图像盲源分离的多尺度几何分析方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
图像在采集、使用和保存等过程中会出现污损、杂斑、噪声和叠加等退化现象,退化图像可以认为是由不同的、相互独立的图像信号经未知的混合过程(混合方式)形成的混合图像,对混合图像的分离过程与盲源分离(Blind Source Separation, BSS)问题模型的假设是一致的。为此,BSS技术在图像处理方面有着广阔的应用前景,是图像处理的有力工具。
     与此同时,当前不同研究领域的学者针对信号处理提出了图像多尺度几何分析理论(Multiscale Geometry Analysis, MGA)这一新的数学工具,其能稀疏表示图像。将多尺度几何分析理论应用于图像盲源分离,丰富了图像盲源分离算法,有效地推进盲源分离技术的实际应用。
     为此,本论文紧密围绕当前盲源分离方法研究的热点和难点,充分利用图像多尺度几何分析理论,提出了图像盲源分离的多尺度几何分析方法,并重点研究基于第二代Curvelet多尺度几何分析的图像盲源分离方法。具体研究内容及取得的成果如下:
     1.针对实际接收到的图像信号不稀疏的一般情况,研究图像多尺度几何分析理论。着重研究第二代Curvelet多尺度几何分析,对信号进行稀疏表示。通过仿真实验对Curvelet的分解过程进行了分析,表明Curvelet能达到对图像信号最稀疏的表示。
     2.针对适定情况,提出了基于Curvelet多尺度几何分析的图像盲源分离方法。该方法以Curvelet分解后的子图像的峭度作为信号稀疏性判据,选取最稀疏子图像,在稀疏域中实施盲源分离。仿真实验证明该方法可行和有效,并很大程度上提高了盲源分离算法的收敛速度和分离精度。
     3.针对图像盲源分离的初始化问题,提出了基于Curvelet多尺度几何分析的盲源分离初始化方法。该方法利用Curvelet多尺度几何分析后信号的稀疏性特点,采用了C-means聚类方法寻求混合矩阵估计值,把该估计值作为算法初始值。该方法克服了盲源分离算法初始值选取的随意性,避免算法陷入局部最小,提高了分离精度。
     4.针对欠定情况,提出了基于Curvelet多尺度几何分析的欠定-适定联合盲源分离方法。该方法利用稀疏化后信号的一些特性,构造中间混合矩阵,取得预分离信号,把欠定问题转化为适定问题。仿真实验表明,该方法使欠定情况下的盲源分离取得了良好的效果。
     5.针对含噪情况,提出了基于Curvelet多尺度几何分析的含噪图像盲源分离方法。该方法利用Curvelet多尺度几何分析良好的降噪性能,以及Curvelet稀疏化后高频子图像服从拉普拉斯分布的特点,构造了位置相关的自适应数学形态学降噪算子,对含噪混合图像进行降噪预处理,然后采用传统盲源分离算法实施分离。仿真实验表明,该方法取得了良好的分离效果,提高了盲源分离方法对噪声环境的适应性。
     本论文对推进盲源分离技术在图像处理中的实际应用具有重要的研究意义,研究成果可应用于图像增强、图像去噪、图像识别和图像分离等图像处理领域。
In real life, the image degenerate problem surely exists during using and conserving, for example: blurred, parti-colored, noised and mixed, etc. Those degenerated images can be looked as the mixed images by mutually independent images without mixing performance. The image separation processing is in accordance with the model of blind source separation (BSS). Therefore, BSS technology has a wide application prospects in the field of image processing.
     Just like current, scholars in different researching fields have put forward novel ideas and algorithms on account of signal processing, for example: image multiscale geometry analysis (MGA). Images have better sparsity in transform domain. Image sparsity has become a new mathematic tool for BSS, and breathes new vitality into BSS research. BSS algorithms become more and more diversified, and shall be applied in real life.
     Therefore, those research results of image multiscale geometry analysis would be utilized fully in this dissertation. Tightly couple with the hotspot and difficult point of BSS, extensively research multiscale geometry analysis, and focus on image BSS based on the second generation Curvelet sparse representation. Detail research contents as follows:
     1. In accordance with the general conditions that those received image signals are non-sparse, utilize image multiscale geometry analysis to make image signals sparse. And focus on researching the second generation Curvelet sparse representation. Analyse the decomposition process of Curvelet transform, certify that it can representate image signals most sparse.
