哺乳动物嗅觉学习与记忆的结构基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
嗅觉是一种最古老的感觉。在漫长的进化历史中,哺乳动物具备了非常惊人的气味感知以及学习和记忆能力。除了其基因组内拥有数量巨大的气味受体基因外,嗅觉系统本身具有复杂的神经连接回路,加上在鼻孔中的嗅上皮检测到气味信息后只需不超过三个突触即可连接到情感和认知中枢,以及各级嗅觉信息处理区域接受大量来自皮层神经反馈投射和脑干的调制神经输入有关。
     神经回路的可塑性是学习和记忆的基础。突触可塑性是整个神经回路可塑性的核心。因而,揭示嗅觉学习与记忆的突触结构基础和相关的神经回路对于阐明学习记忆机制具有重要的基础意义。我们利用嗅觉缺失转基因小鼠模型,通过质粒电转标记结合兴奋性和抑制性突触抗体标记方法,发现嗅球中数量最大的中间神经元——颗粒细胞所接受的投射神经元的兴奋性输入和深层短轴突细胞的抑制性输入具有突触可塑性潜力,而接受的皮层离心兴奋性输入不具有突触可塑性潜力。因此,嗅觉的学习和记忆有可能只发生在颗粒细胞的抑制性突触和树树突触上。
     此外,长期记忆的形成、巩固以及储存需要新的突触蛋白形成并参与构建新的突触连接。而CREB(cAMP反应元件结合蛋白)是调控突触可塑性和神经元自身可塑性的关键转录调控因子之一,通过检测CREB的磷酸化水平不仅可以判断与记忆相关的脑区,也能判断与记忆相关的特定脑区内的神经元类型,同时也能检测记忆在整个大脑水平上所形成的神经回路。因此,我们通过检测与嗅觉相关脑区的CREB磷酸化水平来研究参与小鼠气味与食物联系性学习和记忆的可能脑区的空间特征及其时间特性。结果发现CREB磷酸化水平在不同脑区不同时间内的动态具有显著的差别。因此,我们的结果为后期调控气味感知以及嗅觉的学习和记忆提供了可能的靶向基础。
The olfaction is a kind of most ancient sensory. In the long history of evolution, mammals have extraordinary and powerful ability of odor perception and olfactory learning and memory. Except the numerous odor receptor genes, there are many intricate neural circuits and no more than three synapses to the central areas related to the emotion and cognition, and each area processing olfactory information receives mass of centrifugal inputs from other regions and various modulate inputs from the brain stem.
     Plasticity of neural circuits is the basis of learning and memory. Synaptic plasticity is the core of entire neural circuit plasticity. Thus, it is important to reveal the synaptic structural basis of olfactory learning and memory and related neural circuits for clarifying the learning and memory mechanisms. We use the methods of plasmid electroporation and excitatory and inhibitory synaptic protein labeling with adopting anosmia transgenic mice, and found that the excitatory synaptic inputs from projection neurons and inhibitory synaptic inputs from the deep short axon cells onto the granule cells, the most common interneurons in olfactory bulb, have the potential of structural plasticity, rather than the centrifugal inputs from the olfactory cortex. So, the inhibitory and dendrodendritic synapses of granule cells could be the sites of memory storage.
     In addition, long-term memory formation, consolidation and storage need new protein synthesis to participate in the construction of new synaptic connections. CREB (cAMP response element-binding protein) is an important transcription factor to mediate synaptic plasticity and intrinsic plasticity. It is impossible to assess the regions and even the neuron types related to memory, but also the neural circuits in the overall brain through examining the changes of the pCREB. Therefore, we study the spacial and temporal characteristics of pCREB in major regions related to olfaction after odor-reward associative learning, and found that the dynamics of pCREB were very significantly different in different regions and at different time. The data we got supply the potential targeted basis to mediate odor perception and olfactory learning and memory.
引文
[1]Brennan P A, and Zufall F. Pheromonal communication in vertebrates. Nature, 2006,444(7117):308-315
    [2]Dulac C, and Wagner S. Genetic analysis of brain circuits underlying pheromone signaling. Annu. Rev. Genet.,2006,40:449-467
    [3]Su C Y, Menuz K, and Carlson J R. Olfactory perception:receptors, cells, and circuits. Cell,2009,139(1):45-59
    [4]Buck L, and Axel R. A novel multigene family may encode odorant receptors:a molecular basis for odor recognition. Cell,1991,65(1):175-187
    [5]Zhang X, and Firestein S. Comparative genomics of odorant and pheromone receptor genes in rodents. Genornics,2007,89(4):441-450
    [6]Abraham N M, Spors H, Carleton A, et al. Maintaining accuracy at the expense of speed:stimulus similarity defines odor discrimination time in mice. Neuron, 2004,44(5):865-876
    [7]Malnic B, Hirono J, Sato T, et al. Combinatorial receptor codes for odors. Cell, 1999,96(5):713-723
    [8]Oka Y, Katada S, Omura M, et al. Odorant receptor map in the mouse olfactory bulb:in vivo sensitivity and specificity of receptor-defined glomeruli. Neuron, 2006,52(5):857-869
    [9]Mombaerts P, Wang F, Dulac C, et al. Visualizing an olfactory sensory map. Cell,1996,87(4):675-686
    [10]Ressler K J, Sullivan S L, and Buck L B. A zonal organization of odorant receptor gene expression in the olfactory epithelium. Cell,1993,73(3):597-609
    [11]Ressler K J, Sullivan S L, and Buck L B. Information coding in the olfactory system:evidence for a stereotyped and highly organized epitope map in the olfactory bulb. Cell,1994,79(7):1245-1255
    [12]Vassar R, Ngai J, and Axel R. Spatial segregation of odorant receptor expression in the mammalian olfactory epithelium. Cell,1993,74(2):309-318
    [13]Vassar R, Chao S K, Sitcheran R, et al. Topographic organization of sensory projections to the olfactory bulb. Cell,1994,79(6):981-991
    [14]Rubin B D, and Katz L C. Optical imaging of odorant representations in the mammalian olfactory bulb. Neuron,1999,23(3):499-511
    [15]Johnson B A, and Leon M. Modular representations of odorants in the glomerular layer of the rat olfactory bulb and the effects of stimulus concentration. J. Comp. Neurol.,2000,422(4):496-509
    [16]Xu F, Liu N, Kida I, et al. Odor maps of aldehydes and esters revealed by functional MRI in the glomerular layer of the mouse olfactory bulb. Proc. Natl. Acad. Sci. U. S. A.,2003,100(19):11029-11034
    [17]Uchida N, Takahashi Y K, Tanifuji M, et al. Odor maps in the mammalian olfactory bulb:domain organization and odorant structural features. Nat. Neurosci.,2000,3(10):1035-1043
    [18]Shepherd G M, Chen W R, and Greer C A Olfactory Bulb. In:G M Shepherd. The synaptic organization of the brain. New York:Oxford University Press, 2004:165-217.
