一类微生物发酵的非线性混杂动力系统辨识及控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以微生物间歇发酵和批式流加发酵生产1,3-丙二醇为背景,研究了一类非线性混杂动力系统与非线性脉冲动力系统的建模、辨识和最优控制.另外,针对代谢物质跨膜运输机理的生物专家知识,研究了基于模糊专家知识的混合动力系统及参数辨识.这项研究不仅丰富了混杂系统、参数辨识、优化算法和不确定性建模等理论与数值计算方法,而且对提高终端产物的产量提供参考.因此,对该领域的研究具有一定的理论价值和实际应用价值.本文研究的工作可以概括为:
     1.针对一类脉冲流加形式的耦合批式流加发酵非线性脉冲动力系统,提出了最大化目标产物的最优控制模型,其中以底物甘油和碱液的流加体积和流加时刻为优化变量.依系统解集的紧性,证明了最优控制模型解的存在性.通过引入新的时间尺度函数,得到等价的最优控制问题.然后,根据约束转换和光滑近似技术,提出了基于梯度的优化算法.经数值计算,获得了最优流加体积和最优流加时刻的耦合批式流加发酵策略.
     2.提出了非线性混杂动力系统来描述带有开环控制和逻辑反馈控制的非耦合的批式流加发酵过程.证明了系统的性质和系统解的适定性.为了确定系统参数,建立了带有混杂动力系统为约束的参数辨识模型.根据灵敏度函数和光滑函数,给出了约束泛函和成本泛函关于参数的一阶偏导数.最后构造了一个基于梯度搜索方向的优化算法.数值计算结果表明提出的混杂动力系统的合理性,及本文给出的优化算法的可行性.
     3.依模糊系统表达生物专家知识,并与酶催化动力系统相结合构造了描述甘油间歇发酵过程的非线性混合动力系统.证明了系统的主要性质.为了估计系统参数和模糊系统的隶属度函数,提出了一个带有混合系统和连续状态不等式约束的辨识模型,并证明了该辨识模型的可辨识性.基于改进的粒子群优化算法和罚函数法,构造了一个优化算法.数值计算结果表明了提出的混合系统不仅能描述甘油间歇发酵过程而且还能反映出甘油发酵过程中的专家知识.
This dissertation is based on the background of microbial production of1,3-Propanediol in the batch and fed-batch fermentation of glycerol by Klebsiella pneumoniae. This dissertation studies the modelling, system identification and optimization of this class fed-batch fermen-tation process. Additionally, based on qualitative heuristic knowledge from biochemists, the hybrid system modelling and identification of batch fermentation by using fuzzy system ap-proach is also studied. The research can not only develop nonlinear hybrid dynamical system, optimal control theory, optimization algorithm and the modeling method of unascertain system but also provide certain reference for commercial process of1,3-Propanediol by fermentation. Therefore, it is very interesting both in theory and in practice. The main contributions are summarized as follows:
     1. Considering the fed-batch fermentation process of glycerol coupled alkali, a nonlinear impulsive dynamical system is proposed to formulate this process. To obtain as much1,3-Propanediol as possible, an optimal control model involving the proposed impulsive system and subject to continuous state inequality constraints is then presented, in which impulsive instants and volumes of feeding glycerol and alkali are taken as control vari-ables. Subsequently the existence of the optimal control is proved. A solution approach is developed to seek the optimal impulsive strategies of glycerol and alkali based on gra-dient information. By numerical calculation, the optimal impulsive strategy of glycerol and alkali then are obtained.
     2. In this dissertation, a nonlinear hybrid dynamical system is proposed to formulate the fed-batch fermentation of glycerol by Klebsiella pneumoniae with open loop glycerol input and pH logic control. Some important properties of the solution to the proposed system are then discussed, including the existence, uniqueness, boundedness and regularity. To estimation the unknown parameters in the system, a parameter identification problem is proposed, and its identifiability is also proved. Subsequently, the parametric sensitivity functions of the system are given and utilized to obtain the requisite gradient information for further numerical computation. Finally a gradient-based algorithm to solve the identi-fication problem is constructed in conjunction with constraint transcription and smoothing approximation technique. Numerical simulations show the proposed hybrid system can describe the fed-batch culture properly.