     2. Research on image BSS based on Curvelet sparse representation in determined conditions. BSS can be implemented in sparse domain. The algorithm uses the kurtosis of sub-images as sparsity criterion, then the most sparse sub-imges can be selected. Simulation experiments certify that the algorithm is feasible and effective.
     3. Research on image BSS initialization problem. According to signals sparsity by Curvelet transform, the mixed matrix can be estimated with C-means cluster analysis, and the estimated value is looked as initial value of BSS algorithm. The initialization algorithm improves separation rate of convergence and separation pricision.
     4. Research on image BSS based on Curvelet sparse representation in underdetermined circumstance. According to signals sparsity by Curvelet transform, underdetermined-determined union separation algorithm has been put forward. The algorithm constructs an intermediate mixed matrix, and turns the underdetermined problem into determinted problem. Simulation experiments certify that the algorithm has a good separation result.
     5. Research on noised-image BSS based on Curvelet sparse representation. Construct an adaptive noise operator with mathematical morphology, and pre-process noised mixed images wjth the noise operator, then separate mixed images with traditional BSS algorithm. The novel algorithm promotes BSS suit to noising circumstance.
     The research results in this diseertation can be applied to image processing field, for example: image enhancement, image denosing, image identification, and image separation, etc.
引文
[1]张贤达,保铮.盲信号分离[J] .电子学报. 2001, 29(12A): 1766-1771.
    [2] Asano F, Ikeda S, Ogawa M. Combined approach of array processing and independent component analysis for blind separation of acoustic signals [J]. IEEE Trans. on Speech and Audio Processing, 2003, 11(3): 204-215.
    [3] Liu R.W., Inouye Y.. Blind equalization of MIMO-FIR channels driven by white but higher order colored source signals [J]. IEEE Trans. on Information Theory, 2002, 48(5): 1206-1214.
    [4] Vigario R. N., Sarela J., etal. Independent component approach to the analysis of EEG and MEG recordings [J]. IEEE Trans. on Biomedical Engineering, 2000, 47(5): 589-593.
    [5]刘喜武,高伟,张宁,刘婉莹.基于带状混合矩阵ICA实现地震盲反褶积[J].地球物理学进展. 2007, 22(4): 1153-1163.
    [6]林秋华.基于盲源分离的图像与语音加密新方法研究[D].大连:大连理工大学, 2005.
    [7] Tong L., Liu R. W., Song V. C., Huang J. E.. Indeterminacy and identifiability of blind identification [J]. IEEE Trans. Circuits Syst. 1991, 38: 409-509.
    [8] Tong L., Inouye Y.,Liu R. W.. Waveform preserving blind estimation of multiple independent sources [J]. IEEE Trans. on Signal Processing. 1993, 41: 2461-2470.
    [9] Cardoso J. F.. Blind signal separation: statistical principles [J]. Proceeding of IEEE. 1998, 86(10): 2009-2025.
    [10]黄贤武.数字图像处理与压缩编码技术[M].成都:电子科技大学出版社, 2000.
    [11] Karhunen J., Hyvarinen A.. Application of neural blind separation to signal and image processing [C]. Proc. of ICASSP 1997, 131-134.
    [12] Cichocki A., Amari S.. Adaptive Blind Signal and Image Processing: Learning Algorithms and Applications [M]. Wiley. 2003.
    [13]王明祥.独立分量分析方法的研究及其在图像处理中的应用研究[D].上海:上海大学, 2004.
    [14] Bofill P. , Zibulevsky M. . Underdetermined Blind Source Separation Using Sparse Representations [J]. Signal Process, 2001, 81(11): 2353-2362.
    [15] Bronstein A. M. and Bronstein M. M., etal.. Sparse ICA for blind separation of transmitted and reflected images [J]. International Journal of Imaging Science and Technology, 2005, 15(1): 84-91.
    [16]何昭水,谢胜利,傅予力.稀疏表示与病态混叠盲分离[J].中国科学E辑信息科学. 2006, 36(8): 864-879.
    [17]刘盛鹏.基于Contourlet变换的图像稀疏分量分析[D].上海:上海大学, 2007.
    [18] Zibulevsky M., Pearlmutter B.A.. Blind source separation by sparse decomposition in a signal dictionary [J]. Neural Comp. 2001, 13(4): 863-882.
