基于Z源网络的三端口光伏系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳能以资源丰富、无污染等优点成为解决能源短缺、环境污染和生态破坏问题最重要的新型能源之一。随着人类环保意识不断增强和光伏电池价格逐渐下降,各国都致力于太阳能光伏发电的开发和使用。然而,太阳能光伏发电受外部环境影响比较大,波动的输出功率很难为负载或者电网提供稳定、连续的电能。为了克服这个缺点,具有存储能力的三端口光伏系统广泛应用于独立用户、航天太空站、可调度并网等领域,它不仅增强了太阳能光伏使用的灵活性,而且还提高了系统输出的电能质量。为了进一步提高太阳能光伏模块的利用率和并网的电能质量及延长蓄电池的使用寿命,本文对三端口光伏系统的拓扑结构、能量协调控制、并网控制策略和孤岛检测技术等进行了深入研究。具体内容包括以下几个方面:
     三端口光伏拓扑结构是光伏发电系统的核心部分,传统拓扑结构因为转换级数和开关器件多及高频变压器的应用不仅增加了系统的体积和重量,而且还增加了系统的损耗。为了克服上述缺点,同时保护蓄电池充放电的安全,本文提出了基于Z源网络的新型三端口光伏拓扑结构,该拓扑结构集升降压、逆变、双向充放电、最大功率点跟踪等功能于一体。其简洁紧凑的结构和高效的工作方式降低了系统体积、重量和成本,提高了太阳能光伏模块的利用率和系统输出的电能质量。
     基于Z源网络的三端口光伏系统的Z源逆变器部分采用在SPWM零状态处插入直通占空比的单级控制策略,通过调节直通占空比和调制因子分别实现直流母线升压和系统逆变输出的控制,其优点是简单且容易实现。但是在感性负载情况下,逆变输出波形出现畸变现象并且谐波含量大,为此本文提出了一种改进的SPWM控制方法。在不增加外部器件的前提下,换向时开启上桥臂为电流提供续流通道,从而消除输出电流和电压波形的畸变现象,降低了输出电流的谐波含量,提高了系统输出的电能质量。通过建立基于Z源网络的三端口光伏系统的小信号模型分析了Z源网络参数、直通占空比,负载和输入电压等系统参数的变化对其输出特性的影响。
     太阳能光伏模块输出功率随外界环境变化而变化,具有较大的波动性,将会影响负载的正常运行或注入电网的电能质量。基于Z源网络的三端口光伏系统通过控制蓄电池的充放电,可以消除天气对系统输出的影响。因此三端口的能量管理是保证太阳能光伏模块、蓄电池和负载三者之间高效稳定运行的关键。根据太阳能光伏模块和负载之间的供求关系及蓄电池所处的状态,本文提出了一种适用于基于Z源网络的三端口光伏系统的能量协调控制方法,在保证负载稳定工作的前提下,提高了太阳能光伏模块的利用率和延长了蓄电池的使用寿命。
     基于Z源网络的三端口光伏系统输出端不仅可连接负载构成独立型光伏系统而且还可连接电网形成可调度型光伏并网系统。其优点是使注入电网的电流值保持恒定,避免了太阳能光伏模块输入功率波动对电网的不利影响,而且还具有调节晚间电网峰值的作用。本文采用准比例谐振并网电流控制方法,提高了系统的动态响应速度,减小了并网电流的波动,并且通过修正调制系数和电网前馈补偿控制消除Z源网络电容电压波动和电网波动对输出电流的影响,进一步提高并网的电能质量。
     光伏并网系统除了要求具有控制并网电流与电网电压保持同频同相的能力之外,还应具备孤岛检测能力。因为孤岛现象一旦发生,如果光伏并网系统继续工作,可能损坏设备或者威胁到人身安全。由于孤岛危害的严重性,系统的孤岛检测需快速、准确,并且兼顾注入并网的电能质量。为此本文提出一种基于有功功率变化的正反馈主动频移法,将有功功率的变化量引入正反馈偏移量中,增加了频率的偏移量,从而加速公共节点电压频率的偏移,缩短检测孤岛的时间。
     在上述理论研究和仿真分析的基础上,研制开发了以TMS320F2812为主控制芯片的基于Z源网络的三端口光伏系统实验平台。通过实验平台进行了独立型的三端口能量协调控制实验和并网型的并网电流控制、孤岛检测等实验。实验结果验证了所提出的基于Z源网络的三端口光伏拓扑结构和控制策略的正确性和可行性。
Solar energy becomes one of the most important new energy resources that cansolve energy shortages, the problem of environment pollution and ecologicaldamage because of its abundant reserves and no-pollution. With a growingawareness of environmental protection and a gradual decline in photovoltaic price,countries all over the world are devoting to development and utilization of solarphotovoltaic(PV).However, influenced greatly by the external environment, solarPV may result in great fluctuation in the output of the PV module, which makes itdiffficult to provide a stable and continuous energy for the load or grid. Toovercome the problem, three-port PV systems with storage capacity are widely usedin independent users, space station, schedulable grid-connection. It not onlyenhances the flexibility in the use of solar photovoltaic, but also improves theoutput power quality of the inverter. In order to further improve the utilization ofsolar photovoltaic modules and extend the service life of the storage devices, in thispaper, the three-port photovoltaic inverter topology, energy management, grid-connected control strategy and perfect islanding detection was researched in detail.The main contents are as follows:
     Three-port photovoltaic inverter is the core part of the photovoltaic generationsystem. Because of the application of high frequency transformers, high conversionseries and more switching devices, traditional topology not only increases the sizeand the weight of the system, but also increases losses of the PV system. Toovercome these shortcomings, keep the process of charging and discharging of thebattery safe and to extend the life of battery, this paper proposes a novel three-portphotovoltaic topology based on Z-source network, which has a combined functionof buck and boost, inverter, charge and discharge control, maximum power pointtracking and so on. The simple and compact structure and efficient working modehave not only reduced the cost, volume and weight of the system, but also improvedthe utilization efficiency of PV module.and power quality of system.
