticles by reverse micelles.
    At last we draw the conclusion that for the synthesis of ferrite nanoparticles, anionic surfactants are superior to cationic surfactants. By discussing the relationship of the two anionic surfactants: AOT and AHOT, we get the point that they expressed advantages in synthesis progress and the final product structure respectively.
引文
[1]章综,李国栋,我们生活在磁的世界里——物质的磁性和应用,清华大学出版社,暨南大学出版社,2000
    [2]宛德福,马兴隆,磁性物理学,电子科技大学出版社,1994
    [3]李国栋,当代磁学,中国科学技术大学出版社,1999
    [4]李荫远,李国栋,铁氧体物理学,科学出版社,1978
    [5]都有为,磁性材料进展,物理,Vol.29,No.6,2000,323-332
    [6]张敬畅,刘慷,曹维良,纳米粒子的特性、应用及制备方法石油化工高等学校学报,Vol.14,No.2,2001,21-26
    [7]张立德,纳米材料,化学工业出版社,2001
    [8]Charles J. O'Connor, Vladimir Kolesnichenko, Everett Carpenter, et al.. Fabrication and properties of magnetic particles with nanometer dimensions. Synthetic Metals 2001, 122:547-557
    [9]鹿向军,磁领域对纳米技术的应用,技术文摘,
    [10]邱星屏,四氧化三铁磁性纳米粒子的合成及表征,厦门大学学报,Vol.38,No.5,1999
    [11]周艳琼,白木,纳米磁性材料,Information Recording Materials Vol.2,No.3,2001:32-35
    [12]李国栋,1997-1998年国际磁学进展综述,磁学材料与器件 Vol.1 No.1,1999
    [13]李国栋,1999-2000年国际磁学进展综述,J. Magn Mater Devices, Vol.32,No.2,2001,28-33
    [14]Charles J. O'Connor, Candace T. Seip, Everett E. Carpenter, et al.. Synthesis and Reactivity of Nanophase Ferrites in Reverse Micellar Solutions. Nanostructured Materials, Vol. 12, 1999, 65-70
    [15]Charles J. O'Connor, Vladimir Kolesnichenko, Everett Carpenter, et
    
    al.. Fabrication and properties of magnetic particles with nanometer dimensions. Synthetic Metals. 122, 2001, 547-557
    [16]Chao Liu, Bingsuo Zou, Adam J. Rondinone, et al.. Reverse Micelle Synthesis and Characterization of Superparamagnetic MnFe_2O_4 Spinel Ferrite Nanocrystallites. The Journal of Physical Chemistry B. Vol. 104, Number 6, Feb. 17, 2000, 1141-1145
    [17]钟文定,铁磁学,科学出版社,1987
    [18]Dong-Hwang Chen, Yuh-Yuh Chen. Synthesis of Strontium Ferrite Ultrafine Particles Using Microemulsion Processing. Journal of Colloid and Interface science 236, 2001, 41-46
    [19]C.-H. Yan, Z. -G. Xu, F. -X. Cheng, et al.. Nanophased CoFe_2 O_4 prepared by combustion method. Solid Satate Communications. 111 1999, 287-291
    [20]I. Mohai, J. Sz(?)pv(?)lgyi, I. Bert(?)ti, M. Mohai, et al.. Thermal plasma synthesis of zinc ferrite nanopowders. Solid State Ionics. 141-142 (2001) 163-168
    [21]F. J. Guaita, H. Beltr(?)n, E. Cordoncillo, et al.. Influence of the Precursors on the Formation and the Properties of ZnFe_2O_4. Journal of the European Ceramic Society 19 (1999) 363-372
    [22]姜继森,高濂,郭景坤等,固相法合成Li铁氧体纳米粒子,无机材料学报,Vol.14,No.3,1999
    [23]Fuxiang Cheng, Zuoyan Peng, Chunsheng Liao, Zhigang Xu, Song Gao, Chunhua Yan, Chemical Synthesis and Magnetic Study of Nanocrystalline Thin Films of Cobalt Spinel Ferrites. Solid State Communications. Vol. 107, NO. 9, 1998, 471-476
    [24]Y. Okano, T. Nakamura. Hydrothermal synthesis of aluminum bearing magnetite particles. Colloids and Surfaces. 139 (1998) 297-285
    [25]I. Mohai, J. Sz(?)pv(?)lgyi, I. Bert(?)ti, M. Mohai, et al.. Thermal plasma
    
