一类时滞动力系统的规范型计算及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在自然界和工程系统中,广泛存在着时滞现象。随着人们对时滞现象的认识深化,越来越多的科学研究涉及到时滞动力系统。现有的滞后型和中立型时滞微分方程能很好描述一大类常见的时滞动力系统,故本文以滞后型和中立型时滞微分方程为研究对象。文中的时滞动力系统皆是由这两类时滞微分方程所描述的、含定常时滞的动力系统。
     时滞动力系统的无穷维特性使得其分析比无时滞动力系统要复杂的多。规范型理论作为研究非线性动力系统在非双曲平衡点附近局部动力学的常用工具,在应用于时滞动力系统时会涉及非常复杂的代数推导运算,耗时且极易出错。因此,本文提出一套基于规范型理论的符号算法,并通过计算机代数系统Maple实现,可用于滞后型和中立型时滞微分方程关于Hopf分叉的规范型计算。与现有的符号算法不同,该算法可同时对时滞动力系统进行中心流形降维和规范型计算,而不需要先计算得到中心流形后再对中心流形上的动力方程进行规范型计算。实现该算法的Maple程序对使用者没有关于掌握规范型理论的要求,使用者只需要提供描述系统的时滞微分方程的基本信息,该Maple程序即可提供时滞动力系统关于Hopf分叉的规范型。
     文中应用两种多尺度法方案(多尺度法1,多尺度法2)对时滞动力系统关于Hopf分叉的规范型进行分析,并将结果与上述Maple程序的结果进行了对比,得到以下结论:
     多尺度法1得到的规范型与规范型理论的结果完全一致,即为系统动力学在中心流形上投影所得到的结果。
     多尺度法2得到的规范型与规范型理论的结果不一致,但在分叉点附近,这两种方法的定性结果是一致的。应用多尺度法2所获得的并不是系统在中心流形上的投影,而是系统在一个不断变动流形上的投影,当时滞项是小量且分叉周期解的频率变化不大时,多尺度法2不仅能研究Hopf分叉点附近的周期解及其稳定性,还能研究系统关于分叉参数的大范围Hopf分叉行为。
     本文以时滞状态反馈下的van der Pol系统(滞后型时滞微分方程)以及含时滞位移反馈的集装箱起重机系统的三阶非线性模型(中立型时滞微分方程)为例,应用上述Maple程序以及多尺度法,对系统的Hopf分叉行为进行了细致分析。研究结果表明,当分叉参数远离分叉点时于,系统的分叉周期解支具有可持续性。由于起重机系统需要避免发生亚临界Hopf分叉,关Hopf分叉的分析结果对于如何选择增益及时滞大小具有指导意义。
     此外,为了验证理论分析结果,本文应用时滞动力系统数值分析软件(如DDE-BIFTOOL,RADAR5等)对上述算例进行了数值分析。对比研究表明,规范型理论和多尺度法是非常有效的动力学分析工具,计算规范型的Maple程序正确且有效,可以作为基础进一步发展相应的符号计算软件。
Due to the ubiquitous existence of “delay” effect in nature and engineering systems, there hasbeen an increasing interest in delayed dynamic systems. A wide type of delayed dynamic systems canbe modeled by Retarded Delay Differential Equations (RDDEs) and Neutral Delay DifferentialEquations (NDDEs). Therefore, the main objects of this study are dynamical systems characterized byRDDEs and NDDEs with constant delays.
     The infinite dimensionality renders the analysis of Delay Differential Equations (DDEs) muchmore difficult than that of Ordinary Differential Equations (ODEs). Normal form theory is one of themost powerful tools for studying the local dynamics around a nonhyperbolic equilibrium. However,when it comes to applying the normal form theory on DDEs, complicated and time-consumingalgebra deduction is often involved. This study presents symbolic computation schemes and acorresponding Maple program for computing the normal forms of Hopf bifurcations in RDDEs andNDDEs with bifurcating parameters. The schemes have the center manifold reduction and normalform calculation processed at the same time, not like the existing ones, which firist comput the centermainfold and then derive the normal form of the dynamic equation on the center manifold. The Mapleprogram requires no knowledge of the normal form theory. It will provide the normal form of Hopfbifurcation of required order with only the basic information of the system equation being input.
     This study also applies two different ways of Method of Multiple Scales (MMS), which arelabeled as MMS1and MMS2, respectively, to studying the Hopf bifurcation of DDEs. By comparingthe normal forms obtained by MMS1, MMS2and the Maple program, the following conclusions canbe derived.
     1) The normal forms derived via MMS1are in a full agreement with that obtained by the normalform theory, which means MMS1actully projects the system on the center manifold for the purposeof computing the normal forms.