    [19]Eyre M D, Antal M, and Nusser Z. Distinct deep short-axon cell subtypes of the main olfactory bulb provide novel intrabulbar and extrabulbar GABAergic connections. J. Neurosci.,2008,28(33):8217-8229
    [20]Tan J, and Luo M. Olfactory Information Processing by The Olfactory Bulb Acta Biophysica Sinica,2010,26(3):194-208
    [21]Wilson D A, Kadohisa M, and Fletcher M L. Cortical contributions to olfaction: plasticity and perception. Seminars in Cell and Developmental Biology,2006, 17(4):462-470
    [22]Wilson R I, and Mainen Z F. Early events in olfactory processing. Annu. Rev. Neurosci.,2006,29:163-201
    [23]Ghosh S, Larson S D, Hefzi H, et al. Sensory maps in the olfactory cortex defined by long-range viral tracing of single neurons. Nature,2011,472(7342): 217-220
    [24]Miyamichi K, Amat F, Moussavi F, et al. Cortical representations of olfactory input by trans-synaptic tracing. Nature,2011,472(7342):191-196
    [25]Sosulski D L, Bloom M L, Cutforth T, et al. Distinct representations of olfactory information in different cortical centres. Nature,2011,472(7342):213-216
    [26]Belluscio L, Lodovichi C, Feinstein P, et al. Odorant receptors instruct functional circuitry in the mouse olfactory bulb. Nature,2002,419(6904): 296-300
    [27]Miyamichi K, Serizawa S, Kimura H M, et al. Continuous and overlapping expression domains of odorant receptor genes in the olfactory epithelium determine the dorsal/ventral positioning of glomeruli in the olfactory bulb. Journal of Neuroscience,2005,25(14):3586-3592
    [28]Wilson D A, and Sullivan R M. Cortical processing of odor objects. Neuron, 2011,72(4):506-519
    [29]Nagayama S, Takahashi Y K, Yoshihara Y, et al. Mitral and tufted cells differ in the decoding manner of odor maps in the rat olfactory bulb. Journal of Neurophysiology,2004,91(6):2532-2540
    [30]Nagayama S, Enerva A, Fletcher M L, et al. Differential axonal projection of mitral and tufted cells in the mouse main olfactory system. Front Neural Circuits, 2010,4
    [31]Murphy G J, Darcy D P, and Isaacson J S. Intraglomerular inhibition:signaling mechanisms of an olfactory microcircuit. Nat Neurosci,2005,8(3):354-364
    [32]Shipley M T, and Ennis M. Functional organization of olfactory system. Journal of Neurobiology,1996,30(1):123-176
    [33]Aungst J L, Heyward P M, Puche A C, et al. Centre-surround inhibition among olfactory bulb glomeruli. Nature,2003,426(6967):623-629
    [34]Wachowiak M, and Shipley M T. Coding and synaptic processing of sensory information in the glomerular layer of the olfactory bulb. Semin. Cell Dev. Biol., 2006,17(4):411-423
    [35]Hayar A, Karnup S, Shipley M T, et al. Olfactory bulb glomeruli:external tufted cells intrinsically burst at theta frequency and are entrained by patterned olfactory input. Journal of Neuroscience,2004,24(5):1190-1199
    [36]Christie J M, and Westbrook G L. Lateral excitation within the olfactory bulb. J. Neurosci.,2006,26(8):2269-2277
    [37]Maher B J, McGinley M J, and Westbrook G L. Experience-dependent maturation of the glomerular microcircuit. Proceedings of the National Academy of Sciences of the United States of America,2009,106(39):16865-16870
    [38]Aroniadou-Anderjaska V, Zhou F M, Priest C A, et al. Tonic and synaptically evoked presynaptic inhibition of sensory input to the rat olfactory bulb via GABA(B) heteroreceptors. Journal of Neurophysiology,2000,84(3):1194-1203
    [39]Wachowiak M, McGann J P, Hey ward P M, et al. Inhibtion of olfactory receptor neuron input to olfactory bulb glomeruli mediated by suppression of presynaptic calcium influx. Journal of Neurophysiology,2005,94(4):2700-2712
    [40]Shepherd G M, and Greer C A Olfactory bulb. In:G M Shepherd. The Synaptic Organization of the Brain. New York:Oxford Univ. Press,1998:159-203.