     Simple and easy to implement, Z-source inverter partly of the novel three-portphotovoltaic system using the single-stage control strategy that inserting shoot-through duty in zero state of SPWM, respectively achieve the goal of boosting DClink and controlling the current of the inverter by adjusting the shoot-through dutyand modulation factors. However, the inverter’s output contains lots of distortionand harmonic component in the case of inductive load. This paper presents aimproved SPWM control method, withnot increasing the external device, which opens upper bridge legs to provide freewheeling path on the commutation,eliminates the distortion of inverter output, reduces the harmonic component of theoutput current, improves the power quality of the inverter output. In this paper, wealso establish a small-signal model of three-port PV system based on Z-source, andanalyse the impacts of the various parameters and direct duty cycle of Z-sourcenetwork, load and input voltage on the characteristics of output.
     Changing with the external environment, the output power of solar PV module,fluctuating greatly, would even affect the normal operation of the load or the powerquality of the injecting grid current. By controlling the charge-discharge of thebattery, three-port PV system based on Z-source can eliminate the effect of theweather. As a result, power management of the three-port system is critical forensuring the efficient and stable running of the PV module, battery and load. In thispaper, based on the supply-demand relationship between load and PV module, anovel power management method suitable for three-port PV system based on Z-source is proposed. On the premise of stable running of load, this powermanagement method improved the utilization efficiency of PV module.andprolonged the life of battery.
     The inverter’s output of three-port PV system based on Z-source can not onlydirectly provide power to the load of the Stand-alone Photovoltaic System, but alsoconstitute a photovoltaic grid power system which can be dispatched by connectingwith the grid. Its advantage lies in that the current injected into the power grid isconstant, which avoids the fluctuation of the input power and contributes to theregulation of the power grid peak during night. This paper adopts the proportionresonance control method to control the current injected into the grid, whichincreases the dynamic response speed of the system and reduces the fluctuation ofthe grid current. This paper further improves the power quality through correctingthe modulation factor and feed-forward control to eliminate the influence that thefluctuation of the capacitance voltage of Z source network and grid makes on theoutput voltage.
     Besides the function of keeping the current injected into the grid having thesame frequency and phase with the voltage of grid, photovoltaic grid-connectedsystem must have the ability of perfect islanding detection. Once the islandphenomenon occurs and wasn’t cut off from the photovoltaic grid-connected systemin time, it may result in damage of the equipment and threaten personal safety.Considering the severity of island phenomenon, the islanding detection should berapid and accurate, as well as taking into account of the power quality. This paperproposes a novel feedback active frequency drift method (AFD), which is based onpositive feedback of the change of active power. This method adds the change of active power into the frequency deviation, thus, the frequency deviation of point ofcommon coupling is accelerated, and the time of islanding detection is shortened.
     On the basis of the work above, a set of experiment device of three-port PVsystem based on Z-source is developed. This device takes TMS320F2812as theprimary control chip and the software and hardware is designed. Results of theexperiment verify the validity and feasibility of the proposed novel three-portphotovoltaic system and control method.
引文
[1]吴理博,赵争鸣,刘建政,等.具有无功补偿功能的单级式三相光伏并网系统[J].电工技术学报,2006,21(1):28-32.
    [2] S.B. Kjaer. Design and Control of an Inverter for Photovoltaic Applications[D].PhD thesis. Aalborg University.2005.
    [3] Wu Tsai-Fu, Nien Huang-shou, Shen Chih-Lung, et al. A Single-phase InverterSystem for PV Power Injection and Active Power Filtering with NonlinearInductor Consideration[J]. IEEE Transaction on Industry Applications,2005,41(4):1075-1083.