     2) The normal forms obtained via MMS2and the normal form theory differ from each other.However, both results describe the same dynamics around the bifurcation point. The comparisionreveals that MMS2does not project the system on the center manifold but on some moving manifold.When the terms related with delay are comparatively small and the frequency of the bifurcatedperiodic motion doesn’t vary a lot, one can use MMS2to get the global view of the Hopf bifurcation.
     To illustrate the power of the Maple program and MMS, this paper presents a detailed study of Hopf bifurcations of a van der Pol system with delayed state feedback (an RDDE) and a three-orderapproximated nonlinear model of a crane container with delayed displacement feedback (an NDDE).The results show that Hopf bifurcated periodic motions persist when the bifurcation parameter variesfar from the bifurcation point. The Hopf bifurcation analysis also suggests how to choose feedbackgain and time delay as the subcritical Hopf bifurcation should be avoided in the crane containersystem.
     Moreover, to verify the analytical analysis, some related numerical softwares, such asDDE-BIFTOOL and RADAR5, are used to conduct numerical analysis. The results indicate that boththe normal form theory and MMS are very powerful methods for analyzing local dynamics of DDEsand the Maple program is an effective and trustable tool and can be expected as the basis of a futuresymbolic software.
引文
[1] Erneux T. Applied Delay Differential Equations. New York: Springer Science+Business Medis,2009.
    [2]徐鉴,裴利军.时滞系统动力学近期研究进展与展望.力学进展,2006,36(1):17-30.
    [3]胡海岩,王在华.非线性时滞动力系统的研究进展.力学进展,1999,29(04):501-512.
    [4] Kyrychko Y N, Hogan S J. On the use of delay equations in engineering applications. Journal ofVibration and Control,2010,16(7-8):943-960.
    [5] Quintana G, Ciurana J. Chatter in machining processes: A review. International Journal ofMachine Tools&Manufacture,2011,51(5):363-376.
    [6] Seguy S, Insperger T, Arnaud L, et al. Suppression of period doubling chatter in high-speedmilling by spindle speed variation. Machining Science and Technology,2011,15(PII9380210952):153-171.
    [7] Long X H, Balachandran B. Stability of up-milling and down-milling operations with variablespindle speed. Journal of Vibration and Control,2010,16(7-8SI):1151-1168.
    [8] Seguy S, Insperger T, Arnaud L, et al. On the stability of high-speed milling with spindle speedvariation. International Journal of Advanced Manufacturing Technology,2010,48(9-12):883-895.
    [9] Long X H, Balachandran B, Mann B P. Dynamics of milling processes with variable time delays.Nonlinear Dynamics,2007,47(1-3):49-63.
    [10] Insperger T, Gradisek J, Kalveram M, et al. Machine tool chatter and surface location error inmilling processes. Journal of Manufacturing Science and Engineering,2006,128(4):913-920.
    [11] Szalai R, Stepan G. Lobes and lenses in the stability chart of interrupted turning. ASME Journalof Computational and Nonlinear Dynamics,2006,1(3):205-211.
    [12] Stepan G, Szalai R. Period doubling bifurcation and center manifold reduction in a time-periodicand time-delayed model of machining. Journal of Nonlinear Science,2006,16(7-8):1169-1187.
    [13] Stepan G, Szalai R, Mann B P, et al. Nonlinear dynamics of high-speed milling---analyses,numerics, and experiments. ASME Journal of Vibration and Acoustics,2005,127(2):197-203.
    [14] Stepan G, Insperger T, Szalai R. Delay, parametric excitation, and the nonlinear dynamics ofcutting processes. International Journal of Bifurcation and Chaos,2005,15(9):2783-2798.
    [15] Insperger T, Stepan G. Vibration frequencies in high-speed milling processes or a positiveanswer to Davies, Pratt, Dutterer and Burns. Journal of Manufacturing Science and Engineering,2004,126(3):481-487.
    [16] Stone E, Campbell S A. Stability and bifurcation analysis of a nonlinear DDE model for drilling.Journal of Nonlinear Science,2004,14(1):27-57.
    [17] Stone E, Askari A. Nonlinear models of chatter in drilling processes. Dynamical Systems: AnInternational Journal,2002,17(1):65-85.
    [18] Kyrychko Y N, Blyuss K B, Gonzalez-Buelga A, et al. Real-time dynamic substructuring in acoupled oscillator–pendulum system. Proceedings of the Royal Society A: Mathematical,Physical and Engineering Science,2006,462(2068):1271-1294.
    [19] Kyrychko Y N, Blyuss K B, Gonzalez-Buelga A, et al. Stability switches in a neutral delaydifferential equation with application to real-time dynamic substructuring. Applied Mechanicsand Materials,2006,5-6:79-84.