    [41]Brennan P A, and Keverne E B. Neural mechanisms of mammalian olfactory learning. Prog. Neurobiol.,1997,51(4):457-481
    [42]Yokoi M, Mori K, and Nakanishi S. Refinement of odor molecule tuning by dendrodendritic synaptic inhibition in the olfactory bulb. Proc. Natl. Acad. Sci. U. S. A.,1995,92(8):3371-3375
    [43]Cang J, and Isaacson J S. In vivo whole-cell recording of odor-evoked synaptic transmission in the rat olfactory bulb. J. Neurosci.,2003,23(10):4108-4116
    [44]Margrie T W, and Schaefer A T. Theta oscillation coupled spike latencies yield computational vigour in a mammalian sensory system. J Physiol,2003,546(Pt 2):363-374
    [45]Spors H, and Grinvald A. Spatio-temporal dynamics of odor representations in the mammalian olfactory bulb. Neuron,2002,34(2):301-315
    [46]Balu R, Pressler R T, and Strowbridge B W. Multiple modes of synaptic excitation of olfactory bulb granule cells. J. Neurosci.,2007,27(21):5621-5632
    [47]Pressler R T, and Strowbridge B W. Blanes cells mediate persistent feedforward inhibition onto granule cells in the olfactory bulb. Neuron,2006,49(6):889-904
    [48]Mori K, Nagao H, and Yoshihara Y. The olfactory bulb:Coding and processing of odor molecule information. Science,1999,286(5440):711-715
    [49]Lodovichi C, Belluscio L, and Katz L C. Functional topography of connections linking mirror-symmetric maps in the mouse olfactory bulb. Neuron,2003, 38(2):265-276
    [50]Willhite D C, Nguyen K T, Masurkar A V, et al. Viral tracing identifies distributed columnar organization in the olfactory bulb. Proceedings of the National Academy of Sciences of the United States of America,2006,103(33): 12592-12597
    [51]Yan Z, Tan J, Qin C, et al. Precise circuitry links bilaterally symmetric olfactory maps. Neuron,2008,58(4):613-624
    [52]Kikuta S, Sato K, Kashiwadani H, et al. Neurons in the anterior olfactory nucleus pars externa detect right or left localization of odor sources. Proceedings of the National Academy of Sciences of the United States of America,2010, 107(27):12363-12368
    [53]Rajan R, Clement J P, and Bhalla U S. Rats smell in stereo. Science,2006, 311(5761):666-670
    [54]Imai T, and Sakano H. Interhemispheric olfactory circuit and the memory beyond. Neuron,2008,58(4):465-467
    [55]Alitto H J, and Usrey W M. Corticothalamic feedback and sensory processing. Current Opinion in Neurobiology,2003,13(4):440-445
    [56]Fan S, and Luo M. The organization of feedback projections in a pathway important for processing pheromonal signals. Neuroscience,2009,161(2): 489-500
    [57]Ramirez J M, and Richter D W. The neuronal mechanisms of respiratory rhythm generation. Current Opinion in Neurobiology,1996,6(6):817-825
    [58]Uchida N, and Mainen Z F. Speed and accuracy of olfactory discrimination in the rat. Nature Neuroscience,2003,6(11):1224-1229
    [59]Fletcher M L, and Chen W R. Neural correlates of olfactory learning:Critical role of centrifugal neuromodulation. Learn. Mem.,2010,17(11):561-570
    [60]Shea S D, Katz L C, and Mooney R. Noradrenergic induction of odor-specific neural habituation and olfactory memories. Journal of Neuroscience,2008, 28(42):10711-10719
    [61]Richerson G B. Serotonergic neurons as carbon dioxide sensors that maintain pH homeostasis. Nat Rev Neurosci,2004,5(6):449-461
    [62]Petzold G C, Hagiwara A, and Murthy V N. Serotonergic modulation of odor input to the mammalian olfactory bulb. Nature Neuroscience,2009,12(6): 784-791
    [63]Kandel E R. The molecular biology of memory storage:a dialogue between genes and synapses. Science,2001,294(5544):1030-1038
    [64]McLean J H, Harley C W, Darby-King A, et al. pCREB in the neonate rat olfactory bulb is selectively and transiently increased by odor preference-conditioned training. Learn Mem,1999,6(6):608-618
    [65]Squire L R. Memory and brain systems:1969-2009. J Neurosci,2009,29(41): 12711-12716
    [66]Squire L R, Shrager Y, and Levy D A. Lack of evidence for a role of medial temporal lobe structures in visual perception. Learn Mem,2006,13(2):106-107
    [67]Squire L R, and Bayley P J. The neuroscience of remote memory. Curr Opin Neurobiol,2007,17(2):185-196
    [68]Frankland P W, and Bontempi B. The organization of recent and remote memories. Nat Rev Neurosci,2005,6(2):119-130
    [69]Restivo L, Vetere G, Bontempi B, et al. The formation of recent and remote memory is associated with time-dependent formation of dendritic spines in the hippocampus and anterior cingulate cortex. J Neurosci,2009,29(25):8206-8214
    [70]Smith C N, and Squire L R. Medial temporal lobe activity during retrieval of semantic memory is related to the age of the memory. J Neurosci,2009,29(4): 930-938
    [71]Takehara-Nishiuchi K, and McNaughton B L. Spontaneous changes of neocortical code for associative memory during consolidation. Science,2008, 322(5903):960-963
    [72]Miyashita Y, and Hayashi T. Neural representation of visual objects:encoding and top-down activation. Curr Opin Neurobiol,2000,10(2):187-194
    [73]Polyn S M, Natu V S, Cohen J D, et al. Category-specific cortical activity precedes retrieval during memory search. Science,2005,310(5756):1963-1966
    [74]Gelbard-Sagiv H, Mukamel R, Harel M, et al. Internally generated reactivation of single neurons in human hippocampus during free recall. Science,2008, 322(5898):96-101