     3. In this dissertation, a novel model for describing the process of glycerol batch fermenta-tion is proposed by incorporating qualitative heuristic knowledge from biochemists via a fuzzy expert system approach into Enzyme-catalysis dynamical system. Some important properties of the proposed system are then discussed. To determine the model parameters and membership functions, we establish a parameter identification model with the relative error of experimental data and simulating results as performance index, and demonstrate the existence of the optimal solutions of the identification model. An optimization algo-rithm is developed to solve the identification model based on improved particle swarm optimization and penalty function method. Finally, the numerical simulations show the validity of the proposed model and the effectiveness of the optimization algorithm.
引文
[1]Biebl H, Menzel K, Zeng A P, Deckwer W D. Microbial production of 1,3-propanediol. Applied Microbiology and Biotechnology,1999,52:289-297.
    [2]Nakamura C E, Whited G M. Metabolic engineering for the microbial production of 1,3-propanediol. Current Opinion in Biotechnology,2003,14:454-459.
    [3]Biebl H, Marten S, Hippe H. Deckwer W.D., Glycerol conversion to 1,3-propanediol by newly isolated clostridia. Applied Microbiology and Biotechnology,1992,36:592-597.
    [4]Homann T, Tag C, Biebl H, Deckwer W D, Schink B. Fermentation of glycerol to 1,3-propanediol by Klebsiella and Citrobacter strains. Applied Microbiology and Biotechnology,1990,33:121-126.
    [5]Zeng A P, Deckwer W D. Kinetic model for substrate and energy consumption of microbial growth under substrate-sufficient condition. Biotechnology Progress,1995,11:71-70.
    [6]Zeng A P, Rose A, Biebl H, Tag C, Guenzel B, Deckwer W D. Multiple product inhibition and growth modeling of Clostridium butyricum and Klebsiella pneumoniae in glycerol fermentation. Biotechnol-ogy and Bioengineering,1994,44:902-911.
    [7]修志龙,曾安平,安利佳.甘油生物歧化过程动力学数学模拟和多稳态研究.大连理工大学学报,2000,40:428-433.
    [8]Sanchez-Luna L D, Converti A, Tonini G C, Sato S, De Carvalho J. Continuous and pulse feedings of urea as a nitrogen source in fed-batch cultivation of Spirulina platensis. Aquacultural Engineering, 2004,31:237-245.
    [9]Ji X J, Huang H, Zhu J G, Hu N, Li S. Efficient 1,3-propanediol production by fed-batch culture of Klebsiella pneumoniae:the role of pH fluctuation. Applied Biochemistry and Biotechnology,2009, 159:605-613.
    [10]Witsenhausen H. A class of hybrid-state continuous-time dynamic systems. Automatic Control, IEEE Transactions on,1966,11:161-167.
    [11]Pavlidis T. Stability of systems described by differential equations containing impulses. Automatic Control, IEEE Transactions on,1967,12:43-45.
    [12]Tavernini L. Differential automata and their discrete simulators. Nonlinear Analysis:Real World Ap-plications,1987,11:665-683.
    [13]Alur R, Belta C, Ivancic F, et.al. Hybrid modeling and simulation of biomolecular networks. Hybrid Systems:Computation and Control,2001,19:19-23.
    [14]Meyer G. Design of flight vehicle management systems. Recon.1994,19:19-23.
    [15]Back A, Guckenheimer J, Myers M. A dynamical simulation facility for hybrid systems. Hybrid Sys-tems,1993:255-267.
    [16]Goebel R, Sanfelice R, Teel A. Hybrid dynamical systems. Control Systems Magazine, IEEE,2009, 29:28-93.