    [20] Mao X C. Stability and Hopf bifurcation analysis of a pair of three-neuron loops with timedelays. Nonlinear Dynamics,2011,68(1-2):1-9.
    [21] Mao X C, Hu H Y. Stability and bifurcation analysis of a network of four neurons with timedelays. ASME Journal of Computational and Nonlinear Dynamics,2010,5(0410014).
    [22] Mao X C, Hu H Y. Dynamics of a delayed four-neuron network with a short-cut connection:analytical, numerical and experimental Studies. International Journal of Nonlinear Sciences andNumerical Simulation,2009,10(4):523-538.
    [23] Mao X C, Hu H Y. Hopf bifurcation analysis of a four-neuron network with multiple time delays.Nonlinear Dynamics,2009,55(1):95-112.
    [24] Campbell S A, Ncube I, Wu J. Multistability and stable asynchronous periodic oscillations in amultiple-delayed neural system. Physica D: Nonlinear Phenomena,2006,214(2):101-119.
    [25] Liao X, Liu Q, Zhang W. Delay-dependent asymptotic stability for neural networks withdistributed delays. Nonlinear Analysis: Real World Applications,2006,7(5):1178-1192.
    [26] Liao X, Wong K, Wu Z. Bifurcation analysis on a two-neuron system with distributed delays.Physica D: Nonlinear Phenomena,2001,149(1-2):123-141.
    [27] Gopalsamy K, Leung I. Delay induced periodicity in a neural netlet of excitation and inhibition.Physica D: Nonlinear Phenomena,1996,89(3-4):395-426.
    [28] Erzgraber H, Just W. Global view on a nonlinear oscillator subject to time-delayed feedbackcontrol. Physica D-Nonlinear Phenomena,2009,238(16):1680-1687.
    [29] Erzgraber H, Wille E, Krauskopf B, et al. Amplitude-phase dynamics near the locking region oftwo delay-coupled semiconductor lasers. Nonlinearity,2009,22(3):585-600.
    [30] Wieczorek S M, Global Bifurcation Analysis in Laser Systems. In Numerical ContinuationMethods for Dynamical Systems, Krauskopf B, Osinga H M, Galan-Vioque J,''Eds.'; Springer:The Netherlands,2007,177-220.
    [31] Erzgraber H, Krauskopf B, Lenstra D, et al. Frequency versus relaxation oscillations in asemiconductor laser with coherent filtered optical feedback. Physical Review E,2006,73(2):1-4.
    [32] Erzgraber H, Krauskopf B, Lenstra D. Compound laser modes of mutually delay-coupled lasers.SIAM Journal of Applied Dynamical Systems,2006,5(1):30-65.
    [33] Wieczorek S, Krauskopf B. Bifurcations of n-homoclinic orbits in optically injected lasers.Nonlinearity,2005,18(3):1095-1120.
    [34] Erzgraber H, Lenstra D, Krauskopf B, et al. Mutually delay-coupled semiconductor lasers: Modebifurcation scenarios. Optics Communications,2005,255(4-6):286-296.
    [35] Erzgraber H, Krauskopf B, Lenstra D. Mode structure of delay-coupled semiconductor lasers:influence of the pump current. Journal of Optics B-Quantum and Semiclassical Optics,2005,7(11):361-371.
    [36] Wunsche H J, Bauer S, Kreissl J, et al. Synchronization of delay-coupled oscillators: A study ofsemiconductor lasers. Physical Review Letters,2005,94(16390116).
    [37] Green K, Krauskopf B, Engelborghs K. One-dimensional unstable eigenfunction and manifoldcomputations in delay differential equations. Journal of Computational Physics,2004,197(1):86-98.
    [38] Green K, Krauskopf B, Samaey G. A two-parameter study of the locking region of asemiconductor laser subject to phase-conjugate feedback. SIAM Journal on Applied DynamicalSystems,2003,2(2):254-276.
    [39] Jin Y F, Xu M, Gao Z Y. KdV and kink-antikink solitons in an extended car-following model.ASEM Journal of Computational and Nonlinear Dynamics,2011,6(0110181).
    [40] Orosz G, Moehlis J, Bullo F. Robotic reactions: Delay-induced patterns in autonomous vehiclesystems. Physical Review E,2010,81(0252042Part2).
    [41] Orosz G, Wilson R E, Szalai R, et al. Exciting traffic jams: Nonlinear phenomena behind trafficjam formation on highways. Physical Review E,2009,80(0462054).
    [42] Takacs D, Orosz G, Stepan G. Delay effects in shimmy dynamics of wheels with stretchedstring-like tyres. European Journal of Mechanics A-Solids,2009,28(3):516-525.