    [75]Holtmaat A, and Svoboda K. Experience-dependent structural synaptic plasticity in the mammalian brain. Nat Rev Neurosci,2009,10(9):647-658
    [76]Mozzachiodi R, and Byrne J H. More than synaptic plasticity:role of nonsynaptic plasticity in learning and memory. Trends Neurosci,2010,33(1): 17-26
    [77]Fu M, and Zuo Y. Experience-dependent structural plasticity in the cortex. Trends Neurosci,2011,34(4):177-187
    [78]Zuo Y, Lin A, Chang P, et al. Development of long-term dendritic spine stability in diverse regions of cerebral cortex. Neuron,2005,46(2):181-189
    [79]Bourne J, and Harris K M. Do thin spines learn to be mushroom spines that remember? Curr Opin Neurobiol,2007,17(3):381-386
    [80]Kasai H, Fukuda M, Watanabe S, et al. Structural dynamics of dendritic spines in memory and cognition. Trends Neurosci,2010,33(3):121-129
    [81]Park M, Salgado J M, Ostroff L, et al. Plasticity-induced growth of dendritic spines by exocytic trafficking from recycling endosomes. Neuron,2006,52(5): 817-830
    [82]Zhou Q, Homma K J, and Poo M M. Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses. Neuron,2004,44(5): 749-757
    [83]Matsuzaki M, Honkura N, Ellis-Davies G C, et al. Structural basis of long-term potentiation in single dendritic spines. Nature,2004,429(6993):761-766
    [84]Trachtenberg J T, Chen B E, Knott G W, et al. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature,2002, 420(6917):788-794
    [85]Chklovskii D B, Mel B W, and Svoboda K. Cortical rewiring and information storage. Nature,2004,431(7010):782-788
    [86]Toni N, Buchs P A, Nikonenko I, et al. LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature,1999, 402(6760):421-425
    [87]Engert F, and Bonhoeffer T. Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature,1999,399(6731):66-70
    [88]Yuste R, and Bonhoeffer T. Genesis of dendritic spines:insights from ultrastructural and imaging studies. Nat Rev Neurosci,2004,5(1):24-34
    [89]Bhatt D H, Zhang S, and Gan W B. Dendritic spine dynamics. Annu Rev Physiol,2009,71:261-282
    [90]Holtmaat A J, Trachtenberg J T, Wilbrecht L, et al. Transient and persistent dendritic spines in the neocortex in vivo. Neuron,2005,45(2):279-291
    [91]Grutzendler J, Kasthuri N, and Gan W B. Long-term dendritic spine stability in the adult cortex. Nature,2002,420(6917):812-816
    [92]Mizrahi A, Crowley J C, Shtoyerman E, et al. High-resolution in vivo imaging of hippocampal dendrites and spines. J Neurosci,2004,24(13):3147-3151
    [93]Mizrahi A, and Katz L C. Dendritic stability in the adult olfactory bulb. Nat Neurosci,2003,6(11):1201-1207
    [94]Yang G, Pan F, and Gan W B. Stably maintained dendritic spines are associated with lifelong memories. Nature,2009,462(7275):920-924
    [95]Alvarez V A, and Sabatini B L. Anatomical and physiological plasticity of dendritic spines. Annu Rev Neurosci,2007,30:79-97
    [96]Zuo Y, Yang G, Kwon E, et al. Long-term sensory deprivation prevents dendritic spine loss in primary somatosensory cortex. Nature,2005,436(7048): 261-265
    [97]Holtmaat A, Wilbrecht L, Knott G W, et al. Experience-dependent and cell-type-specific spine growth in the neocortex. Nature,2006,441(7096): 979-983
    [98]Mataga N, Mizuguchi Y, and Hensch T K. Experience-dependent pruning of dendritic spines in visual cortex by tissue plasminogen activator. Neuron,2004, 44(6):1031-1041
    [99]Lendvai B, Stern E A, Chen B, et al. Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo. Nature,2000, 404(6780):876-881
    [100]Majewska A, and Sur M. Motility of dendritic spines in visual cortex in vivo: changes during the critical period and effects of visual deprivation. Proc Natl Acad Sci U S A,2003,100(26):16024-16029
    [101]Oray S, Majewska A, and Sur M. Dendritic spine dynamics are regulated by monocular deprivation and extracellular matrix degradation. Neuron,2004, 44(6):1021-1030
    [102]Fox K, and Wong R O. A comparison of experience-dependent plasticity in the visual and somatosensory systems. Neuron,2005,48(3):465-477
    [103]Pan F, Aldridge G M, Greenough W T, et al. Dendritic spine instability and insensitivity to modulation by sensory experience in a mouse model of fragile X syndrome. Proc Natl Acad Sci U S A,2010,107(41):17768-17773
    [104]Bear M F, Huber K M, and Warren S T. The mGluR theory of fragile X mental retardation. Trends Neurosci,2004,27(7):370-377
    [105]Kaufmann W E, and Moser H W. Dendritic anomalies in disorders associated with mental retardation. Cereb Cortex,2000,10(10):981-991
    [106]Tsai J, Grutzendler J, Duff K, et al. Fibrillar amyloid deposition leads to local synaptic abnormalities and breakage of neuronal branches. Nat Neurosci,2004, 7(11):1181-1183
    [107]Hao J, Rapp P R, Leffler A E, et al. Estrogen alters spine number and morphology in prefrontal cortex of aged female rhesus monkeys. J Neurosci, 2006,26(9):2571-2578
    [108]Xu T, Yu X, Perlik A J, et al. Rapid formation and selective stabilization of synapses for enduring motor memories. Nature,2009,462(7275):915-919
    [109]Fu M, Yu X, Lu J, et al. Repetitive motor learning induces coordinated formation of clustered dendritic spines in vivo. Nature,2012,483(7387):92-95
    [110]Roberts T F, Tschida K A, Klein M E, et al. Rapid spine stabilization and synaptic enhancement at the onset of behavioural learning. Nature,2010, 463(7283):948-952
    [111]Markram H, Toledo-Rodriguez M, Wang Y, et al. Interneurons of the neocortical inhibitory system. Nat Rev Neurosci,2004,5(10):793-807