    [19] Zibulevsky M., Kisilev P., Zeevi Y.Y., etal. Blind source separation via multinode sparse representation [C]. In Proc. of NIPS’01, 2001: 504-509.
    [20] Herault J., Jutten C.. Space or time adaptive signal processing by neural network model [R]. Neural networks for computing: AIP conf. Proceedings 151, New York: American Institute for physics, April, 1986:13~16.
    [21] Jutten C., Herault J.. Blind separation of sources, PartⅠ: An adaptive algorithm based on neuromimatic architecture [J]. Signal Processing, 1991, 24(1): 1~10.
    [22] Comon P.. Blind separation of sources, Part II: Problem statement [J]. Signal Processing, 1991, 24(1): 11~20.
    [23] Sorouchyari E.. Blind separation of sources, Part III: Stability Analysis [J]. Signal Processing, 1991, 24(1): 21~29.
    [24] Comon P.. Independent component analysis: a new concept [J]. Signal Processing, 1994, 36(3): 287~314.
    [25] Cichocki A., Unbehauen R., Moszczynski L. and Rummert E.. A new on-line adaptive learning algorithm for blind separation of source signals [C]. ISANN94, Taiwan, 1994: 406~411.
    [26] J. F. Cardoso, B. H. Laheld. Equivariant adaptive source separation [J]. IEEE Transactions on Signal Processing, 1996, 44(12): 3017-3030.
    [27] Bell A. J., Sejnowski T. J.. An information maximization approach to blind separation and blind deconvolution [J]. Neural Computation. 1995, 7(6): 1129~1159.
    [28] Hyvarinen A., Oja E.. A fast fixed-point algorithm for independent component analysis [J]. Neural Networks, 1998, 10(9): 1483~1492.
    [29] http://web.media.mit.edu/~paris/ica.html
    [30] http://www.cis.hut.fi/ica2000/
    [31] http://ica2001.ucsd.edu/
    [32] http://www.kecl.ntt.co.jp/icl/signal/ica2003/
    [33] http://web.archive.org/web/20031202022231/atc.ugr.es/ica2004/
    [34] http://www.cnel.ufl.edu/ica2006/
    [35] http://www.elec.qmul.ac.uk/ica2007/
    [36] http://www.ica2009.org/
    [37] Tong L., Liu R., Soon V. C. and Huang J. F.. Indeterminacy and identifiablity of blind identification [J]. IEEE Trans Signal Processing, 1991, 38(5): 499-509.
    [38] Burel G.. Blind separation of sources: A nonlinear neural algorithm [J]. Neural Network, 1992, 5: 937-947.
    [39] Cardoso J. F., Souloumiac A.. Blind beamforming for non-Gaussian signals [J]. IEE-Proceedings-F, 1993, 140(6): 362~370.
    [40] Oja E., Karhunen J., Wang L., etal. Principle and indepedent components in neural network-recent development [C]. Proc. 7th Italian Workshop Neural Networks, WIRN’95, Vietri, Italy, 1995: 20-26.
    [41] Karhunen J., Joutsensalo J.. Representation and separation of signals using nonlinear PCA type learning [J]. Neural Networks, 1994, 7: 113-127.
    [42] Delfosse N., Loubaton P.. Adaptive blind separation of independent sources: A deflation approach [J]. Signal Processing, 1995, 45: 59-83.
    [43] Matsuoka K.. A neural net for blind separation of nonstationary signals [J]. Neural Networks, 1995, 3: 311-419.
    [44] Cardoso J. F., Laheld B H. Equivariant adaptive source separation [J]. IEEE Trans. Signal Processing, 1996, 44(12): 3017-3029.
    [45] Pearlmutter B. A., Parra L. C.. A context-sensitive-generalization of ICA [J]. Proc. Int. Conf. Neural Information Processing, ICONIP’96, Hong Kong, 1996: 151-157.
    [46] Amari S., Cichocki A. and Yang H. H.. A new learning algorithm for blind signal separation [M]. Adavances in Neural Information Processing Systems. Cambridge, MA: MIT Press.1996, 8: 657-663.
    [47] Belouchrani A., Abed-Meraim K., Cardoso J. F. and Moulines E.. A blind source separation technique using second-order statistics [J]. IEEE Trans on. SP. 1997, 45(2): 434~444.