    [43] Orosz G, Stepan G. Subcritical Hopf bifurcations in a car-following model with reaction-timedelay. Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences,2006,462(2073):2643-2670.
    [44] Pyragas K. Continuous control of chaos by self-controlling feedback. Physics Letters A,1992,170(6):421-428.
    [45] Pyragas K, Tama evi ius A. Experimental control of chaos by delayed self-controlling feedback.Physics Letters A,1993,180(1-2):99-102.
    [46] Pyragas K. Delayed feedback control of chaos. Philosophical Transactions of The Royal Societyof London Series A-Mathematical Physical And Engineering Sciences,2006,364(1846):2309-2334.
    [47] Zheng Y G, Wang Z H. Stability and Hopf bifurcation of a class of TCP/AQM networks.Nonlinear Analysis: Real World Applicatons,2010,11(3):1552-1559.
    [48]王在华,李俊余.时滞状态正反馈在振动控制中的新特征.力学学报,2010,42(5):933-942.
    [49] Haraguchi M, Hu H Y. Stability analysis of a noise control system in a duct by using delaydifferential equation. Acta Mechanica Sinica,2009,25(1):131-137.
    [50] Fliess M, Mounier H, Rouchon P, et al, Controllability and motion planning for linear delaysystems with an application to a flexible rod. Proceedings of the34th IEEE Conference onDecision and Control,1995.
    [51] Chatterjee S, Mandal A K. On the efficacy of an inertial active device with internal time-delayedfeedback for controlling self-excited oscillations. Journal of Sound and Vibration,2010,329(13):2435-2449.
    [52] Chatterjee S, Mahata P. Controlling friction-induced instability by recursive time-delayedacceleration feedback. Journal of Sound and Vibration,2009,328(1-2):9-28.
    [53] Qiu Z C, Han J D, Zhang X M, et al. Active vibration control of a flexible beam using anon-collocated acceleration sensor and piezoelectric patch actuator. Journal of Sound andVibration,2009,326(3-5):438-455.
    [54] Chatterjee S. Vibration control by recursive time-delayed acceleration feedback. Journal ofSound and Vibration,2008,317(1-2):67-90.
    [55] Kolmanovskii V, Myshkis A. Introduction to the Theory and Application of FunctionalDifferential Equations. Dodrecht: Kluwer,1999.
    [56] Hale J K, Verduyn Lunel S M. Introduction to Functional Differential Equations. New York:Springer,1993.
    [57] Stepan G. Retarded ynamical Systems: Stability and Characteristic Functions. New York:Longman Group,1989.
    [58] Nayfeh A H. Perturbation Methods. New York: Wiley-Interscience,1973.
    [59] Niculescu S. Delay Effects on Stability: A Robust Control Approach. London: Springer-Verlag,2001.
    [60] Marshall J E, Gorecki H, Korytowski A, et al. Time-Delay Systems: Stability and PerformanceCriteria with Applications. New York: Ellis Horwood,1992.
    [61] Michiels W, Niculescu S. Stability and Stabilization of Time-Delay Systems: anEigenvalue-based Approach. Philadelphia: SIAM,2007.
    [62] Hassard B D. Counting roots of the characteristic equation for linear delay-differential systems.Journal of Differential Equations,1997,2(136):222-235.
    [63] Olgac N, Elmali H, Vijayan S. Introduction to the dual frequency fixed delayed resonator.Journal of Sound and Vibration,1996,3(189):355-367.
    [64] Zhang L, Yang C Y, Chajes M J, et al. Stability of active tedndon structural control with timedelay. ASCE Journal of Engineering Mechanics,1993,5(119):1017-1024.
    [65] Palkovics L, Venhovens P J T. Investigation on stability and possible chaotic motions in thecontrolled wheel suspension systems. Vehicle System Dynamics,1992,5(21):269-296.
    [66] Hu H Y, Wang Z H. Dynamics of controlled Mechanical Systems with Delayed Feedback. Berlin:Springer-Verlag,2002.
    [67] Li J, Zhang L, Wang Z. Two effective stability criteria for linear time-delay systems withcomplex coefficients. Journal of Systems Science and Complexity,2011,24(5):835-849.
    [68] Wang Z H, Hu H Y. An energy analysis of the local dynamics of a delayed oscillator near aHopf bifurcation. Nonlinear Dynamics,2006,46(1-2):149-159.
    [69] Wang Z H, Hu H Y. Pseudo-oscillator analysis of scalar nonlinear time-delay systems near aHopf bifurcation. International Journal of Bifurcation and Chaos,2007,17(8):2805-2814.
    [70] Claeyssen J R. The integral-averaging bifurcation method and the general one-delay equation.Journal of Mathematical Analysis and Applications,1980,78(2):429-439.