    [112]Lee W C, Huang H, Feng G, et al. Dynamic remodeling of dendritic arbors in GABAergic interneurons of adult visual cortex. PLoS Biol,2006,4(2):e29
    [113]Mizrahi A. Dendritic development and plasticity of adult-born neurons in the mouse olfactory bulb. Nat Neurosci,2007,10(4):444-452
    [114]Chen J L, and Nedivi E. Neuronal structural remodeling:is it all about access? Curr Opin Neurobiol,2010,20(5):557-562
    [115]Dahlen J E, Jimenez D A, Gerkin R C, et al. Morphological analysis of activity-reduced adult-born neurons in the mouse olfactory bulb. Front Neurosci,2011,5:66
    [116]Saghateryan A, Roux P, Migliore M, et al. Activity-dependent adjustments of the inhibitory network in the olfactory bulb following early postnatal deprivation. Neuron,2005,46(1):103-116
    [117]De Paola V, Holtmaat A, Knott G, et al. Cell type-specific structural plasticity of axonal branches and boutons in the adult neocortex. Neuron,2006,49(6): 861-875
    [118]Stettler D D, Yamahachi H, Li W, et al. Axons and synaptic boutons are highly dynamic in adult visual cortex. Neuron,2006,49(6):877-887
    [119]Yamahachi H, Marik S A, McManus J N, et al. Rapid axonal sprouting and pruning accompany functional reorganization in primary visual cortex. Neuron, 2009,64(5):719-729
    [120]Marik S A, Yamahachi H, McManus J N, et al. Axonal dynamics of excitatory and inhibitory neurons in somatosensory cortex. PLoS Biol,2010,8(6): e1000395
    [121]Leslie J H, and Nedivi E. Activity-regulated genes as mediators of neural circuit plasticity. Prog Neurobiol,2011,94(3):223-237
    [122]Kennedy M J, and Ehlers M D. Organelles and trafficking machinery for postsynaptic plasticity. Annu Rev Neurosci,2006,29:325-362
    [123]Derkach V A, Oh M C, Guire E S, et al. Regulatory mechanisms of AMPA receptors in synaptic plasticity. Nat Rev Neurosci,2007,8(2):101-113
    [124]Kennedy M B, Beale H C, Carlisle H J, et al. Integration of biochemical signalling in spines. Nat Rev Neurosci,2005,6(6):423-434
    [125]Greer P L, and Greenberg M E. From synapse to nucleus:calcium-dependent gene transcription in the control of synapse development and function. Neuron, 2008,59(6):846-860
    [126]Nedivi E, Hevroni D, Naot D, et al. Numerous candidate plasticity-related genes revealed by differential cDNA cloning. Nature,1993,363(6431): 718-722
    [127]Tyler W J, Petzold G C, Pal S K, et al. Experience-dependent modification of primary sensory synapses in the mammalian olfactory bulb. J Neurosci,2007, 27(35):9427-9438
    [128]Shepherd G M, Chen W R, Willhite D, et al. The olfactory granule cell:from classical enigma to central role in olfactory processing. Brain Res Rev,2007, 55(2):373-382
    [129]Kelsch W, Lin C W, Mosley C P, et al. A critical period for activity-dependent synaptic development during olfactory bulb adult neurogenesis. J Neurosci, 2009,29(38):11852-11858
    [130]Arenkiel B R, Hasegawa H, Yi J J, et al. Activity-induced remodeling of olfactory bulb microcircuits revealed by monosynaptic tracing. PLoS One, 2011,6(12):e29423
    [131]Richard M B, Taylor S R, and Greer C A. Age-induced disruption of selective olfactory bulb synaptic circuits. Proc Natl Acad Sci U S A,2010,107(35): 15613-15618
    [132]Lledo P M, and Saghatelyan A. Integrating new neurons into the adult olfactory bulb:joining the network, life-death decisions, and the effects of sensory experience. Trends Neurosci,2005,28(5):248-254
    [133]Biel M, and Michalakis S. Cyclic nucleotide-gated channels. Handb Exp Pharmacol,2009,191:111-136
    [134]Zhao H, and Reed R R. X inactivation of the OCNC1 channel gene reveals a role for activity-dependent competition in the olfactory system. Cell,2001, 104(5):651-660
    [135]Lin W, Arellano J, Slotnick B, et al. Odors detected by mice deficient in cyclic nucleotide-gated channel subunit A2 stimulate the main olfactory system. J Neurosci,2004,24(14):3703-3710
    [136]Barnabe-Heider F, Meletis K, Eriksson M, et al. Genetic manipulation of adult mouse neurogenic niches by in vivo electroporation. Nat Methods,2008,5(2): 189-196
    [137]Sudhof T C, and Jahn R. Proteins of synaptic vesicles involved in exocytosis and membrane recycling. Neuron,1991,6(5):665-677
    [138]Tretter V, Mukherjee J, Maric H M, et al. Gephyrin, the enigmatic organizer at GABAergic synapses. Front Cell Neurosci,2012,6:23
    [139]Gabellec M M, Panzanelli P, Sassoe-Pognetto M, et al. Synapse-specific localization of vesicular glutamate transporters in the rat olfactory bulb. Eur J Neurosci,2007,25(5):1373-1383
    [140]Yu X, and Zuo Y. Spine plasticity in the motor cortex. Curr Opin Neurobiol, 2011,21(1):169-174
    [141]Kelsch W, Sim S, and Lois C. Watching synaptogenesis in the adult brain. Annu Rev Neurosci,2010,33:131-149
    [142]Kelsch W, Lin C W, and Lois C. Sequential development of synapses in dendritic domains during adult neurogenesis. Proc Natl Acad Sci U S A,2008, 105(43):16803-16808
    [143]Petreanu L, and Alvarez-Buylla A. Maturation and death of adult-born olfactory bulb granule neurons:role of olfaction. J Neurosci,2002,22(14): 6106-6113
    [144]Hu J, Zhong C, Ding C, et al. Detection of near-atmospheric concentrations of CO2 by an olfactory subsystem in the mouse. Science,2007,317(5840): 953-957
    [145]Squire L R Memory and Brain.New York:Oxford Univ. Press,1987.