    [48] Cardoso J. F. Informax and maxmimum likelihood for source separation [J]. IEEE Signal Processing Letters, 1997, 4: 109-111.
    [49] Girolami M., Fyfe C.. Kurtosis extrema and identification of independent compenets: a neural network approach [C]. Proc. ICASSP’97, 1997, 4: 3329-3333.
    [50] Pham D. T., Garat P.. Blind separation of mixture of independent sources through a quasi-maximum likelihood approach [J]. IEEE Trans. Signal Processing, 1997, 45(7): 1712-1725.
    [51] A. Hyvarinen. A family of fixed-point algorithms of independent component analysis [C]. Proceedings of IEEE International Conferences on Acoustics, Speech and Signal Processing (ICASSP’97), Munich, Germany, 1997, 3917-3920.
    [52] Amari S. Natural gradient works efficiently in learning [J]. Neural Computation. 1998, 10(1): 251-276.
    [53] Amari S., Cichocki A. Adaptive Blind signal processing-neural network approaches [J]. Proc. IEEE. 1998, 86(10): 2026-2048.
    [54] Lee T. W., Bell A. J. and Orglmeister R. Blind source separation of real world signals [C]. Proc. of IJCNN1998: 2282-2286.
    [55] S. Choi, A. Cichocki, S. Amari. Flexible independent component analysis [J]. Neural Networks of Signal Processing, 1998, 8: 83-93.
    [56] S. Amari, A. Ciehoeki. Adaptive blind signal processing-neural network approaches [J]. Proceedings of the IEEE, 1998, 86(10): 2026-2048.
    [57] Ikeda S, Murata N. A method of ICA in time-frequency domain [C]. Int. Conf. ICA and Signal Separation. Aussois, France, 1999:365-371.
    [58] Hyvarinen A. Fast and robust fixed-point algorithms for independent component analysis [J]. IEEE Trans. on Neural Networks, 1999, 10(3): 626-634.
    [59] S. Curees, L. Castedo, A. Ciehoeki. Novel Blind Source Separation Algorithms Using Cumulants [C]. IEEE International Conference on Acoustics, Speech, and Signal Processing, V, Istanbul, Turkey, 2000: 3152-3155.
    [60] Mukai R, Sawada H and Araki S. Robust real-time blind source separation for moving speakers in a room [C]. Proc. of ICASSP2003, 15:469-472.
    [61] Yuan L., Sang En fang, Wang W., Chambers, J.A.. An effective method to improve convergence for sequential blind source separation [J]. Lecture Notes in Computer Science, 2005, v 3610, n PART I: 199-208.
    [62] Osako Keiichi, Mori Yoshimitsu, Takahashi Yu, etc. Fast convergence blind source separation based on frequency subband interpolation by null beamforming [J]. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, 2007: 42-45.
    [63] Erdogan Alper Tunga. Globally convergent deflationary instantaneous blind source separation algorithm for digital communication signals [J]. IEEE Transactions on Signal Processing, 2007, 55(5 ): 2182-2192.
    [64] Lee T W. Independent component analysis: theory and application [M]. Kluwer Academicc Publishers, Boston, 1 edition, 1998.
    [65] Girolami M. Advance in independent component analysis [M]. Springer-Verlag, New York, 2000.
    [66] Haykin S. Unsupervised adaptive filtering. Volume1: Blind source separation [M]. JohnWiley&Sons, Inc., 2000.
    [67] Hyvarinen A, Karhunen J, Oja E. Independent component analysis [M]. New York: John Wiley & Sons, 2001.
    [68] Roberts S, Everson R. Independent component analysis: Principles and practice [M]. UK: Cambridge University Press, 2001.
    [69]张贤达.时间序列分析——高阶统计量方法[M].北京:清华大学出版社, 1996.
    [70]凌燮亭.近场宽带信号源的盲分离[J] .电子学报. 1996, 24(7): 87-92.
    [71]何振亚,刘琚,杨绿溪等.盲均衡和信道参数估计的一种ICA和进化计算方法[J] .中国科学(E辑). 2000, 30(1): 1-7.
    [72] Fang Y, Chow T.W.S. Blind equalization of a noisy channel by linear neural network [J]. IEEE Trans. on Neural Networks, 1999, 10(4): 918-923.
    [73]张明健.盲分离算法的研究[D].广州:华南理工大学, 2004.