    [4]廖志凌,阮新波.独立光伏发电系统能量管理控制策略[J].中国电机工程学报,2009,35(12):46-52.
    [5]赵争鸣,雷一,贺凡波,鲁宗相,田琦.大容量并网光伏电站技术综述[J].电力系统自动化,2011,29(21):101-107.
    [6] Trends in Photovoltaic Applications-Survey Report of Selected IEA Countriesbetween1992and2009. Report IEA-PVPS T1-17:2010.
    [7]中新网, http://www.ehinanews.com/ny/2010/10-27/2614793.htm,“BNEF分析称美国太阳能行业将进入高增长期”,2010-10-27.
    [8]百度文库, http://wenku.baidu.eom/view/14433d72f242336eleb95e69.htm,“日本光伏产业的发展及其启示”.
    [9]全景网, http://www.psw.net/stock/hydxx/bkfx/201007/t3102315.htm,“美国太阳能引爆光伏场需求,2010-7-27.
    [10] Global Market Outlook for Photovoltaics until2013[R/OL]. Brussels:TheEuropean photovoltaic Industry Association,2009[2010-6-10].http://www.epia.org/fileadmin/EPIA_docs/publications/epia/Global_Market_Outlook_Until_2013.pdf.
    [11] uramatsu S, Uematsu T, Ohtsuka H, et al. Effect of Hydrogen RadicalAnnealing on SiN Passivated Solar Cells[J]. Solar Energy Materials and SolarCells,2001,65(1):599-606.
    [12]罗如意,林晔.世界光伏发电产业的发展与展望[J].能源技术,2009,30(5):290-302.
    [13]张耀明.中国太阳能光伏产业的现状与前景[J].能源研究与利用,2007,1:1-6.
    [14]张晓安.我国太阳能光伏利用的现状、存在问题及其对策[J].合肥工业大学学报,2009,23(6):18-23.
    [15]吕贝,邱河海,张宇.太阳能光伏发电产业现状及发展[J].华电技术,2010,32(1):73-76.
    [16]蔡宣三.太阳能光伏发电发展现状与趋势[J].电力电子,2007,(2):3-6.
    [17] Picault D, Raision B, Bacha S. Guidelines for Evaluating Grid Connected PVSystem Topologies[C]. IEEE Industral Electronics Society.2009IEEEInternational Conference on Industrial Technology. Piscataway: Institute ofElectrical and Electronics Engineers Inc.,2009:1-5.
    [18] Rodriguez C, Amaratunga G A J. Dynamic Maximum Power Injection Controlof AC Photovoltaic Modules Using Current-Mode Control[J]. IEE ElectricPower Applications,2006,153(1):83-87.
    [19] Román Eduardo, Alonso Ricardo, Iba ez Pedro,et al. Intelligent PV Modulefor Grid-Connected PV Systems[J]. IEEE Transactions on IndustrialElectronics,2006,53(4):1066-1073.
    [20] Huang Yi, Wang Jin, Peng Fang Z, et al. Survey of the Power ConditioningSystem for PV Power Generation[C]. IEEE Power Electronics Society.37thIEEE Power Electronics Specialists Conference2006, PESC'06. Piscataway:Institute of Electrical and Electronics Engineers Inc.,2006:1-6.
    [21] Min Byung-Duk, Lee Jong-Pil, Kim Jong-Hyun, et al. A New Topology withHigh Efficiency throughout All Load Range for Photovoltaic PCS[J]. IEEETransactions on Industrial Electronics,2009,56(11):4427-4435.
    [22]侯国青,陈世华.独立光伏系统逆变器的应用及选型[J].太阳能,2009,(7):33-35.
    [23] M. Nagao and K. Harada. Power Flow of Photovoltaic System using Buck-Boost PWM Power Inverter[C]. Proc. IEEE PEDS’97, Singapore, May26-29,1997:144~149.
    [24] N. Kasa, T. Iida. Flyback Type Inverter for Small Scale Photovoltaic PowerSystem[C]. IECON PEDS’02,2002:1089-1094.
    [25] Johanna M.A. Myrzlk. Novel Inverter Topologies for Single-phase Stand-alone or Grid-connected Photovoltaic System[C]. IEEE PEDS’01, Indonesia,2001:103-108.
    [26]李明成.基于双绕组反激变压器的光伏并网逆变器的研究[D].哈尔滨工业大学大学硕士学位论文.2008.
    [27]谭光慧.太阳能交流模块逆变器及其控制技术的研究[D].哈尔滨工业大学大学博士学位论文.2009.