    [71] Wang H L, Hu H Y, Wang Z H. Hopf bifurcation of an oscillator with quadratic and cubicnonlinearities and with delayed velocity feedback. Acta Mechanica Sinica,2004,20(4):426-434.
    [72] Hu H Y, Dowell E H, Virgin L N. Resonances of a harmonically forced Duffing oscillator withtime delay state feedback. Nonlinear Dynamics,1998,15(4):311-327.
    [73] Das S L, Chatterjee A. Multiple scales without center manifold reductions for delay differentialequations near Hopf bifurcations. Nonlinear Dynamics,2002,30(4):323-335.
    [74] Wang H L, Hu H Y, Wang Z H. Global dynamics of a Duffing oscillator with delayeddisplacement feedback. International Journal of Bifurcation and Chaos,2004,14(8):2753-2775.
    [75] Wang H L, Hu H Y. Bifurcation analysis of a delayed dynamic system via method of multiplescales and shooting technique. International Journal of Bifurcation and Chaos,2005,15(2):425-450.
    [76] Casal A, Freedman M M. A Poincare-Lindstedt approach to bifurcation problems fordifferential-delay equaitons. IEEE Transactions on Automatic Control,1980,25(5):967-973.
    [77] Morris H C. A perturbative approach to periodic solutions of delay-differential equations. IMAJournal of Applied Mathematics,2001,18(1):15-24.
    [78] MacDonald N. Harmonic balance in delay-differential equations. Journal of Sound andVibration,1995,186(4):649-656.
    [79] Arino O, Hbid M L, Ait Dads E. Delay Differential Equations and Applications. TheNetherlands: Springer,2006.
    [80] Faria T, Magalhaes L T. Normal forms for retarded functional differential equations andapplications to Bogdanov-Takens singularity. Journal of Differential Equations,1995,122(2):201-224.
    [81] Faria T, Magalhaes L T. Normal forms for retardee functional differential equaitons withparameters and applications to Hopf singularity. Journal of Differential Equations,1995,122(2):181-200.
    [82] Li J, Wang Z H. Hopf bifurcation of a nonlinear Lasota-Wazewska-type population model withmaturation delay. Dynamics of Continuous Discrete and Impulsive Systems-SeriesB-Applications&Algorithms,2007,14(5):611-623.
    [83] Gao F, Wang H L, Wang Z H. Hopf bifurcation of a nonlinear delayed system of machine toolvibration via pseudo-oscillator analysis. Nonlinear Analysis: Real World Applications,2007,8(5):1561-1568.
    [84] Li J Y. Hopf bifurcation of the sunflower equation. Nonliner Analysis: Real World Applications,2009,10(4):2574-2580.
    [85] Zhang L L, Huang L H, Zhang Z Z. Hopf bifurcation of the maglev time-delay feedback systemvia pseudo-oscillator analysis. Mathematical and Computer Modelling,2010,52(5-6):667-673.
    [86] Xu J, Lu Q. Hopf bifurcation of time-delay Lienard equations. International Journal ofBifurcation and Chaos,1999,9(9):939-951.
    [87] Zhang L, Wang H L, Hu H Y. Global view of Hopf bifurcations of a van der Pol oscillator withdelayed state feedback. Science China-Technological Sciences,2010,53(3):595-607.
    [88] Nayfeh A H. Order reduction of retarded nonlinear systems-the method of multiple scales versuscenter-manifold reduction. Nonlinear Dynamics,2008,51(4):483-500.
    [89]王怀磊.时滞状态反馈下Duffing系统动力学研究,[博士学位论文].南京航空航天大学,2003.
    [90] Krauskopf B, Osinga H M, Galan-Vioque J. Numerical Continuation Methods for DynamicalSystems: Path Following and Boundary Value Problems. The Netherlands: Springer,2007.
    [91] Engelborghs K, Roose D. On stability of LMS methods and characteristic roots of delaydifferential equations. SIAM Journal on Numerical Analysis,2002,2(40):629-650.
    [92] Breda D, Maset S, Vermiglio R. Pseudospectral approximation of eigenvalues of derivativeoperators with non-local boundary conditions. Applied Numerical Mathematics,2006,56(3-4):318-331.
    [93] Breda D, Maset S, Vermiglio R. Solution operator approximation for delay differential equationcharacteristic roots computation via Runge-Kutta methods. Applied Numerical Mathematics,2006,56(3-4):305-317.
    [94] Breda D, Maset S, Vermiglio R. Computing the characteristic roots for delay differentialequations. IMA Journal of Numerical Analysis,2004,24(1):1-19.
    [95] Hu H Y, Dowell E H, Virgin L N. Stabilty estimation of high dimensional vibrating systemsunder state delay feedback control. Journal of Sound and Vibration,1998,214(3):497-511.