    [74]刘琚,聂开宝,何振亚.线性混迭信号中独立源的盲抽取[J].应用科学学报. 2001, 19(3): 24~29.
    [75]张洪渊,史习智.一种任意信号源盲分离的高效算法[J].电子学报. 2001, 29(10): 1392-1396.
    [76]冯大政,保铮,张贤达.信号盲分离问题多阶段分解算法[J].自然科学进展. 2002, 12(3): 324-328.
    [77]刘琚,何振亚.盲源分离和盲反卷积[J].电子学报. 2002, 30(4): 570-576.
    [78]杨行峻,郑君里.人工神经网络与盲信号处理[M].北京:清华大学出版社, 2003.
    [79] Andrzej CICHOCKI(波兰), Shun-ichi AMARI(日本) [著].吴正国,唐劲松,章林柯[译].自适应盲信号和图像处理[M].北京:电子工业出版社, 2005.
    [80]杨福生,洪波.独立分量分析的原理与应用[M].北京:清华大学出版社, 2006.
    [81]马建仓,牛亦龙.盲信号处理[M].北京:国防工业出版社, 2006.
    [82]张发启.盲信号处理及应用[M].西安:西安电子科技大学出版社, 2006.
    [83] J. Karhunen, A. Hyvarinen. Application of neural blind separation to signal and image Processing [C], In. Proc. of ICNN, Germany: Munich, 1997, 131-134.
    [84] Lee. T, Bell J., and Lambert R.. Blind Separatlon o f Delayed and Convolved Soucres [M]. Advnaces in Neural Information Processing Systems, MIT Press, 1997, 9: 758-764.
    [85] S. Makeig, T. P. Jung, A. J. Bell, etal. Blind separation of auditory event related brain responses into independent components [C]. In. Proc. Natl. Acad. Sci., 1997, 94: 10979-10984.
    [86] Zhukov L., Weinstein D., Johnson C.. Independent component analysis for EEG source localization [J]. IEEE Engineering in Medicine and Biology Magazine, 2000, 19(3): 87-96.
    [87] Sattar F, Siyal M.Y, Wee L.C, et al. Blind source separation of audio signals using improved ICA method [C]. Proc. of the 11th IEEE Signal Processing Workshop on Statistical Signal Processing, 2001, 452-455.
    [88] Lee T.W, Lewicki M.S. Unsupervised image classification, segmentation and enhancement using ICA mixture models [J]. IEEE Trans. on Image Processing, 2002, 11(3): 270-279.
    [89] Shannon R. Curnew and Jacek Ilow. Blind signal separation in MIMO OFDM systems using ICA and fractional sampling [C]. Proceedings of the International Symposium on Signals Systems and Electronics, URSI ISSSE’07, 2007: 67-70.
    [90] Takeda Ryu, Nakada Kazuhiro, Komatani Kazunori, Ogata Tetsuya, Okuno Hiroshi G.. Exploiting known sound source signals to improve ICA-based robot audition in speechseparation and recognition [C]. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS’07, 2007: 1757-1762.
    [91] Naik Ganesh R., Kumar Dinesh K., Palaniswami Marimuthu. Multi run ICA and surface EMG based signal processing system for recognising hand gestures [C]. Proceedings of the IEEE 8th International Conference on Computer and Information Technology, CIT’08, 2008: 700-705.
    [92]刘盛鹏,方勇.语音采集与盲分离系统设计[J].电子技术. 2004, 4: 17-20.
    [93]刘盛鹏,方勇. TMS320C64X DSP的语音采集与盲信号分离系统设计[J].电子设计与应用. 2004, 4: 92-93.
    [94]杨志根,王惠南,张志强,钟元,卢光明.基于ICA的fMRI分析方法的成分可靠性和选择[J].中国医学物理学杂志. 2009, 26(1): 962-1002.
    [95]任平.基于ICA的数字模型水印研究[J].计算机应用与软件. 2009, 26(3): 277-279.
    [96]杜晓燕,李颖洁,朱贻盛,任秋实,赵仑.脑电信号伪迹去除的研究进展[J].生物医学工程学杂志. 2008, 25(2): 464-467.
    [97]刘婷婷,任兴民,康召辉. FastICA算法在机械振动信号分离中的应用[J].西安工业大学学报. 2008, 28(1): 27-31.