    [17]Branicky M S. Multiple Lyapunov functions and other analysis tools for switched and hybrid systems. Automatic Control, IEEE Transactions on,1998,43:475-482.
    [18]Ye H, Michel A N, Hou L. Stability theory for hybrid dynamical systems. Automatic Control, IEEE Transactions on,1998,43:461-474.
    [19]Liu X, Shen J. Stability theory of hybrid dynamical systems with time delay. Automatic Control, IEEE Transactions on,2006,51:620-625.
    [20]Lygeros J., Johansson K H, et.al. Dynamical properties of hybrid automata. Automatic Control, IEEE Transactions on,2003,48:2-17.
    [21]Broucke M. Regularity of solutions and homotopic equivalence for hybrid systems, Decision and Con-trol,1998. Proceedings of the 37th IEEE Conference on,1998,4:4283-4288.
    [22]Branicky M.S., Borkar V S, Mitter S K. A unified framework for hybrid control:Model and optimal control theory. Automatic Control, IEEE Transactions on,1998,43:31-45.
    [23]Buss M, Glocker M, Hardt M, et.al. Nonlinear hybrid dynamical systems:modeling, optimal control, and applications. Modelling, Analysis, and Design of Hybrid Systems,2002:311-335.
    [24]D'Apice C, Garavello M, et.al. Hybrid optimal control:Case study of a car with gears. International Journal of Control,2003,76:1272-1284.
    [25]Pepyne D L, Cassandras C G. Optimal control of hybrid systems in manufacturing. Proceedings of the IEEE,2000,88:1108-1123.
    [26]Sussmann H. A maximum principle for hybrid optimal control problems, Decision and Control. Pro-ceedings of the 38th IEEE Conference on, Phoenix, AZ,1999,1:425-430.
    [27]Riedinger P, lung C, Kratz F. An optimal control approach for hybrid systems. European Journal of Contro,2003,9:449-458.
    [28]Riedinger, P. and Kratz, F. and lung, C. and Zanne, C., Linear quadratic optimization of hybrid systems, Decision and Control. Proceedings of the 38th IEEE Conference on, Phoenix, AZ,1999:3059-3064.
    [29]Bengea S C, DeCarlo R A. Optimal control of switching systems. Automatica,2005,41:11-27.
    [30]Berkovitz L D, Berkovitz L D. Optimal control theory, Decision and Control, Springer-Verlag New York,1974.
    [31]Cassandras C G, Pepyne D L, Wardi Y. Optimal control of a class of hybrid systems. Automatic Con-trol, IEEE Transactions on,2001,46:398-415.
    [32]Xu X, Antsaklis P J. Optimal control of switched systems via non-linear optimization based on direct differentiations of value functions. International Journal of Control,2002,75:1406-1426.
    [33]Shaikh M S, Caines P E. On the optimal control of hybrid systems:Optimization of trajectories, switch-ing times, and location schedules. Proceedings of the 6th international conference on Hybrid systems: computation and control,2003:466-481.
    [34]郑刚,等.混杂系统的研究进展.控制与决策,2004,19:7-12.
    [35]Heymann M, Lin F, Meyer G. Synthesis and viability of minimally interventive legal controllers for hybrid systems. Discrete Event Dynamic Systems,1998,8:105-135.
    [36]Reimann A, Biebl H. Production of 1,3-propanediol by Clostridium butyricum DSM 5431 and product tolerant mutants in fedbatch culture:Feeding strategy for glycerol and ammonium. Biotechnology Letters,1996,18:827-832.
    [37]刘海军.底物流加策略对发酵法生产1,3-丙二醇的影响.食品与发酵工业,2004,30:1-5.
    [38]刘海军.发酵法生产1,3-丙二醇过程及中试研究[D].大连理工大学,2007.
    [39]Braak H. Onderzoeking over vergisting von glycerine. Dissertation, Delft,1928.