    [96] Wang Z H, Hu H Y. Calculation of the rightmost characteristic root of retarded time-delaysystems via Lambert W function. Journal of Sound and Vibration,2008,318(4-5):757-767.
    [97] Wang Z H. Numerical Stability test of neutral delay differential equaitons. MathematicalProblems in Engineering,2008,2008(698043):1-10.
    [98] Bellen A, Zennaro M. Numerical Methods for Delay Differential Equations. Oxford: ClarendonPress,2003.
    [99] Engelborghs K. Numerical Bifurcation Analysis of Delay Differential Equations,[博士学位论文]. KU Leuven,2000.
    [100] Sun J, Song B. Solutions of the FPK equation for time-delayed dynamical systems with thecontinuous time approximation method. Probabilistic Engineering Mechanics,2012,27(1):69-1173.
    [101] Song B, Sun J. Lowpass filter-based continuous-time approximation of delayed dynamicalsystems. Journal of Vibration and Control,2011,17(8):1173-1183.
    [102] Paul C A H. A user guide to ARCHI-An explicit (Runge-Kutta) code for solving delay andneutral differential equations. NA Report283,1995.
    [103] Shampine L F, Thompson S. Solving DDEs in Matlab. Applied Numerical Mathematics,2001,37(4):441-458.
    [104] Corwin S P, Sarafyan D, Thompson S. DKLAG6: a code based on continuously imbeddedsixth-order Runge-Kutta methods for the solution of state-dependent functional differentialequations. Applied Numerical Mathematics,1997,24(2-3):319-330.
    [105] Enright W H, Hayashi H. A delay differential equation solver based on a continuousRunge–Kutta method with defect control. Numerical Algorithms,1997,16(3):349-364.
    [106] Hairer E, Noresett S P, Wanner G. Solving Ordinary Differential Equations1, Nonstiff Problems.Berlin: Springer-Verlag,1993.
    [107] Avrutin V, Lammert R, Schanz M, et al. Ant4.669-a Tool for Simulating and InvestigatingDynamical Systems.2002.
    [108] Ermentrout B. XPPAUT5.41-the Differential Equations Tool.2003.
    [109] Aguirregabiria J M, Bel L, Hernandez A, et al. Regular order reductions of ordinary anddelay-differential equations. Computer Physics Communications,1999,116(1):95-106.
    [110] Kim A V. Time-Delay System Toolbox, User's Guide. Institute of Mahtematics and Mechanics,Russian Academy of Sciences and Engineering Research Center for Advanced Control andInstrumentation, Seoul National University,1999.
    [111] Thompson S, Shampine L F. A friendly Fortran DDE solver. Applied Numerical Mathematics,2005,56(3-4):503-516.
    [112] Woo S N. Solv95: a Numerical Solver for Systems of Delay Differential Equations with Switches.
    [113] Butcher J C. The adaptation of STRIDE to delay differential equations. Applied NumericalMathematics,1992,9(3-5):415-425.
    [114] Weiner R, Strehmel K. A type insensitive code for delay differential equations basing on adaptiveand explicit Runge-Kutta interpolation methods. Computing,1988,40(3):255-265.
    [115] Tavernini L. A user-friendly interactive turbo pascal simulation toolkit. Simulation,1989,53(2):45-55.
    [116] Bocharov G A, Marchuk G I, Romanyukha A A. Numerical solution by LMMs of stiff delaydifferential systems modelling an immune response. Numerische Mathematik,1996,73(2):131-148.
    [117] Jackiewicz Z, Lo E. The numerical solution of neutral functional differential equations by Adamspredictor-corrector methods. Applied Numerical Mathematics,1991,8(6):477-491.
    [118] Guglielmi N, Hairer E. Users' Guide for the code RADAR5-Version2.1.2005.
    [119] Guglielmi N, Hairer E. Implementing Radau IIA Methods for Stiff Delay Differential Equations.Computing,2001,67(1):1-12.
    [120] Guglielmi N. Open issues in devising software for the numerical solution of implicit delaydifferential equations. Journal of Computational and Applied Mathematics,2006,185(2):261-277.
    [121] Hadeler K P. Effective computation of periodic orbits and bifurcation diagrams in delayequations. Numerische Mathematik,1980,34(4):457-467.
    [122] Luzyanina T, Engelborghs K, Lust K, et al. Computation, continuation and bifurcation analysis ofperiodic solutions of delay differential equation. International Journal of Bifurcation and Chaos,1997,7(11):2547-2560.
    [123] Bellen A, Zennaro M. A collocation method for boundary value problems of differentialequations with functional arguments. Computing,1984,32(4):307-318.