    synthesis of zinc ferrite nanopowders. Solid State Ionics. 141-142 (2001) 163-168
    [26]S. D. Sartale, G. D. Bagde, C. D. Lokhande, et al.. Room temperature synthesis of nanocrystalline ferrite (MFe_2O_4, M = Cu, Co and Ni) thin films using novel electrochemical route. Applied Surface Science 182 (2001) 366-371
    [27]Shafi K. V. P. M., Koltypin Y., Gedanken A. Sonochemical Preparation of Nanosized Amorphous NiFe_2O_4 Particles. J.Phys. Chem. B 1997, 101, 6409-6414
    [28]S. Komarneni, M. C. D'Arrigo, C. Leonelli, et al.. Microwave-Hydrothermal Synthesis of Nanophase Ferrites. J. Am. Ceram. Soc, 81(11), 1998, 3041-3043
    [29]刘辉,魏雨,张艳峰等,纳米铁酸盐的制备研究,无机材料学报,Vol.17,No.1,Jan.2002,56-60
    [30]Xinyong Li, Gongxuan Lu, Shuben Li. Synthesis and characterization of fine particle ZnFe_2O_4 powders by a low temperature method. Journal of Alloys and Compounds 235 (1996) 150-155
    [31]Adam J. Rondinone, Anna C. S. Samia, and Z. John Zhang. Superparamagnetic Relaxation and Magnetic Anisotropy Energy Distribution in CoFe_2O_4 Spinel Ferrite Nanocrystallites. J. Phys. Chem. B 1999, 103, 6876-6880
    [32]曹维良,张敬畅,石锦华,于定新,超微粒子氧化铁的制备研究,应用科学学报,2000,18(2):79-82
    [33]张敬畅,刘慷,曹维良,纳米粒子的特性、应用及制备方法石油化工高等学校学报,Vol.14,No 2,2001,21-26
    [34]R. H. Kodama and A. E. Berkowitz. Surface Spin Disorder in NiFe_2O_4 Nanoparticles. Phys. Rev. Lett. Vol. 77, No. 2, 1996, 394
    [35]Shu-Hong Yu, Takahiro Fujino, Masahiro Yoshimura. Hydrothermal
    
    synthesis of ZnFe_2O_4 ultrafine particles with high magnetization. Journal of Magnetism and Magnetic Materials, 2002
    [36]车平,陈博,甘树才,铁氧体磁性材料应用的进展及合成方法,世界地质,Vol.19,No.2,2000
    [37]Chao Liu and Z. John Zhang. Size-Dependent Superparamagnetic Properties of Mn Spinel Ferrite Nanoparticles Synthesized from Reverse Micelles. Chem. Mater. 2001, 13, 2092-2096
    [38]Luisi P. L., Giomini M., Pileni M. P., et al.. Reverse micelles as hosts for proteins and small molecules. Biochimica et Biophysica Acta. 1988, 947:209~246
    [39]陆强,李宽宏,施亚钧.用反胶束萃取法提取与分离蛋白质和酶,生物工程进展,1992,12(6):12~16
    [40]Maritinek K., Levashov A. V., Klyachko N. L., et al.. The principles of enzyme stabilization Ⅵ~catalysis by water~soluble enzyme entrapped into reverse micelles of surfactants in organic solvents [J]. Biochimica et Biophysica Acta. 1981,657:277~294
    [41]Grigolini P., Maestro M., A two-state stochastic model for the dynamics of constrained water in reversed micelles. Chem. Phys. Lett., 1986, 127(3): 248
    [42]张立德,牟季美,纳米材料和纳米结构,2001,北京:科学出版社
    [43]Iarur A.J., Ying J.Y.. Reversr microemulsion synthesis of nanostructured complex oxides for catalytic combustion, Nature, 2000, 403:65~67
    [44]Chen D.H., Wang C.C., Huang T.C., Preparation of palladium ultrafine particles in reverse micelles. Journal of Colloid and Interface Science. 1999, 210:123~129
    [45]Rees G.D., Evans-Gowing R., Hammond S.J., et al.. Formation and morphology of calcium sulfate nanoparticle and nanowires in
    