    [98]徐波,王嘉祯,张政保,刘晓芹.基于ICA模型的主动隐写分析[J].计算机工程. 2008, 34(10): 153-160.
    [99]吴欣,王战涛,陈涛.基于盲源分离的无线通信系统上行链路干扰抑制方法[J].计算机测量与控制. 2004, 12(10): 999-1001.
    [100]张道信,吴小培,沈谦,郭晓静.独立分量提取的在线算法及其应用[J].系统仿真学报. 2004, 16(1): 17-19.
    [101]席聪,张太镒,刘枫.基于核独立成分分析的盲多用户检测算法[J].西安交通大学学报. 2004, 38(4): 373-376.
    [102]方勇,王明祥.基于自组织映射的后非线性独立分量分析的初始化方法[J].电子学报. 2005, 33(5): 889-892.
    [103]傅予力,谢胜利,何昭水.稀疏盲源分离的新算法[J].计算机工程与应用. 2007, 43(9): 84-87.
    [104] Nesta F., Omologo M., Svaizer P.. Separating short signals in highly reverberant environment by a recursive frequency-domain BSS [C]. Proceedings Hands-free Speech Communication and Microphone Arrays, HSCMA’08, 2008: 232-235.
    [105] Gupta Malay, Douglas Scott C.. Beamforming initialization and data prewhitening in natural gradient convolutive blind source separation of speech mixtures [C]. Proceedings of 7th International Conference on Independent Component Analysis and Signal Separation, ICA’07, 2007: 462-470.
    [106] Zheng Z.L, Yang J, Zhu Y.T.. Initialization enhancer for non-negative matrix factorization [J]. Source Engineering Applications of Artificial Intelligence, 2007, 20(1): 101-110.
    [107] Wang B, Lu W.K. A fixed-point ICA algorithm with initialization constraint [C]. In Proc. of 2005 International Conference on Communications, Circuits and Systems, 2005, 2: 891-894.
    [108]于剑.论模糊C均值算法的模糊指标[J].计算机学报. 2003, 26(8): 968-973.
    [109]白树忠,刘琚,孙国霞.基于最小均方误差和稀疏特征的欠定盲源分离[J].山东大学学报(工学版), 2008, 38(4): 97-101.
    [110]徐尚志,苏勇,叶中付.欠定条件下的盲分离算法[J].数据采集与处理. 2006, 21(2):128-132.
    [111]谢胜利,何昭水,傅予力.基于稀疏元分析的欠定混叠自适应盲分离方法[J].中国科学E辑:信息科学. 2007,37(8): 1086-1098.
    [112]谢胜利,谭北海,傅予力.基于平面聚类算法的欠定混叠盲信号分离[J].自然科学进展. 2007, 17(6): 795-800.
    [113]邱天爽,毕晓辉.稀疏分量分析在欠定盲源分离问题中的研究进展及应用[J].信号处理. 2008, 24(6): 966-970.
    [114] Chen S., Donoho D., Saunders M.. Atomic decomposition by basis pursuit [J]. SLAMJ Sci. Comput., 1998, l: 33-61.
    [115] Lee T. W., Lewicki M. S., Sejnowski T.J.. ICA mixture models fori mage processing [C]. In Proceedings of the 6th Joint Symposium on Neural Computation. 1999: 79-86.
    [116] Luengo D, Santamaria I, Vielva L, et al. Underdetermined blind separation of sparse sources with instantaneous and convolutive mixtures [C]. In Proc. of IEEE 13th Workshop on Neural Networks for Signal Processing (NNSP'03), 2003: 279- 288.
    [117] Paul D. O., Barak A. P.. Hard-LOST: Modified k-Means for oriented Lines [C]. Proceedings of the Irish Signals and Systems Conference, 2004: 247-252.
    [118] Comon P. Blind identification and source separation in 2x3 under-determined mixtures [J]. IEEE Trans. on Signal Processing, 2004, 1: 11–22.
    [119] Khor L.C, Woo W.L, Dlay S.S. Non-sparse approach to underdetermined blind signal estimation [C]. In Proc. of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '05), 2005, 5: 309-312.
    [120] Georgiev P.G, Theis F, Cichocki A. Sparse component analysis and blind source separation of underdetermined mixtures [J]. IEEE Trans. on Neural Networks, 2005, 16(4): 992-996.