    [124] Engelborghs K, Luzyanina T, In T H, et al. Collocation Methods for the Computation of PeriodicSoutions of Delay Differential Equations. SIAM Journal on Scientific Computing,2000,22(5):1593-1609.
    [125] Luzyanina T, Engelborghs K, Roose D. Numerical Bifurcation Analysis of Differential Equationswith State-Dependent Delay. International Journal of Bifurcation and Chaos,2001,11(3):737.
    [126] Luzyanina T, Roose D. Periodic solutions of differential algebraic equations with time delays::computation and stability analysis. International Journal of Bifurcation and Chaos,2006,16(1):67-84.
    [127] Barton A W, Krauskopf B, Wilson R E. Collocation schemes for periodic solutions of neutraldelay differential equations. Journal of Difference Equations and Applications,2006,12(11):1087-1101.
    [128] Barton D A W, Krauskopf B, Wilson R E. Homoclinic bifurcations in a neutral delay model of atransmission line oscillator. Nonlinearity,2007,20(4):809-829.
    [129] Szalai R, Stepan G, Hogan S J. Continuation of Bifurcations in Periodic Delay-DifferentialEquations Using Characteristic Matrices. SIAM Journal on Scientific Computing,2006,28(4):1301-1317.
    [130] Samaey G, Engelborghs K, Roose D. Numerical Computation of Connecting Orbits in DelayDifferential Equations. Numerical Algorithms,2002,30(3):335-352.
    [131] Engelborghs K, Luzyanina T, Samaey G. DDE-BIFTOOL v.2.00: A Matlab Package forBifurcation Analysis of Delay Differential Equations.2001.
    [132] Szalai R. PDDE-CONT: A Continuation and Bifurcation Software for Delay-DifferentialEquations.2008.
    [133] Lau S L, Cheung Y K. Amplitude incremental variational principle for nonlinear vibration ofelastic systems. ASEM Journal of Applied Mechanics,1981,48:959-964.
    [134] Raghothama A, Narayanan S. Periodic response and chaos in nonlinear systems with parametricexcitation excitation and time delay. Nonlinear Dynamics,2002,27(4):341-365.
    [135] Xu J, Chung K. Delay reduced double Hopf bifurcation in a limit cycle oscillator: extension of aperturbation-incremental method. Dynamics of Continuous and Impulsive Systems B,2004,11:136-143.
    [136] Chung K W, Chan C L, Xu J. A Perturbation-Incremental method for delay differentialequations. International Journal of Bifurcation and Chaos,2006,16(9):2529-2544.
    [137] Chan H S Y, Chung K W, Xu Z. A perturbation-incremental method for stronglynon-linearoscillators. International Journal of Non-Linear Mechanics,1996,31(1):59-72.
    [138] Henrard J, Meyrer K R. Averaging and bifurcation in symmetric systems. SIAM Journal ofApplied Mathematics,1977,32(1):133-145.
    [139] Chen Y S, Zhang Q C. A new method for solving asymptotic solutions of nonlinear vibrationsystems-simple method for computing normal forms of vector field. Acta Mechanica Sinica,1990,22:413-419.
    [140] Bi Q, Yu P. Symbolic computation of normal forms for semi-simple cases. Journal ofComputational and Applied Mathematics,1999,102(2):195-220.
    [141] Bi Q S, Yu P. Symbolic software development for computing the normal form of double Hopfbifurcation. Mathematical and Computer Modelling,1999,29(9):49-70.
    [142] Zhu S, Yu P. Computation of the normal forms for general M-DOF systems using multiple timescales. Part II: non-autonomous systems. Communications in Nonlinear Science and NumericalSimulation,2006,11(1):45-81.
    [143] Yu P, Zhu S. Computation of the normal forms for general M-DOF systems using multiple timescales. Part I: autonomous systems. Communications in Nonlinear Science and NumericalSimulation,2005,10(8):869-905.
    [144] Ushiki S. Normal forms for singularities of vector fields. Japan Journal of Applied Mathematics,1984,1(1):1-37.
    [145] Yu P, Leung A Y T. A perturbation method for computing the simplest normal forms ofdynamical systems. Journal of Sound and Vibration,2003,261(1):123-151.
    [146] Yu P. Computation of the simplest normal forms with perturbation parameters based on Lietransform and rescaling. Journal of Computational and Applied Mathematics,2002,144(1-2):359-373.
    [147] Campbell S A, Belair J. Analytical and symbolically assisted investigation of Hopf bifurcationsin delay-differential equations. Canadian Applied Math Quarterly,1995,3(2):137-154.
    [148] Babram M A, Arino O, Hbid M L. Computational scheme of a center manifold for neutralfunctional differential equations. Journal of Mathematical Analysis and Applications,2001,258(2):396-414.