    [40]Biebl H, Zeng A P, Menzel K, Deckwer W D. Fermentation of glycerol to 1,3-propanediol and 2, 3-butanediol by Klebsiella pneumoniae. Applied Microbiology and Biotechnology,1998,50:24-29.
    [41]Huang H, Gong C S, Tsao G T. Production of 1,3-propanediol by Klebsiella pneumoniae. Applied Microbiology and Biotechnology,2002,98:687-698.
    [42]金平,张建刚,佟明友,刘树臣.甘油发酵制取1,3-丙二醇菌株筛选.精细与专用化学品,2004,12:13-15.
    [43]王宝光,刘铭,杜晨宇,黄志华,沈金玉,曹竹安.产1,3-丙二醇菌株的诱变和筛选.中国生物工程杂志,2006,26:59-65.
    [44]Zeng A P, Deckwer W D. A kinetic model for substrate and energy consumption of microbial growth under substrate-sufficient conditions. Biotechnology Progress,1995,11:71-79.
    [45]Zeng A P. A kinetic model for product formation of microbial and mammalian cells. Biotechnology and Bioengineering,1995,46:314-324.
    [46]Zeng A P. Pathway and kinetic analysis of 1,3-propanediol production from glycerol fermentation by Clostridium butyricum. Bioprocess and Biosystems Engineering,1996,14:169-175.
    [47]Menzel K, Zeng A P, Deckwer W D. High concentration and productivity of 1,3-propanediol from continuous fermentation of glycerol by Klebsiella pneumoniae. Enzyme and Microbial Technology, 1997,20:82-86.
    [48]Xiu Z L, Zeng A P, Deckwer W D. Multiplicity and stability analysis of microorganisms in continuous culture:effects of metabolic overflow and growth inhibition. Biotechnology and Bioengineering,1998, 57:251-261.
    [49]修志龙,曾安平,安利佳.甘油生物歧化过程动力学数学模拟和多稳态研究.大连理工大学学报,2000,40(4):428-433.
    [50]马永峰,孙丽华,修志龙.连续时滞对微生物连续培养过程中动态行为的影响.高校應用數學學報,2003,18:1-7.
    [51]Gao C, Feng E, Wang Z, Xiu Z. Parameters identification problem of the nonlinear dynamical system in microbial continuous cultures. Applied mathematics and computation,2005,169:476-484.
    [52]李晓红,冯恩民,修志龙.微生物连续培养过程平衡点的稳定分析.校应用数学学报B辑,2005,20:7-15.
    [53]Li X, Guo J, Feng E, Xiu Z. Discrete optimal control model and bound error for microbial continuous fermentation. Nonlinear Analysis:Real World Applications,2010,11:131-138.
    [54]Ye J, Feng E, Lian H, Xiu Z. Existence of equilibrium points and stability of the nonlinear dynamical system in microbial continuous cultures. Applied Mathematics and Computation,2009,207:307-318.
    [55]Lian H, Feng E, Li X, Ye J, Xiu Z. Oscillatory behavior in microbial continuous culture with discrete time delay. Nonlinear Analysis:Real World Applications,2009,10:2749-2757.
    [56]Li X. Qu R, Feng E. Hopf bifurcation of a five-dimensional delay differential system. International Journal of Computer Mathematics,2011,88:79-96.
    [57]Wang L, Ye J, Feng E, Xiu Z. An improved model for multistage simulation of glycerol fermentation in batch culture and its parameter identification. Nonlinear Analysis:Hybrid Systems,2009,3:455-462.
    [58]Gong Z H, Liu C Y, Feng E M. Modeling in microbial batch culture and its parameter identification. Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference Shanghai, P.R. China,2009.
    [59]Wang G, Feng E, Xiu Z. Modeling and parameter identification of microbial bioconversion in fed-batch cultures. Journal of Process Control,2008,18:458-464.
    [60]Wang H, Feng E, Xiu Z. Optimality condition of the nonlinear impulsive system in fed-batch fermentation. Nonlinear Analysis:Theory, Methods & Applications,2008,1:458-464.