    [121] Li Y.Q, Amari S, Cichocki A, et al. Underdetermined blind source separation based on sparse representation [J]. IEEE Trans. On Signal Processing, 2006, 54(2): 423-437.
    [122] De Lathauwer Lieven, Castaing, Joséphine. Blind identification of underdetermined mixtures by simultaneous matrix diagonalization [J]. IEEE Transactions on Signal Processing, 2008, 56(3): 1096-1105.
    [123] Ali Mansour, Joe Youssef, Koffi-Clement Yao. Underdetermined BSS of MISO OSTBC Signals [C]. Proceedings of the 8th International Conference on Independent Component Analysis and Signal Separation, ICA 2009, 2009: 678-685.
    [124] Seok Jongwon, Malik Hafiz. Audio watermark detection using undetermined ICA [C]. Proceedings of the 8th International Conference on Independent Component Analysis and Signal Separation, ICA 2009, 2009: 637-645.
    [125]李婷.独立分量分析及其在脑电信号噪声分离中的应用[D].大连:大连理工大学, 2005.
    [126]周卫东,赵浩,彭玉华.独立分量分析在有噪图像分离中的应用[J].中国图象图形学报, 2005, 10(2): 241-244.
    [127]郭文强.稳定分布噪声下的盲信号处理方法及应用研究[D].大连:大连理工大学, 2007.
    [128]张朝柱,张健沛,孙晓东.基于Curvelet变换和独立分量分析的含噪盲源分离[J].计算机应用, 2008, 28(5): 1208-1216.
    [129] Hyv?rinen A.. Independent component analysis in the presence of gaussian noise by maximizing joint likelihood [J]. Neurocomputing, 1998, 22: 49-67.
    [130] Hyv?rinen A.. Gaussian moments for noisy independent component analysis [J]. IEEESignal Processing Letters, 1999, 6(6): 145-147.
    [131] Aichner Robert, Buchne, Herbert, Yan Fei, Kellermann Walter. A real-time blind source separation scheme and its application to reverberant and noisy acoustic environments [J]. Signal Processing Applies Speech and Audio Processing, 2006, 86(6): 1260-1277.
    [132] Cong F., Xu, X., Zhou S., Du S., Shi X.. Particle filtering based noisy blind source separation [J]. Electronics Letters., 2007, 43(9): 547-549
    [133] Saylani Hicham, Hosseini Shahram, Deville Yannick. Blind separation of noisy mixtures of non-stationary sources using spectral decorrelation [C]. Proceedings of the 8th International Conference on Independent Component Analysis and Signal Separation-ICA’09, 2009: 322-329.
    [134] Bronstein A.M, Bronstein M.M, Zibulevsky M, et al. Sparse ICA for blind separation of transmitted and reflected images [J]. International Journal of Imaging Science and Technology (IJIST), 2005, 15(1): 84-91.
    [135] Asari H, Pearlmutter B.A, Zador A.M. Sparse representations for the cocktail party problem [J]. The Journal of Neuroscience, 2006, 26(28): 7477-7490.
    [136] Grady P.D, Pearlmutter B.A, Rickard S.T. Survey of sparse and non-sparse methods in source separation [J]. International Journal of Imaging Systems and Technology, 2005, 15(1): 18-33.
    [137] Li Y.Q, Cichocki A, Amari S. Analysis of sparse representation and blind source separation [J]. Neural Computation, 2004, 16(6): 1193-1234.
    [138] Li Y.Q, Amari S, Cichocki A, et al. Probability estimation for recoverability analysis of blind source separation based on sparse representation [J]. IEEE Trans. on Information Theory, 2006, 52(7): 3139- 3152.
    [139] Bronstein A.M, Bronstein M.M, Zibulevsky M. Blind separation of reflections using sparse [C]. In Proc. of the 4th International Symposium on Independent Component Analysis and Blind Signal Separation (ICA2003), 2003: 227-232.
    [140]韦泉华.基于稀疏表示的盲信号分离算法及其改进[D].北京:中国地质大学, 2006.
    [141]高卫平.基于多尺度几何分析的遥感图像融合方法研究[D].陕西:陕西师范大学, 2008.
    [142]焦李成,谭山.图像的多尺度几何分析:回顾和展望[J].电子学报, 2003, 31(12A): 1975-1981.