    [146]Davis H P, and Squire L R. Protein synthesis and memory:a review. Psychol Bull,1984,96(3):518-559
    [147]Gold P E. Protein synthesis inhibition and memory:formation vs amnesia. Neurobiol Learn Mem,2008,89(3):201-211
    [148]Helmstetter F J, Parsons R G, and Gafford G M. Macromolecular synthesis, distributed synaptic plasticity, and fear conditioning. Neurobiol Learn Mem, 2008,89(3):324-337
    [149]Hernandez P J, and Abel T. The role of protein synthesis in memory consolidation:progress amid decades of debate. Neurobiol Learn Mem,2008, 89(3):293-311
    [150]Klann E, and Sweatt J D. Altered protein synthesis is a trigger for long-term memory formation. Neurobiol Learn Mem,2008,89(3):247-259
    [151]Sutton M A, and Schuman E M. Dendritic protein synthesis, synaptic plasticity, and memory. Cell,2006,127(1):49-58
    [152]Alberini C M. The role of protein synthesis during the labile phases of memory: revisiting the skepticism. Neurobiol Learn Mem,2008,89(3):234-246
    [153]McGaugh J L. Memory--a century of consolidation. Science,2000,287(5451): 248-251
    [154]Alberini C M. Mechanisms of memory stabilization:are consolidation and reconsolidation similar or distinct processes? Trends Neurosci,2005,28(1): 51-56
    [155]Dudai Y, and Eisenberg M. Rites of passage of the engram:reconsolidation and the lingering consolidation hypothesis. Neuron,2004,44(1):93-100
    [156]Nader K, Schafe G E, and LeDoux J E. The labile nature of consolidation theory. Nat Rev Neurosci,2000,1(3):216-219
    [157]Sara S J. Retrieval and reconsolidation:toward a neurobiology of remembering. Learn Mem,2000,7(2):73-84
    [158]Alberini C M. Transcription factors in long-term memory and synaptic plasticity. Physiol Rev,2009,89(1):121-145
    [159]Bartsch D, Ghirardi M, Skehel P A, et al. Aplysia CREB2 represses long-term facilitation:relief of repression converts transient facilitation into long-term functional and structural change. Cell,1995,83(6):979-992
    [160]Bourtchuladze R, Frenguelli B, Blendy J, et al. Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell,1994,79(1):59-68
    [161]Yin J C, Wallach J S, Del Vecchio M, et al. Induction of a dominant negative CREB transgene specifically blocks long-term memory in Drosophila. Cell, 1994,79(1):49-58
    [162]Johannessen M, Delghandi M P, and Moens U. What turns CREB on? Cell Signal,2004,16(11):1211-1227
    [163]Lonze B E, and Ginty D D. Function and regulation of CREB family transcription factors in the nervous system. Neuron,2002,35(4):605-623
    [164]Blendy J A, Kaestner K H, Schmid W, et al. Targeting of the CREB gene leads to up-regulation of a novel CREB mRNA isoform. EMBO J,1996,15(5): 1098-1106
    [165]Mantamadiotis T, Lemberger T, Bleckmann S C, et al. Disruption of CREB function in brain leads to neurodegeneration. Nat Genet,2002,31(1):47-54
    [166]Hummler E, Cole T J, Blendy J A, et al. Targeted mutation of the CREB gene: compensation within the CREB/ATF family of transcription factors. Proc Natl Acad Sci U S A,1994,91(12):5647-5651
    [167]Jancic D, Lopez de Armentia M, Valor L M, et al. Inhibition of cAMP response element-binding protein reduces neuronal excitability and plasticity, and triggers neurodegeneration. Cereb Cortex,2009,19(11):2535-2547
    [168]Lemberger T, Parkitna J R, Chai M, et al. CREB has a context-dependent role in activity-regulated transcription and maintains neuronal cholesterol homeostasis. FASEB J,2008,22(8):2872-2879
    [169]Ramanan N, Shen Y, Sarsfield S, et al. SRF mediates activity-induced gene expression and synaptic plasticity but not neuronal viability. Nat Neurosci, 2005,8(6):759-767
    [170]Zhang W, and Linden D J. The other side of the engram:experience-driven changes in neuronal intrinsic excitability. Nat Rev Neurosci,2003,4(11): 885-900
    [171]Disterhoft J F, and Oh M M. Learning, aging and intrinsic neuronal plasticity. Trends Neurosci,2006,29(10):587-599
    [172]Benito E, and Barco A. CREB's control of intrinsic and synaptic plasticity: implications for CREB-dependent memory models. Trends Neurosci,2010, 33(5):230-240
    [173]Tronel S, and Sara S J. Mapping of olfactory memory circuits:region-specific c-fos activation after odor-reward associative learning or after its retrieval. Learn Mem,2002,9(3):105-111
    [174]Brennan P A, Schellinck H M, de la Riva C, et al. Changes in neurotransmitter release in the main olfactory bulb following an olfactory conditioning procedure in mice. Neuroscience,1998,87(3):583-590
    [175]Ravel N, Chabaud P, Martin C, et al. Olfactory learning modifies the expression of odour-induced oscillatory responses in the gamma (60-90 Hz) and beta (15-40 Hz) bands in the rat olfactory bulb. Eur J Neurosci,2003, 17(2):350-358
    [176]Martin C, Gervais R, Hugues E, et al. Learning modulation of odor-induced oscillatory responses in the rat olfactory bulb:a correlate of odor recognition? J Neurosci,2004,24(2):389-397
    [177]Beshel J, Kopell N, and Kay L M. Olfactory bulb gamma oscillations are enhanced with task demands. J Neurosci,2007,27(31):8358-8365