    [28] Zhang Hui, Shan Lin, Ren Jing, et al. Study on Photovoltaic Grid-connectedInverter Control System[C]. IEEE Power Electronics Society. Proceedings ofthe International Conference on Power Electronics and Drive Systems.Piscataway: Institute of Electrical and Electronics Engineers Inc.,2009:210-212.
    [29] N. Kasa, T. Iida, and H. Iwamoto. An Inverter using Buck-Boost TypeChopper Circuits for Popular Small-scale Photovoltaic[C]. Power System.Proc. IEEE IECON’99, San Jose, CA, Nov. Dec.1999:185-190.
    [30] Johanna M.A. Myrzlk. Novel Inverter Topologies for Single-phase Stand-alone or Grid-connected Photovoltaic System[C]. IEEE PEDS’01, Indonesia,2001:103-108.
    [31]马琳.无变压器结构光伏并网逆变器拓扑及控制研究[D].北京交通大学博士学位论文.2011.
    [32] B.Won-Sik Oh. Three Phase Three-lever PWM Switched Voltage SourceInverter with Zero Neutral Point Potential[C].200435th Annual IEEE PowerElectronics Specialists Conference, Aachen, Germany,2004:4405-4410.
    [33] Axelrod, Y. Berkovich. A Boost-switched Capacitor-inverter with a MultilevelWaveform[J]. ISCAS2004:884-887.
    [34]彭方正,房绪鹏等. Z源变换器[J].电工技术学报.2004,19(2):47-51.
    [35] Photong C, Klumpner C, Wheeler P. Evaluation of Single-Stage PowerConverter Topologies for Grid-Connected Photovoltaics[C]. The Institute ofElectrical and Electronics. Proceedings of the IEEE International Conferenceon Industrial Technology. Piscataway:Institute of Electrical and ElectronicsEngineers Inc.,2010:1161-1168.
    [36] Peng F Z. Z-source inverter[J]. IEEE Transactions on Industry Applications,2003,39(2):504-510.
    [37]杨水涛,丁新平,张帆. Z-源逆变器在光伏发电技术中的应用[J].中国电机工程学报,2008,28(17):112-118.
    [38]汤雨,谢少军,张超华.改进型Z源逆变器[J].中国电机工程学报,2009,29(30):28-34.
    [39] Zhiling Liao, Xinbo Ruan. A novel power management control strategy forstand-alone photovoltaic power system[C]. Power Electronics and MotionControl Conference,2009. IPEMC '09. IEEE6th International,2009:445-449.
    [40] Hongfei Wu, Kai Sun, Runruo Chen, Haibing Hu, Yan Xing. Full-BridgeThree-Port Converters with Wide Input Voltage Range for Renewable PowerSystems[J]. IEEE EARLY ACCESS.2012.
    [41] W. Jiang and B. Fahimi. Multiport power electronic interface—concept,modeling and design[J]. IEEE Transactions on Power Electronics,2011,26(7):1890-1900.
    [42] H. Tao, A. Kotsopulos, J. L. Duarte, M. A. M. Hendrix. Family of multiportbidirectional dc-dc converters[J]. Inst. Electr. Eng. Proc. Elect. Power Appl.,2006,153(15):451-458.
    [43] Haibing, Souhib Harb, Xiang Fang, Dehua Zhang, Qian Zhang, Z. John Shen,Issa Batarseh. A Three-port Flyback for PV Micro-Inverter Applications withPower Pulsation Decoupling Capability[J]. IEEE EARLY ACCESS.2012.
    [44] Hussam Al-Atrash, Michael Pepper, Issa Batarseh. A Zero-Voltage SwitchingThree-Port Isolated Full-Bridge Converter[C]. Telecommunications EnergyConference,2006. INTELEC '06.28th Annual International,2006:1-8.
    [45]陈维,沈辉,邓幼俊.太阳能光伏应用中的储能系统研究[J].蓄电池,2006,01:21-27.
    [46]张华民,周汉涛,赵平,等.储能技术的研究开发现状及展望[J].能源工程,2005,(3): l-7.
    [47] B.hargavaB, DishawG.. Applieation of an energy source power systemstabilizer on the10MW battery energy storage system at Chino substatio [J].IEEETransaetions on Power Systems,1998,13(1):145-151.
    [48]李义鹏,刘全桢,孙立富,刘宝全.独立光伏系统铅酸蓄电池剩余容量与电压的关系[J].蓄电池,2011,48(01):36-39.
    [49]任建成,郑士海,钱加平.光伏储能用VRLA蓄电池的设计与开发[J].蓄电池,2011,48(06):271-278.
    [50] G.L.Bullard, H.B.Sierra-Alcazar, H.L.Lee, etal. Operating Principles of theUltracapacitor[J]. IEEE Transactions on Magnetics,1989,25(1):102-106.
    [51] ZorpetteG. SuPercharged ultra capacitors[J]. IEEE spectrum,2005,42(1):32-37.