    [149] Babram M A, Hbid M L, Arino O. Approximation scheme of a center manifold for functionaldifferential equations. Journal of Mathematical Analysis and Applications,1997,213(2):554-572.
    [150] Babram M, An Algorithmic Scheme for Approximating Center Manifolds and Normal Forms forFunctional Differential Equations. In Delay Differential Equations and Applications, Arino O,Hbid M L, Ait Dads E,''Eds.'2006,193-226.
    [151] Chow S N, Mallet-Paret J. Integral Averaging and Bifurcation. Journal of Differential Equation,1977,26(2):112-159.
    [152] Faria T. On a planar system modelling a neuron network with memory. Journal of DifferentialEquations,2000,168(1):129-149.
    [153] Belair J, Campbell S A. Stability and bifurcations of equilibria in a multiple-delayed differentialequation. SIAM Journal on Applied Dynamical Systems,1994,54(5):1402-1424.
    [154] Qesmi R, Babram M A, Hbid M L. Symbolic computation for center manifolds and normal formsof Bogdanov bifurcation in retarded functional differential equations. Nonlinear Analysis-TheoryMethods and Applications,2007,66(12):2833-2851.
    [155] Qesmi R, Babram M A, Hbid M L. Center manifolds and normal forms for a class of retardedfunctional differential equations with parameter associated with Fold-Hopf singularity. AppliedMathematics and Computation,2006,181(1):220-246.
    [156] Qesmi R, Babram M A, Hbid M L. A Maple program for computing a terms of a center manifold,and element of bifurcations for a class of retarded functional differential equations with Hopfsingularity. Applied Mathematics and Computation,2006,175(2):932-968.
    [157] Guckenheimer J, Holmes P. Nonlinear Oscillations, Dynamical Systems and Bifurcations ofVector Fields. New York: Springer-Verlag,1983.
    [158] Liao X, Guo S, Li C. Stability and bifurcation analysis in tri-neuron model with time delay.Nonlinear Dynamics,2007,49(1-2):319-345.
    [159] Weedermann M. Normal formal for neutral functional differential equations. Fields InstituteCommunications,2001,29:361-368.
    [160] Wang C, Wei J. Normal forms for NFDEs with parameters and application to the losslesstransmission line. Nonlinear Dynamics,2008,52(3):199-206.
    [161] Qu Y, Li M Y, Wei J. Bifurcation analysis in a neutral differential equation. Journal ofMathematical Analysis and Applications,2011,378(2):387-402.
    [162] Zhang L, Wang H L, Hu H Y, Hopf bifurcation of a cubic strongly nonlinear autonomousoscillator with time-delayed acceleration Feedback. In8th International Bhurban Conference onApplied Science&Technology, Islamabad,2011.
    [163] Abdel-Rahman E M, Nayfeh A H, Masoud Z N. Dynamics and control of cranes: a review.Journal of Vibration and Control,2003,9(7):863-908.
    [164] Henry R J, Masoud Z N, Nayfeh A H, et al. Cargo pendulation reduction on ship-mounted cranesvia boom-luff angle actuation. Journal of Vibration and Control,2001,7(8):1253-1264.
    [165] Masoud Z N, Nayfeh A H. Sway reduction on container cranes using delayed feedback controller.Nonlinear Dynamics,2003,34(3-4):347-358.
    [166] Nayfeh N A. Adaptation of Delayed Position Feedback to the Reduction of Sway of ContainerCranes. Master's Thesis. Blacksburg, Virginia: Virginia Polytechnic Institute and StateUniveristy,2002.
    [167] Nayfeh N, Baumann W. Nonlinear analysis of time-delay position feedback control of containercranes. Nonlinear Dynamics,2008,53(1):75-88.
    [168] Chin C M, Nayfeh A H, Mook D T. Dynamics and control of ship-mounted cranes. Journal ofVibration and Control,2001,7(6):891-904.
    [169] Abell K A, Elmer C E, Humphries A R, et al. Computation of Mixed Type FunctionalDifferential Boundary Value Problems. SIAM Journal on Applied Dynamical Systems,2005,4:755-781.
    [170] Hupkes H, Lunel S. Center manifold theory for functional differential equations of mixed type.Journal of Dynamics and Differential Equations,2007,19(2):497-560.
    [171] Nayfeh A H. Methods of Normal Form. New York: Springer,1993.
    [172] Chow S N, Li C, Wang D. Normal Forms and Bifurcation of Planar Vector Fields. Cambridge:Cambridge University Press,1994.
    [173] Murdock J. Normal Forms and Unfoldings for Local Dynamical Systems. New York:Springer-Verlag,2002.
    [174]刘博.一类多自由度机械系统的时滞反馈镇定,[博士学位论文].南京航空航天大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700