    [178]Yuan Q, Harley C W, McLean J H, et al. Optical imaging of odor preference memory in the rat olfactory bulb. J Neurophysiol,2002,87(6):3156-3159
    [179]Salcedo E, Zhang C, Kronberg E, et al. Analysis of training-induced changes in ethyl acetate odor maps using a new computational tool to map the glomerular layer of the olfactory bulb. Chem Senses,2005,30(7):615-626
    [180]Woo C C, Hingco E E, Johnson B A, et al. Broad activation of the glomerular layer enhances subsequent olfactory responses. Chem Senses,2007,32(1): 51-55
    [181]Kay L M, and Laurent G. Odor-and context-dependent modulation of mitral cell activity in behaving rats. Nat Neurosci,1999,2(11):1003-1009
    [182]Doucette W, and Restrepo D. Profound context-dependent plasticity of mitral cell responses in olfactory bulb. PLoS Biol,2008,6(10):e258
    [183]Wilson D A, and Leon M. Spatial patterns of olfactory bulb single-unit responses to learned olfactory cues in young rats. J Neurophysiol,1988,59(6): 1770-1782
    [184]Buonviso N, Gervais R, Chalansonnet M, et al. Short-lasting exposure to one odour decreases general reactivity in the olfactory bulb of adult rats. Eur J Neurosci,1998,10(7):2472-2475
    [185]Buonviso N, and Chaput M. Olfactory experience decreases responsiveness of the olfactory bulb in the adult rat. Neuroscience,2000,95(2):325-332
    [186]Fletcher M L, and Wilson D A. Olfactory bulb mitral-tufted cell plasticity: odorant-specific tuning reflects previous odorant exposure. J Neurosci,2003, 23(17):6946-6955
    [187]Woo C C, Oshita M H, and Leon M. A learned odor decreases the number of Fos-immunopositive granule cells in the olfactory bulb of young rats. Brain Res,1996,716(1-2):149-156
    [188]Funk D, and Amir S. Enhanced fos expression within the primary olfactory and limbic pathways induced by an aversive conditioned odor stimulus. Neuroscience,2000,98(3):403-406
    [189]Montag-Sallaz M, and Buonviso N. Altered odor-induced expression of c-fos and arg 3.1 immediate early genes in the olfactory system after familiarization with an odor. J Neurobiol,2002,52(1):61-72
    [190]Mandairon N, Didier A, and Linster C. Odor enrichment increases interneurons responsiveness in spatially defined regions of the olfactory bulb correlated with perception. Neurobiol Learn Mem,2008,90(1):178-184
    [191]Woo C C, Hingco E E, Taylor G E, et al. Exposure to a broad range of odorants decreases cell mortality in the olfactory bulb. Neuroreport,2006, 17(8):817-821
    [192]Rochefort C, Gheusi G, Vincent J D, et al. Enriched odor exposure increases the number of newborn neurons in the adult olfactory bulb and improves odor memory. J Neurosci,2002,22(7):2679-2689
    [193]Saar D, Grossman Y, and Barkai E. Learning-induced enhancement of postsynaptic potentials in pyramidal neurons. J Neurophysiol,2002,87(5): 2358-2363
    [194]Cohen Y, Reuveni I, Barkai E, et al. Olfactory learning-induced long-lasting enhancement of descending and ascending synaptic transmission to the piriform cortex. J Neurosci,2008,28(26):6664-6669
    [195]Brosh I, and Barkai E. Learning-induced enhancement of feedback inhibitory synaptic transmission. Learn Mem,2009,16(7):413-416
    [196]Knafo S, Grossman Y, Barkai E, et al. Olfactory learning is associated with increased spine density along apical dendrites of pyramidal neurons in the rat piriform cortex. Eur J Neurosci,2001,13(3):633-638
    [197]Ennis M, Linster C, Aroniadou-Anderjaska V, et al. Glutamate and synaptic plasticity at mammalian primary olfactory synapses. Ann N Y Acad Sci,1998, 855:457-466
    [198]Mutoh H, Yuan Q, and Knopfel T. Long-term depression at olfactory nerve synapses. J Neurosci,2005,25(17):4252-4259
    [199]Aroniadou-Anderjaska V, Zhou F M, Priest C A, et al. Tonic and synaptically evoked presynaptic inhibition of sensory input to the rat olfactory bulb via GABA(B) heteroreceptors. J Neurophysiol,2000,84(3):1194-1203
    [200]Vucinic D, Cohen L B, and Kosmidis E K. Interglomerular center-surround inhibition shapes odorant-evoked input to the mouse olfactory bulb in vivo. J Neurophysiol,2006,95(3):1881-1887
    [201]Perez-Orive J, Mazor O, Turner G C, et al. Oscillations and sparsening of odor representations in the mushroom body. Science,2002,297(5580):359-365
    [202]Rennaker R L, Chen C F, Ruyle A M, et al. Spatial and temporal distribution of odorant-evoked activity in the piriform cortex. J Neurosci,2007,27(7): 1534-1542
    [203]Stettler D D, and Axel R. Representations of odor in the piriform cortex. Neuron,2009,63(6):854-864
    [204]Calu D J, Roesch M R, Stalnaker T A, et al. Associative encoding in posterior piriform cortex during odor discrimination and reversal learning. Cereb Cortex, 2007,17(6):1342-1349
    [205]Roesch M R, Stalnaker T A, and Schoenbaum G. Associative encoding in anterior piriform cortex versus orbitofrontal cortex during odor discrimination and reversal learning. Cereb Cortex,2007,17(3):643-652