    [52] HanC, HuangAQ, LID, etcai. Modeling and Design of a TransmissionUltracaPacitor(TUCAP)Integratlng Modular voltage Source Converter wit hUltracaPacitor Energy Storage[C]. Twenty-First annual IEEE Applied PowerElectronics Conference and ExPosition,2006:1104-1110.
    [53] kinjo T, SenjyU T, Urasakl N, etcal.output levelling of renewable energy byelectric double-layercapacitor applied for energy storage system[C]. IEEEtransaction on energy Conversion,2006,21(l):221-227.
    [54]张建成,黄立培,陈志业.飞轮储能系统及其运行控制技术研究[J].中国电机工程学报,2003,23(3):108-111.
    [55]汤双清,阎丽芬,廖道训.飞轮电池在分布式发电系统中的应用研究[J].水力发电,2004,30(2):58-62.
    [56] Sylvain Lemofouet, Alfred Rufer.Hybrid Energy Storage System based onComPressed air and SuPer CaPacitors with MEPT(Maximum Efficiency Poinitaeking)[C]. The2005international Power Electronics Conference,2005,(l):461-468.
    [57]张文亮,丘明,来小康.储能技术在电力系统中的应用明[J].电网技术,2008,32(7): l-9.
    [58]何永秀,关雷,蔡琪,等.抽水蓄能电站在电网中的保安功能与效益分析[J].电网技术,2004,28(10):54-57.
    [59]夏武祥.浅谈储能[J].风能,2011,11:40-43.
    [60] SutantoD. Power management solutions for energy management, powerquality and environmen using battery energy storage systems [C]. Proeeedingsof the IEEE1999Intemational Conference on Power Eleetronics and DriveSystems,1999,(l):15-21.
    [61]朱松然.铅蓄电池技术[M].机械工业出版社.北京:2002.1.
    [62]刘翔.具有恒压跟踪功能的新型太阳能充电器的研究与设计[J].电源技术应用.2002(6).
    [63]陈慧玲.延长独立光伏电站蓄电池使用寿命的措施探讨[J].蓄电池,2005,3:106-107.
    [64]陈贻焕,朱乾坤,李廷军.大容量铅酸蓄电池充电系统的实现[J].通信电源技术,2001,(2):21-24.
    [65] Armstrong,S, Glavin, M.E, Hurley, W.G..Comparison of battery chargingalgorithms for stand alone photovoltaic systems[C]. IEEE Power ElectronicsSpecialists Conference,2008:1469-1475.
    [66]史云鹏,王莹莹,李培芳.光伏系统中蓄电池充放电控制方案的探讨[J].太阳能学报,2005,26(1):86-89.
    [67] Kim H, Yu T. Choi S. Indirect Current Control Algorithm for UtilityInteractive Inverters in Distributed Generation Systems[J]. IEEE Trans. OnPE,2008,1342-1347.
    [68] Dixon J. W, Ooi B. T. Indirect Current Control of a Unity Power FactorSinusoidal Current Boost Type Three-Phase Rectifier [C]. IEEE Trans. On IE,35(4):508-515.
    [69]刘飞,邹云屏,李辉等.基于重复控制的电压源型逆变器输出电流波形控制方法[J].中国电机工程学报,2005,25(19):58-63.
    [70]查晓明,刘飞.光伏发电系统并网控制技术现状与发展(上)[J].变频器世界,2010(2):37-42.
    [71] V zquez Gerardo, Rodriguez Pedro, Ordo ez Rafael, et al. AdaptiveHysteresis Band Current Control for Transformerless Single-Phase PVInverters[C]. The Institute of Electrical and Electronics Engineers.35thAnnual Conference of the IEEE Industrial Electronics Society, IECON2009.Piscataway: IEEE Computer Society,2009:173-177.
    [72]赵振波,李和明.采用电流滞环调节器的电压矢量控制PWM整流器系统[J].电工技术学报.2004,1:31-34.
    [73]雷元超,陈春根.滞环比较PWM跟踪控制分析[J].水电能源科学.2004,3:83-85.
    [74] J.A. Gow, C.D. Manning. Photovoltaic Converter System Suitable for Use inSmall Scale Stand-Alone or Grid Connected Applications[J]. IEE Proc.-Electric Power Applications.2000,147(6):535-543.
    [75]阳红林,凌瑞林,黄首道.电压型PWM整流器控制方法的研究[J].电机电器技术.2003,3:7-10.
    [76] Niroomand M, Karshenas H R. Review and Comparision of Control Methodsfor Uninterruptible Power Supplies[C]. Industry University RelationOrganization Drive Committee.1st Power Electronic&Drive System&Technologies Conference. Tehran:Tarbiat Modares University,2010:18-23.
    [77]胡雪峰,谭国俊. SPWM逆变器复合控制策略[J].电工技术学报,2008,23(4):87-92,118.