    [61]Gao C, Li K, Feng E, Xiu Z. Nonlinear impulsive system of fed-batch culture in fermentative production and its properties. Chaos, Solitons & Fractals,2006,28:271-277.
    [62]Li K, Feng E, Xiu Z. Optimal control and optimization algorithm of nonlinear impulsive delay system producing 1,3-propanediol. Journal of Applied Mathematics and Computing,2007,1:387-397.
    [63]Gong Z, Liu C, Feng E, Wang L, Yu Y. Modelling and optimization for a switched system in microbial fed-batch culture. Applied Mathematical Modelling,2011,1:387-397.
    [64]Liu C. Optimal control for nonlinear dynamical system of microbial fed-batch culture. Journal of Com-putational and Applied Mathematics 2009,232:252-261.
    [65]Ye J, Feng E M, Yin H, Xiu Z. Modelling and well-posedness of a nonlinear hybrid system in fed-batch production of 1,3-propanediol with open loop glycerol input and pH logic control. Nonlinear Analysis: Real World Applications,2011,12:364-376.
    [66]Richery D P, Lin E C. Importance of facilitated diffusion for effective utilization of glycerol by Es-cherichia coli. Journal of Bacteriology,1972,12:784-790.
    [67]Heller K B, Lin E C. Wilson T.H., Substrate specificity and transport properties of the glycerol facilita-tor of Escherichia coli. Journal of bacteriology,1980,144:274-278.
    [68]Sun J, Van den Heuvel J, Soucaille P, Qu Y, Zeng A P. Comparative genomic analysis of dha regulon and related genes for anaerobic glycerol metabolism in bacteria. Biotechnology progress, 2003,19:263-272.
    [69]Sun Y Q, Qi W T, Teng H, Xiu Z L, Zeng A P. Mathematical modeling of glycerol fermentation by Klebsiella pneumoniae:Concerning enzyme-catalytic reductive pathway and transport of glycerol and 1,3-propanediol across cell membrane. Biochemical Engineering Journal,2008,38:22-23.
    [70]Zeng A P, Quantitative Z. Metabolic Engineering and Modellierung der Glycerinfermentation zu 1,3-Propandiol, Habilitationschrift. Technical University of Braunschweig, Germany,2000.
    [71]Chen X, Xiu Z, Wang J, Zhang D, Xu P. Stoichiometric analysis and experimental investigation of glycerol bioconversion to 1,3-propanediol by Klebsiella pneumoniae under microaerobic conditions. Enzyme and microbial technology,2003,33:386-394.
    [72]Zhang Q, Xiu Z. Metabolic pathway analysis of glycerol metabolism in Klebsiella pneumoniae incor-porating oxygen regulatory system. Biotechnology progress,2009,25:103-115.
    [73]Sattayasamitsathit S, Methacanon P, Prasertsan P. Enhance 1,3-propanediol production from crude glycerol in batch and fed-batch fermentation with two-phase pH-controlled strategy. Electronic Journal of Biotechnology,2011,11:4-11.
    [74]程可可,孙燕,刘卫斌,刘德华.底物流加策略对发酵法生产1,3-丙二醇的影响.食品与发酵工业,2004,30:1-5.
    [75]Galan S, Feehery W F, Barton P I. Parametric sensitivity functions for hybrid discrete/continuous systems. Applied Numerical Mathematics,1999,31:17-47.
    [76]Church A. Logic, arithmetic, and automata. In Proc. Int. Congress Math.,1962,23-35.
    [77]Rabin M O. Automata on infinite objects and Church's problem. In Regional Conf. Series in Math., 1972.
    [78]Alur R,Dill D. A theory of timed automata. Theoretical and Computer Science,1994,126(2):184-235.
    [79]Grossman R L, Nerode A, Ravn A P, er al. Hybrid Systems-Lecture Notes in Computer Science, Berlin: Springer-Verlag,1993.