    [206]Zinyuk L E, Datiche F, and Cattarelli M. Cell activity in the anterior piriform cortex during an olfactory learning in the rat. Behav Brain Res,2001,124(1): 29-32
    [207]Kadohisa M, and Wilson D A. Separate encoding of identity and similarity of complex familiar odors in piriform cortex. Proceedings of the National Academy of Sciences of the United States of America,2006,103(41): 15206-15211
    [208]Moriceau S, and Sullivan R M. Unique neural circuitry for neonatal olfactory learning. J Neurosci,2004,24(5):1182-1189
    [209]Datiche F, Roullet F, and Cattarelli M. Expression of Fos in the piriform cortex after acquisition of olfactory learning:an immunohistochemical study in the rat. Brain Res Bull,2001,55(1):95-99
    [210]Wirth S, Ferry B, and Di Scala G. Facilitation of olfactory recognition by lateral entorhinal cortex lesion in rats. Behav Brain Res,1998,91(1-2):49-59
    [211]Ferry B, Herbeaux K, Cosquer B, et al. Immunotoxic cholinergic lesions in the basal forebrain reverse the effects of entorhinal cortex lesions on conditioned odor aversion in the rat. Neurobiol Learn Mem,2007,88(1):114-126
    [212]Luu T T, Pirogovsky E, and Gilbert P E. Age-related changes in contextual associative learning. Neurobiol Learn Mem,2008,89(1):81-85
    [213]Goodrich-Hunsaker N J, Gilbert P E, and Hopkins R O. The role of the human hippocampus in odor-place associative memory. Chem Senses,2009,34(6): 513-521
    [214]Takahashi L K, Chan M M, and Pilar M L. Predator odor fear conditioning: current perspectives and new directions. Neurosci Biobehav Rev,2008,32(7): 1218-1227
    [215]Schoenbaum G, and Roesch M. Orbitofrontal cortex, associative learning, and expectancies. Neuron,2005,47(5):633-636
    [216]Eichenbaum H, Shedlack K J, and Eckmann K W. Thalamocortical mechanisms in odor-guided behavior. I. Effects of lesions of the mediodorsal thalamic nucleus and frontal cortex on olfactory discrimination in the rat. Brain Behav Evol,1980,17(4):255-275
    [217]Eichenbaum H, Morton T H, Potter H, et al. Selective olfactory deficits in case H.M. Brain,1983,106 (Pt2):459-472
    [218]Schoenbaum G, Chiba A A, and Gallagher M. Neural encoding in orbitofrontal cortex and basolateral amygdala during olfactory discrimination learning. J Neurosci,1999,19(5):1876-1884
    [219]Schoenbaum G, and Eichenbaum H. Information coding in the rodent prefrontal cortex. I. Single-neuron activity in orbitofrontal cortex compared with that in pyriform cortex. J Neurophysiol,1995,74(2):733-750
    [220]Roesch M R, and Olson C R. Neuronal activity related to reward value and motivation in primate frontal cortex. Science,2004,304(5668):307-310
    [221]Ongur D, and Price J L. The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex,2000, 10(3):206-219
    [222]Tham W W, Stevenson R J, and Miller L A. The functional role of the medio dorsal thalamic nucleus in olfaction. Brain Res Rev,2009,62(1):109-126
    [223]Do Monte F H, Canteras N S, Fernandes D, et al. New perspectives on beta-adrenergic mediation of innate and learned fear responses to predator odor. J Neurosci,2008,28(49):13296-13302
    [224]Canteras N S, Kroon J A, Do-Monte F H, et al. Sensing danger through the olfactory system:the role of the hypothalamic dorsal premammillary nucleus. Neurosci Biobehav Rev,2008,32(7):1228-1235
    [225]Vann S D, and Aggleton J P. The mammillary bodies:two memory systems in one? Nat Rev Neurosci,2004,5(1):35-44
    [226]Fletcher M L, and Chen W R. Neural correlates of olfactory learning:Critical role of centrifugal neuromodulation. Learn Mem,2010,17(11):561-570
    [227]Woolf N J, Eckenstein F, and Butcher L L. Cholinergic systems in the rat brain: I. projections to the limbic telencephalon. Brain Res Bull,1984,13(6):751-784
    [228]Wilson D A, and Sullivan R M. Neurobiology of associative learning in the neonate:early olfactory learning. Behav Neural Biol,1994,61(1):1-18
    [229]Sara S J. The locus coeruleus and noradrenergic modulation of cognition. Nat Rev Neurosci,2009,10(3):211-223
    [230]Berridge C W, and Waterhouse B D. The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res Brain Res Rev,2003,42(1):33-84
    [231]Ishida Y, Hashiguchi H, Takeda R, et al. Conditioned-fear stress increases Fos expression in monoaminergic and GABAergic neurons of the locus coeruleus and dorsal raphe nuclei. Synapse,2002,45(1):46-51
    [232]Keverne E B, and Brennan P A. Olfactory recognition memory. J Physiol Paris, 1996,90(5-6):399-401
    [233]Lowry C A, Johnson P L, Hay-Schmidt A, et al. Modulation of anxiety circuits by serotonergic systems. Stress,2005,8(4):233-246
    [234]King M V, Marsden C A, and Fone K C. A role for the 5-HT(1A),5-HT4 and 5-HT6 receptors in learning and memory. Trends Pharmacol Sci,2008,29(9): 482-492
    [235]Monti J M, and Jantos H. The roles of dopamine and serotonin, and of their receptors, in regulating sleep and waking. Prog Brain Res,2008,172:625-646

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700