    [78]张凯,康勇,熊健等.一种单片机无差拍控制逆变器系统研究[J].电力电子技术.1999,5:12-14.
    [79] Chen Bai-Feng, Gong Jin-Wu, Xiong Lan, et al. Analysis and Realization of aNovel Repetitive Controller in Active Power Filter System[C]. SingaporeSection IA/PEL Joint Chapter.2009International Conference on PowerElectronics and Drive Systems, PEDS2009. Piscataway: Institute of Electricaland Electronics Engineers Inc,2009:944-949.
    [80] Bolognai Silverio,Peretti Luca,Zigliotto Mauro. Inverter Non-IdealitiesOverride by Repetitive Control[C]. IEEE Industry Application Society.Proceedings of2007IEEE International Electric Machines and DrivesConference, IEMDC2007. Piscataway: Inst. of Elec. and Elec. Eng. ComputerSociety,2007,1:71-76.
    [81]裴雪军,段善旭,康勇,陈坚.基于重复控制与瞬时值反馈控制的逆变电源研究[J].电力电子技术.2002,2:12-14.
    [82]孔雪娟,王荆江,彭力,康勇等.基于内模原理的三相电压源逆变电源的波形控制技术[J].中国电机工程学报.2003,7:67-70.
    [83] M.B. Indgren. Analysis and Simulation of Digitally-Controlled Grid-connected PWM-Converters Using the Space-Vector Average Approximation[J]. IEEE Workshop on Computers in Power Electronics.1996:85-89.
    [84] Wang NianCHun, Sun Zuo, Kazuto Yukita, et al. Research of PV Model andMPPT Methods in Matlab[C]. IEEE Power and Energy Society.2010Asia-Pacific Power and Energy Engineering Conference, APPEEC2010-Proceedings. Piscataway: IEEE Computer Society,2010:1-4.
    [85]胡荣强,姜久春,王健强等.单周数字控制光伏并网逆变器设计[J].电力电子技术,2008,42(1):30-31.
    [86] P. Jintakosonwit, H. Fujita, H. Akagi. Control and Performance of A Fully-Digital-Controlled Shunt Active Filter for Installation on A Power DistributionSystem[J]. IEEE Transactions on power electronics,2002,17(1):132-140.
    [87] P. Jintakosonwit, H. Akagi, H. Fujita etc. Implementation and Performance ofAutomatic Gain Adjustment in A Shunt Active Filter for Harmonic DampingThroughout A Power Distribution System[J]. IEEE Transactions on PowerElectronics,2002,17(3):438-447.
    [88] G. Pfaff, A. Weschta, A. F. Wick. Design and Experimental Results of ABrushless Ac Servo Drive[J]. IEEE Trans. Ind. Applicat.,1984:814-821.
    [89] L. B. Brahim, A. Kawamura. Digital Current Regulation of Field-OrientedControlled Induction Motor Based on Predictive Flux Observer[J]. IEEETrans. Ind. Applicat.,1990:607-612.
    [90] J. Yin, L.C. Chang, C. Diduch. Recent developments in islanding detection fordistributed power generation[C]. The7th Large Engineering SystemsConferene on Power Engineering(LESCOPE).2004:124-128.
    [91] Mohamad Hasmaini, Crossley Peter A. Islanded Operation of UK RadialDistribution Earthing Strategy[C]. The Instisytion of Engineering andTechnology Proceedings of the44th International Universities PowerEngineering Conference, UPEC2009. Piscataway: IEEE Computer Society,2009:1-6.
    [92] M.E. Ropp, M. Begovic, A. Rohatgi. Analysis and performance assessment ofthe active frequency drift method of islanding prevention[J]. IEEE Trans. onEnergy Conversion.1999,14(3):810-816.
    [93] Liserre M, Pigazo A, Dell’Aquila A,et al. An Anti-islanding Method forSingle-phase Inverters Based on A Grid Voltage Sensorless Control[J]. IEEETransactions on Industrial Electronics,2006,53(5):1418-1426.
    [94] Kern Gregory A. SunSine300, Utility Interactive AC Module Anti-islandingTest Results[C]. Institute of Electrical and Electronic Engineers. ConferenceRecord of the IEEE Photovoltaic Specialists Conference. Piscataway: Instituteof Electrical and Electronics Engineers Inc,1997:1265-1268.
    [95] H. Karimi, A. Yazdani, R. Iravani. Negative-Sequence Current Injection forFast Islanding Detection of a Distributed Resource Unit[J]. IEEE Trans. onPower Electronics.2008,23(1):298-307.
    [96] Y. Jung, J. Choi, B. Yu, G. Yu, J. So, J. Choi. A novel active frequency driftmethod of islanding prevention for the grid-connected photovoltaicinverter[C]. Proc. of36th annual Power Electronics Specialists Conference(PESC).2005:1915-1921.