    [80]van der Schaft A, Schumacher H. An introduction to hybrid dynamical systems. London:Springer-Verlag,2000.
    [81]Kolmanovsky I, McClamroch N H. Hybrid feedback laws for a class of nonlinear cascade systems. IEEE Trans on Automatic Control,1996,41(11):1271-1281.
    [82]Lygeros J, Godbole D, Sastry S. Verified hybrid controllers for automated vehicles. IEEE Trans. Autom. Contr.,1998,43(4):522-539.
    [83j Barton P I, Lee C K. Modeling, simulation, sensitivity analysis, and optimization of hybrid systems. ACM Transactions on Modeling and Computer Simulation (TOMACS),2002,12:256-289.
    [84]Rozenvasser E N. General sensitivity equations of discontinuous systems. Automat. Remote Control, 1967:400-404
    [85]Hiskens I A, PAI M A. Trajectory sensitivity analysis of hybrid systems. IEEE Transactions on Circuits and Systems Part I:Regular Papers,2000,47(2):204-220
    [86]马知恩,周义仓.常微分方程定性变稳定性方法.科学出版社,2001.
    [87]Clarke F H, Ledyaev Y S, Stern R J, et al. Nonsmooth analysis and control theory. Springer-Verlag, New York,1998.
    [881 Samoilenko A M, Perestyuk N A. Impulsive Differential Equations [in Russian]. Vyshcha Shkola, Kiev,1987.
    [89]Nikolai A P, Viktor A P, Anatolii M S, Natalia V S. Differential Equations with Impulse Effects. De Gruyter,2010.
    [90]Lakshmikantham V, et al. Theory of impulsive differential equations. World Scientific Pub Co Inc, 1989.
    [91]Wang L X. Adaptive fuzzy systems and control-Design and stability analysis. Englewood Cliffs, NJ: PTR Prentice Hall,1994.
    [92]Gong Z H. A multistage system of microbial fed-batch fermentation and its parameter identification. Mathematics and Computers in Simulation,2010,80:1903-1910.
    [93]Bainov D D, Simeonove P S. System with impulse effect stability. Theory and Application, Ellis Hor-wood,1989.
    [94]Gonzaga G, Polak E, Trahan R. An improved algorithm for optimization problems with functional inequality constraints. Automatic Control, IEEE Transactions on,1980, AC-25:49-54.
    [95]Polak E, Myne D Q. An algorithm for optimization problems with functional inequality constraints. Automatic Control, IEEE Transactions on,1976,21:184-193.
    [96]Polak E, Wardi Y. Nondifferentiable optimization algorithm for designing control systems having sigu-lar value inequalities. Automatica,1982,18:267-283.
    [97]Wu C Z, Teo K L, Zhao Y, Yan W Y. Solving an identification problem as an impulsive optimal param-eter selection problem. Computers & Mathematics with Applications,2005,50:217-229.
    [98]Teo K L, Goh C J, Wong K H. A Unified Computational Approach to Optimal Control Problems. Long Scientific Technical, Essex 1991.
    [99]Nocedal J, Wright S J. Numerical Optimization. Springer-Verlag, New York,1999.
    [100]Liu C Y. Optimal control for nonlinear dynamical system of microbial fed-batch culture. Journal of Computational and Applied Mathematics,2009,232:252-261.
    [101]Chen X, Zhang D J, et.al. Microbial fed-batch production of 1,3-propanediol by Klebsiella pneumo-niae under microaerobic conditions. Applied Microbiology and Biotechnology,2003,63:143-146.
    [102]Cheng K K, Sun Y, Liu W B, Liu D H. Effect of feeding strategy on 1,3-propanediol fermentation with klebsiella pneumoniae. Food and Fermentation Industries,2004,30(4):1-5.
    [103]Pirt S J, et.al. Principles of microbe and cell cultivation. Blackwell Scientific Publications,1975.