    water-in-oil microemulsions. Langmuir[J]. 1999, 15: 1993~2002
    [46]Stamatis H., Xenakis A., Kolisis F. N.. Bioorganic Reactions in microemulsions: the case of lipases. Biotechnology Advances, 1999, 17:293~318
    [47]Prazeres D.M.F., Garcia F.A.P., Cabral J.M.S.. Kinetics and stability of a chromolacterium viscosum lipase in reversed micellar and aqueous media [J]. J. Chem. Tech. Biotechnol., 1992, 53:159~164
    [48]Carvalho C.M.L., Cabral J.M.S.. Reverse micelles as reaction media for lipase. Biochimie. 2000, 82:1063~1085
    [49]虞炳钧,发酵产物后处理技术新动态.微生物学通报 1992,19(1):39~44
    [50]Marcozzi G., Correa N., Luisi P. L., et al.. Protein extraction by reverse micelles. A study of the factors affecting the forward and backward transfer of α-chymotrypsin and its activity. Biotechnology and Bioengineering. 1991, 38: 1239~1246
    [51]Wang W.H., Weber M.E., Vera J.H.. Reverse micellar extraction of amino acids using dioctyldimethyldmmoniun chloride. Ind. Eng. Chem. Res. 1995, 34:599~606
    [52]Krieger N., Taipa M.A., Roquel M., et al.. Purification of the penicillium citrimum lipase using AOT reversed micelles[J]. J. Chem. Tech. Biotechnol.. 1997, 69(1): 77~85
    [53]Goto M., Ono T., Nakashio F., et al.. Design of surfactants suitable for protein extraction by reversed micelles. Biotechnology and Bioengineering. 1997, 54(1): 26~32
    [54]Lisiecki I, Pileni M P. Sythesis of copper metallic clusters using reverse micelles as microreactors, Progr. Colloid Polym. Soc., 1993,93:1
    [55]成国祥,沈锋,张仁伯等,反相胶束微反映器及其制备纳米微粒
    
    的研究进展,化学通报,3:14,1997
    [56]孙志刚,胡黎明,气相合成纳米颗粒的制备技术进展,化工进展,1997,(21):21-24
    [57]杨光成,丁建东,宋洪昌,反胶团微乳液制备纳米粒子的研究进展,淮海工学院学报,Vol.10,No 2,2001,27-31
    [58]Cheonyu Cho and Petter T. Lansbury, Jr. Synthesis of Twi Bioydic Surfactonts which Form Reversed Micelles Capabie of Selective Protein Extraction. J. Org. Chem. 1996, 61:1920~1921
    [59]赵国玺,表面活性剂物理化学,北京:北京大学出版社,1991,194-406
    [60]Zhou Li(周莉), Hao Fangqin(郝放琴), Liu Bo(刘波), 功能高分子学报 Journal of Functional Polymers, 2001, 14(1): 100~104
    [61]Magid L., Walde P., Zampieri G., et al.. Research report on proteins in reverse micelles. Structural aspect and enzymology. Colloids and Surfaces. 1988, 30(1): 193~207
    [62]Goto M., Ono T., Nakashio F., et al.. Design of surfactants suitable for protein extraction by reversed micelles. Biotechnology and Bioengineering. 1997, 54(1): 26~32
    [63]陆强,李宽宏,施亚钧,反胶束萃取蛋白质技术的新进展.化工进展[J].1995,51(1):25~28
    [64]Chang C L., Fogler H S. Controlled formation of silica particles from tetrethyl orthosilicate in nonionic water- in -oil microemulsions. Langmuir, 1997, 13:3 397
    [65]陈龙武,甘礼华,岳天仪等,微乳液反应法制备α-Fe_2O_3超细粒子的研究,物理化学学报,1994,10(8):751
    [66]Pileni M P, Lisiccki I, Motte L, et al.. Sythesis "in situ" of nanoparticles in reverse micelles as microreactors. J Am Polym Sci, 1993
    