    [97] B. Yu, Y. Jung, J. So, H. Hwang, G. Yu. A robust anti-islanding method forgrid-connected photovoltaic inverter[C]. The4th World Conference onPhotovoltaic Energy Conversion.2006:2242-2245.
    [98] Kim Gyeong-Hun, Seo Hyo-Rong, Jang Seong-Jae, et al. PerformanceAnalysis of the Anti-Islanding Function of a PV-AF System under MultiplePV System Connections[C]. IEEJ Industry Applications Society. Proceedings-The12th International Conference on Electrical Machines and Systems,ICEMS2009. Piscataway: IEEE Computer Society,2009,1-5.
    [99] V. John, Z.H. Ye, A. Kolwalkar. Investigation of anti-islanding protection ofpower converter based distributed generators using frequency domainanalysis[J]. IEEE Trans. on Power Electronics.2004,19(5):1177-1183.
    [100] Y. Jung, J. Choi, B. Yu, G. Yu, J. So, J. Choi. A novel active frequency driftmethod of islanding prevention for the grid-connected photovoltaicinverter[C]. Proc. of36th annual Power Electronics Specialists Conference(PESC).2005:1915-1921.
    [101]刘方锐,余蜜,张宇,等.主动移频法在光伏并网逆变器并联运行下的孤岛检测机理研究[J].中国电机工程学报,2009,29(12):47-51.
    [102]鹿婷.太阳能光伏系统并网及其孤岛检测[D].华中科大学硕士论文,2006.
    [103]刘芙蓉,康勇,段善旭等.主动移频式孤岛检测方法的参数优化中国电机工程学报,2008,28:95-99.
    [104]余密.光伏发电并网与并联关键技术研究.华中科技大学博士学位论文.2009.
    [105] Picault D, Raision B, Bacha S. Guidelines for Evaluating Grid Connected PVSystem Topologies[C]. IEEE Industral Electronics Society.2009IEEEInternational Conference on Industrial Technology Piscataway: Institute ofElectrical and Electronics Engineers Inc,2009:1-5.
    [106] Freddy Chan,Hugo Calleja. Reliablity: A New Approach in Design ofInverters for PV Systems[C]. Natl. Council for Science and Technology ofMexico.10th IEEE International Power Electronics Congress. Piscataway:Institute of Electrical and Electronics Engineers Inc,2006:1-6.
    [107] Rodriguez C, Amaratunga G A J. Dynamic Maximum Power Injection Controlof AC Photovoltaic Modules Using Current-Mode Control[J]. IEE ElectricPower Applications,2006,153(1):83-87.
    [108] Wang Nianchun, Xu Qingshan, Shi Bin, et al. Research of Single-phaseInverter for PV Modules with MPPT[C]. IEEE Power and Energy IndustralEngineering Society.2009Asia-Pacific Power and Energy EngineeringConference, APPEEC2009-Proceedings. Piscataway: Inst. of Elec. and Elec.Eng. Computer Society,2009:1-4.
    [109] Tan Guanghui, Wang Jianze, Ji Yanchao. Soft-Switching Flyback Inverterwith Enhanced Power Decoupling for Photovoltaic Applications[J]. IETElectric Power Applications.2007,1(2):264-274.
    [110] Román Eduardo, Alonso Ricardo, Iba ez Pedro, et al. Intelligent PV Modulefor Grid-Connected PV Systems[J]. IEEE Transactions on IndustrialElectronics,2006,53(4):1066-1073.
    [111] Yuan Bo, Yang Xu, Li Donghao, et al. A New Architecture for HighEfficiency Maximum Power Point Tracking in Grid-Connected PhotovoltaicSystem[C]. IEEE Power Electronics Society.2009IEEE6th InternationalPower Electronics and Motion Control Conference, IPEMC'09. Piscataway:IEEE Computer Society,2009:2117-2121.
    [112] Li Yanlin, Oruganti Ramesh. A Flyback-CCM Inverter Scheme forPhotovoltaic AC Module Application[C]. Energy Systems Research Group atthe School of Electrical Engineering&Telecommunications University ofNew South Wales Sydney, Australia.2008Australasian Universities PowerEngineering Conference, AUPEC2008. Piscataway: Inst. of Elec. and Elec.Eng. Computer Society,2008:1-6.
    [113] Huang Yi, Wang Jin, Peng Fang Z, et al. Survey of the Power ConditioningSystem for PV Power Generation[C]. IEEE Power Electronics Society.37thIEEE Power Electronics Specialists Conference2006, PESC'06. Piscataway:Institute of Electrical and Electronics Engineers Inc.,2006:1-6.