    [143]焦李成,侯彪,王爽,刘芳.图像多尺度几何分析理论与应用[M].西安:西安科技大学出版社, 2008.
    [144]蔡炳煌.基于曲波分析的图像处理与应用[D].汕头:汕头大学, 2007.
    [145] Olshausen B.A, Field D.J. . Emergence of simple-cell receptive field properties by learning a sparse code for natural images [J]. Nature, 1996, 381: 607-609.
    [146] Donoho D.L, Flesia A.G. Can recent innovations in harmonic analysis‘explain’key findings in natural image statistics [J]. Network Computation in Neural Systems, 2001, 12 (3): 371-393.
    [147] E. J. Candès. Ridgelets: Theory and Applications [D]. USA: Department of Statistics, Stanford University, 1998.
    [148] E.J. Candès. Monoscale Ridgelets for the representation of images with edges [R]. USA: Department of Statistics, Stanford University, 1999.
    [149] D. L. Donoho. Sparse components of images and optimal atomic decompositions [J]. Constr. Approx. 2001, 17: 353-382.
    [150] E.J. Candès, D. L. Donoho. Curvelets [R]. USA: Department of Statistics, Stanford University, 1999.
    [151] E. J. Candes, D. L. Donoho. Curvelet: A surprisingly effective nonadaptive representation for objects with edges [C]. In: C. Rabut A. Cohen, L. L. Schumaker. Curves and Surfaces. Nashville, TN: Vanderbilt University Press, 2000, 105-120.
    [152] E. J. Candes, D. L. Donoho. New tight frames of curvelets and optimal representations of objects with C2 singularities [J]. Commun. on Pure and Appl. Math., 2004, 57 (2) : 219-266.
    [153] E. J . Candes, L. Demanet, D. L. Donoho etal. . Fast Discrete Curvelet Transforms [R]. Applied and Computational Mathematics. California Institute of Technology, 2005, 1-43.
    [154] F. G. Meyer, R. R. Coifmon. Brushlets: a tool for directional image analysis and image compression [J]. Applied and Computational Harmonic Analysis, 1997, 5: 147-187.
    [155] D. L. Donoho, Xiaoming Huo. Beamlets and Multiscale Image Analysis [R]. Stanford Univ, Report, 2001.
    [156] D. L. Donoho. Wedgelets: Nearly Minimax Estimation of Edge [R]. Stanford Univ, Report, 1997.
    [157] Do M.N, Vetterli M. Contourlets[A]. J Stoeckler, GV Welland. Beyond Wavelets [C]. Academic Press, 2002.
    [158] E. Le Pennec, S. Mallat. Non linear image Approximation with bandlets [R]. Tech. Report, CMAP Ecole Polytechnique, 2003.
    [159] V. Velisavljevic, B. Beferull-Lozano, M. Vetterli, P. L.. Dragotti. Directionlets: Anisotropic multi-directional representation with separable filtering [J], IEEE Trans. on Image Processing, 2006, 15(7): 1916-1933.
    [160] D. Labate, W. Q. Lim, G. Kutyniok, G. Weiss. Sparse multidimentional representation using shearlets [C]. Wavelets XI (San Diego, CA, 2005), SPIE Proc., 5914, SPIE, Bellingham, WA, 2005.
    [161]尚晓清.多尺度分析在图像处理中的应用研究[D].西安:西安电子科技大学,2004.
    [162] J. L. Starck , E. J. Candès , etal. The Curvelet transform for image denoising [J]. IEEE Trans. Image Proc., 2002, 11 (6): 670-684.
    [163]邓承志,曹汉强,汪胜前. Curvelet变换域自适应收缩图像去噪[J].应用科学学报, 2008, 26(1): 22-27.
    [164]吴芳平,狄红卫.基于Curvelet变换的软硬阈值折中图像去噪[J].光学技术. 2007, 33(5): 688-690.
    [165]朱卫,李国辉,涂丹.一种基于第二代曲波变换的尺度相关图像去噪方法[J].中国图像图形学报. 2008, 12(12): 2281-2285.
    [166]刘盛鹏,方勇.基于数学形态学的Contourlet变换域图像降噪方法[J].光子学报. 2008, 379(1): 197-201.
    [167] Chang G., Yu B., Vetterli M.. Adaptive wavelet thresholding for image denoising and compression [J]. IEEE Trans. on Image Proc., 2000, 9: 1532-1546.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700