    [104]Zeng A P, Ross A, Biebl H, Tag C, Guenzel B, Deckwer W D. Multiple product inhibition and growth modeling of clostridium butyricum and klebsiella pneumoniae in glycerol fermentation. Biotechnology and Bioengineering,1994,44(8):902-911.
    [105]Schittkowski K. Numerical data fitting in dynamical systems:a practical introduction with applica-tions and software. Springer,2002
    [106]Teo K L, Rehbock V, Jennings L S. A new computational algorithm for functional inequality con-strained optimization problems. Automatica,1993,29(3):789-792.
    [107]Lin Q, Loxton R, Teo K L, Wu Y H. A new computational method for optimizing nonlinear im-pulsive systems, Dynamics of Continuous. Discrete and Impulsive Systems Series B:Applications & Algorithms,2011,18(1):59-76.
    [108]Zeng A P, Biebl H. Bulk chemicals from biotechnology:the case of 1,3-propanediol production and the new trends. Tools and Applications of Biochemical Engineering Science,2002,74:239-259.
    [109]Wang L, Ye J X, Feng E M, Xiu Z L. An improved model for multistage simulation of glycerol fermentation in batch culture and its parameter identification. Nonlinear Analysis:Hybrid Systems, 2009,3:455-462.
    [110]Chen J Y. Expert SMC-based fuzzy control with genetic algorithms. Journal of the Franklin Institute, 1999,336:589-610.
    [111]Wang L. Fuzzy Control and Fuzzy Systems, John Wiley & Sons. Inc., New York. (1996).
    [112]Zadeh L A. Fuzzy sets. Information and Control,1965,8:338-353.
    [1131 Busoniu L, Ernst D, Schutter B D, Babuska R. Approximate dynamic programming with a fuzzy parameterization. Automatica,2010,46:804-814.
    [114]Azevedo S F, Dahm B, Oliveira F R. Hybrid modelling of miochemical processes:a comparison with the conventional approach. Computers and Chemical Engineering,1997,21:751-756.
    [115]Schubert J, Simutis R, Dors M, Havlik I, Liibbert A. Bioprocess optimization and control:application of hybrid modelling. Journal of Bacteriology,1994,35:51-68.
    [116]Tian Y, Zhang J, Morris J 1. Modeling and optimal control of a batch polymerization reactor using a hybrid stacked recurrent neural network model. Industrial and Engineering Chemistry Research,2001 40:4525-4535.
    [117]Thompson L M, Kramer M A. Modeling chemical processes using prior knowledge and neural net-works. Process Systems Enaineerina,1994,8:1328-1340.
    [118]Van Lith P F, Betlem B H L, Roffel B. A structured modeling approach for dynamic hybrid fuzzy-first principles models. Journal of Process Control,2002,12:605-615.
    [119]Tian Y, Zhang J, Morris J L. Modeling and optimal control of a batch polymerization reactor using a hybrid stacked recurrent neural network model. Industrial & Engineering Chemistry Research,2001, 40:4525-4535.
    [120]Thompson L M, Kramer M A. Modeling chemical processes using prior knowledge and neural networks. AIChE Journal,2004,40:1328-1340.
    [121]Kennedy J, Eberhart R C. A new optimizer using particle swarm theory. Sixth International Sympo-sium on Micro Machine and Human Science. Nagoya,1995:39-43.
    [122]Paterlini S, Krink T. Differential evolution and particle swarm optimization in partitional clustering. Computational Statistics and Data Analysis,2006,50:1220-1247.
    [123]Elegbede C. Structural reliability assessment based on particle swarm optimization. Structural Safety, 2005,27:171-186.
    [124]Parsopoulos K E, Vrahatis M N. Recent approaches to global optimization problems through particle swarm optimization. Natural Computing,2002,1:235-306.
    [125]Immanuel A, Selvakumar K, Thanushkodi, A new particle swarm optimization solution to nonconvex economic dispatch problems. IEEE Transactions On Power Systems,2007,22:42-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700