    [114] Myrzik J M A,Calais M. String and Module Integrated Inverters for Single-phase Connected Photovoltaic Systems[C]. IEEE Power Engineering Society.IEEE Power Tech Conference Proceedings,2003IEEE Bologna. Piscataway:IEEE Service Center,2003,2.
    [115]马琳,金新民.无变压器结构光伏并网系统共模漏电流分析[J].太阳能学报,2009,30(7):883-888.
    [116] G.W. Hart. H.M. Branz, C.H. Cox. Experimental Tests of Open-LoopMaximum-Power-Point Tracking Techniques[J]. Solar Cells.1984,13:185-195.
    [117] D.J. Patterson. Electrical System Design for a Solar Powered Vehicle[C].Proc. of21st annual Power Electronics Specialists Conference (PESC).1990:618-622.
    [118] M.A.S. Masoum, H. Dehbonei, E.F. Fuchs. Theoretical and ExperimentalAnalyses of Photovoltaic Systems with Voltage and Current-Based MaximumPower-Point Tracking[J]. IEEE Trans. on Energy Conversion.2002,17(4):514-522.
    [119] T. Noguchi, S. Togashi, R. Nakamoto. Short-Current Pulse Based AdaptiveMaximum-Power-Point Tracking for Photovoltaic Power GenerationSystem[J]. IEEE proc. of the International Symposium on IndustrialElectronics(ISIE).2000:157-162.
    [120] Xiao Weidong, Ozog Nathan, Dunford William G.. Topology Study ofPhotovoltaic Interface for Maximum Power Point Tracking[J]. IEEETransactions on Industrial Electronics,2007,54(3):1696-1704.
    [121] Hart G. W, Branz H M, Cox C H. Experimental Tests of Open-LoopMaximum-Power-Point Tracking Techniques[J]. Solar Cells,1984,13(2):185-195.
    [122] Berrera M, Dolara A, Faranda R, et al. Experimental Test of Seven Widely-Adopted MPPT Alorithms[C]. The IEEE Power&Energy Society. IEEEBucharest Power Tech Conference. Piscataway: IEEE Computer Society,2009:1-8.
    [123] Sera Deaso, Teodorescu Remus, Hantschel Jochen, et al. Optimized MaximumPower Point Tracker for Fast-changing Environmental Conditions[J]. IEEETransactions on Industrial Electronics,2008,55(7):2629-2637.
    [124] N. Mutoh, T. Matuo, K. Okada, M. Sakai. Prediction-Data-Based Maximum-Power-Point-Tracking Method for Photovoltaic Power Generation Systems[C].Proc. of33rd annual Power Electronics Specialists Conference (PESC).2002:1489-1494.
    [125]刘邦银,段善旭,刘飞,等.基于改进扰动观察法的光伏阵列最大功率点跟踪[J].电工技术学报,2009,24(6):91-94.
    [126] J. W. Kimball, P. T. Krein. Discrete-Time Ripple Correlation Control forMaximum Power Point Tracking[J]. IEEE Trans. on Power Electronics.2008,23(5):2353-2362.
    [127] Y.H. Lim, D.C. Hamill. Simple Maximum Power Point Tracker forPhotovoltaic Arrays[J]. Electronics Letters.2000,36:997-999.
    [128] B. Bekker, H.J. Beukes. Finding an Optimal PV Panel Maximum Power PointTracking Method[C]. Proc. of7th AFRICON conference.2004:1125-1129.
    [129] Femia Nicola, Petrone Giovanni, Spagnuolo Giovanni, et al. Optimization ofPerturb and Observe Maximum Power Point Tracking Method[J]. IEEETransaction on Power Electronics,2005,20(4):963-973.
    [130] J.H.R. Enslin, D.B. Snyman. Simplified Feed-Forward Control of theMaximum Power Point in PV Installations[C]. Proc. of Int. Conf. Ind.Electron., Contr., Instrum., and automat.1992:548-553.
    [131] Luo Weiping, Han Gujing. The Algorithms Research of Maximum PowerPoint Tracking in Grid-Connected Photovoltaic Generation System[C]. TheInstitute of Electrical and Electronics Engineers.20092nd InternationalSymposium on Knowledge Acquisition and Modeling, KAM2009.Piscataway: IEEE Computer Society,2009:77-80.
    [132] Tan Guanghui, Wang Jianze, Wang Rutian, Ji Yanchao. A New SPWMControlled Three-Switch Buck-Boost Inverter for Distributed GenerationApplications[C]. International Conference on Power System Technology(POWERCON).2006. CDROM
    [133] D. Sera, R. Teodorescu, J. Hantschel, M. Knoll. Optimized Maximum PowerPoint Tracker for Fast-Changing Environmental Conditions[J]. IEEE Trans. onIndustrial Electronics.2008,55(7):2629-2637.
    [134]光伏系统并网技术要求[S].中华人民共和国国家标准GB/T19939-2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700