    
    [67]Hirai Takayuki, Tsukaki Yoritaka, Sato Kiroshi, et al. Mechanism of formation of lead sulfide ultrafine particles in reverse micelle systems. J. Chem. Eng. Jpn, 1995, 28(4): 468-473
    [68]Takayuki Hirai, Sato Kiroshi, Komasawa Isao, er al.. Mechanism of formation of CdS and ZnS ultrafine particles in reverse micelles. Ind Eng Chem Res, 1994,33(12): 3262-3266
    [69]冯琳,袁连山,褚莹,反胶束法制备纳米微粒,东北师大学报,1999,3:52-58
    [70]贾志谦,刘忠洲,液相沉淀法制备纳米粒子的过程特征和原理,化学工程,Vol.30,No.1,2002,38-41
    [71]Sato H., Asaji N., Komasawa I., A population balance approach for particle coagulation in reverse micelles. Ind. Eng. Chem. Res. 2000, 39:328~334
    [72]Rajdip B., Kumar R., Gandhi K. S.. Simulation of precipitation reactions in reverse micelle. Langmuir. 2000, 16:7139~7149
    [73]Charles J. O'Connor, Candace T. Seip, Everett E, et al.. Synthesis and Reactivity of Nanophase Ferrites in Reverse Micellar Solutions. Nanostructured Materials. Vol. 12, 1999, 65-70
    [74]Charles J. O'Connor, Vladimir Kolesnichenko, Everett Carpenter, et al.. Fabrication and properties of magnetic particles with nanometer dimensions. Synthetic Metals. 122 (2001) 547-557
    [75]N. moumen, p. Veillet, M. P. Pileni. Controlled preparation of nanosize cobalt ferrite magnetic particles. J. Magn. Magn. Mater. Vol. 149, 1995, 67-71
    [76]N. Moumen and M. P. Pileni. Control of the size of Cobalt Ferrite Magnetic Fluid. J. Phys. Chem. 1996, 100, 1867-1873.
    [77]J. F. Hochepied, P. Bonville, and M. P. Pileni. Nonstoichiometric Zinc Ferrite Nanocrystals: Syntheses and Unusual Magnatic Properties. J.
    
    Phys. Chem. B 2000, 104, 905-912
    [78]Yuan Zhihao, Zhang Lide. Synthesis and Structural Characterization of Capped ZnFe_2O_4 Nanoparticles. Materials Research Bulletin. Vol. 33, No. 11, 1998, 1587-1592
    [79]Shu-Hong Yu, Takahiro Fujino, Masahiro Yoshimura. Hydrothermal synthesis of ZnFe_2O_4 ultrafine particles with high magnetization. Journal of Magnetism and Magnetic Materials, 2002
    [80]Chao Liu and Z. John Zhang. Size-Dependent Superparamagnetic Properties of Mn Spinel Ferrite Nanoparticles Synthesized from Reverse Micelles. Chem. Mater. 2001, 13, 2092-2096
    [81]孟繁涛,东北师范大学硕士学位论文,1998年
    [82]阎云,褚莹,林毅等,新型磷酸酯表面活性剂的合成、表征及其反胶束体系对蛋白质的提取,高等学校化学学报,Vol.23,No.10,2000
    [83]林毅,东北师范大学硕士学位论文,2002年
    [84]冯琳,东北师范大学硕士学位论文,2000年
    [85]陈悦,东北师范大学硕士学位论文,2001年
    [86]刘洪成,东北师范大学硕士学位论文,2002年
    [87]覃兴华,卢迪芬,反胶团微乳液法制备超微细颗粒的研究进展,化工新型材料,Vol.6,No.2,1998,27-28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700