颞叶癫痫患者脑部静息态下多模态磁共振成像研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分颞叶癫痫患者脑白质损伤DTI-TBSS与结构网络研究
     目的
     利用磁共振扩散张量成像技术(DTI)和基于纤维束体素的空间统计(TBSS)方法观测颞叶癫痫患者脑白质微结构改变情况,同时探讨DTI两个参数(FA、MD)值在评价颞叶癫痫患者脑白质微结构损伤中的应用价值,从而为颞叶癫痫患者的临床诊断、分析、疗效与预后评估提供客观的影像学依据。另外,基于DTI图像数据,构建大脑拓扑结构网络,探讨颞叶癫痫患者脑结构网络“小世界”属性的变化情况及其临床意义。
     材料与方法
     1.研究对象
     研究被试包括50人,其中颞叶癫痫组26人,全部来自广东三九脑科医院住院病人,健康对照组24人。所有颞叶癫痫患者均为住院病人,均行常规MR检查,以及视频脑电检查,脑电图包括头皮电极或/与蝶骨电极。颞叶癫痫纳入标准:①癫痫发作类型与临床症状符合1981年以及1989年国际抗癫联盟的诊断标准与分类标准;②视频脑电图显示异常痫性放电(Interical epileptiformdischarges, IEDs)起源于颞部。MR检查显示单侧或双侧海马硬化、颞叶皮层局灶性发育不良。临床发作具有以下特征:内侧颞叶癫痫(mTLE)发作先兆包括胃气上升感、胸闷、心慌等。外侧颞叶癫痫(1TLE)发作先兆包括幻听、精神症状、躯体感觉异常等。综合临床表现、脑电图(Electrocephalographic, EEG)与MR结果最终诊断为TLE。排除标准,MRI检查示颅内占位性病变(如肿瘤、寄生虫、血管畸形等)、白质变性、软化灶等其它病变,EEG示可疑不正常,EEG定侧结果与临床表现不相符者。8例被试者从本研究中排除(包括6例颞叶癫痫患者与2例健康对照组受试者),剩余42例被纳入本次研究,即:20例颞叶癫痫患者(男性:16例,女性:4例,平均年龄:25.55±8.67岁),22例正常健康对照组(男性:13例,女性:9例,平均年龄:25.23±6.67岁)。
     2.磁共振DTI数据采集
     磁共振DTI数据采集使用飞利浦1.5T磁共振扫描仪(Philips Gyroscan Intera1.5T),并采用6通道相位陈列(神经血管线圈6,NV6)线圈接收核磁共振信号。DTI数据采集之前均进行全脑轴位T1WI、T2WI及FLAIR扫描,以排除脑部疾患。DTI数据采集采用单次激发自旋回波平面回波序列,平行于大脑前后联合得到全脑轴位弥散加成像。b=800s/mm2共32组图像(32个扩散梯度方向),和一组扩散敏感系数b=0的非扩散加权图像。磁共振扫描具体参数如下:重复时间(TR)=11000ms;回波时间(TE)=71.614ms;翻转角(flip angle)=90°;矩阵(matrix size)=144×144;视野(FOV)=230mm×230mm;激励次数(NEX)=1;层厚(thickness)=2.Omm;层数(slice)=67;层间距(slice gap)=0。
     3.DTI数据预处理与TBSS分析
     首先利用MRIcro(Chris Rorden, http://www.psychology.nottingham.c.uk/staff/crl/mricro.html)将每个被试者的1组Bo图像与相应的32组扩散权重二维图像DICOM数据转化为包含三维影像与代表不同扩散权重梯度场强方向的四维NIFTI格式数据。
     DTI数据分析采用FSL (FMRIB Software Library, www.fmrib.ox.ac.uk/fsl, version4.19)软件。具体处理步骤包括:①首先使用FSL软件FDT套件中的eddy correct函式来矫正图像的失真。②利用FSL软件中BET套件以每个被试者的B0图像作为依据产生各自的脑mask。③将梯度磁场方向、磁场强度的数值以及四维NIFTI格式图像,连同各个被试的mask输入FDT套件中的dtifit函式中来进行扩散张量的计算。输出的结果将包含FA(fractional anisotropy)、MD(mean diffusivity)图像。以FA值、MD值进行基于纤维束体素的空间统计的群组分析。
     4.大脑结构网络构建与可视化
     应用基于Matlab R2009b分析软件平台的SPM5(http://www.fil.ion.ucl.ac. uk/spm)脑成像处理软件进行图像数据处理分析。结构网络流程:①ICOM数据格式转换为NIFTI格式;②刚性配准将T1像转换到DTI空间,将配准后的T1像通过非线性转换转至MNI空间;③用第二步转换得到的翻转矩阵将MNI空间中的AAL-90模板反向转换到DTI空间;④利用DTIstudio计算扩散张量矩阵并得到特征值和特征向量;⑤利用DTIstudio里的FACT算法重建全脑白质纤维束;⑥用90个脑区作为节点与纤维束作为边构建大脑结构网络。大脑结构网络图的可视化是基于Brainnet viewer Version1.1软件实现。
     5.统计学分析
     应用SPSS13.0软件采用两独立样本t检验的统计方法评价颞叶癫痫患者组与正常被试组之间年龄、受教育程度,采用卡方检验评价两组被试之间性别差异。全脑平均FA值、MD值进行组间分析,P<0.05认为有统计学意义。采用Pearson相关分析方法对颞叶癫痫组全脑平均FA值与癫痫患者病程作相关分析。
     应用SPSS13.0软件采用两独立样本t检验的统计方法评价颞叶癫痫患者组大脑结构网络各“小世界”属性参数(λ、σ、Cp、Lp、Eglob、Eloc、Cost)与正常对照组之间的差异。采用Pearson相关分析方法对颚叶癫痫患者病程分别与大脑效率(Eglob)、代价(Cost)作相关性分析,P<0.05认为有统计学意义。
     结果
     1.TBSS结果:
     颞叶癫痫患者多个脑区FA值显著降低:双侧颞叶、额叶、顶叶及部分枕叶,双侧半卵圆中心、双侧内囊前、后肢(P<0.05)。颞叶癫痫患者多个脑区MD值显著升高:左侧额叶、颞叶、顶叶、枕叶(P<0.05)。颞叶癫痫患者脑白质纤维骨架平均FA值与癫痫病程呈负相关(r=-0.5535,P=0.0114)。
     2.结构小世界网络属性结果:
     颞叶癫痫患者大脑全局效率显著降低,而且左侧额中回、双侧枕下回、左侧角回、左侧颞横回,右侧扣带回与扣带旁回前部的局部效率显著降低(P<0.05);颞叶癫痫患者大脑最短路径(t=-4.18,P=1.55e-04)与成本(t=-4.04,P=2.35e-04)显著增大。采用Pearson相关分析方法,结果显示左侧缘上回局部节点效率与病程呈显著负相关(r=-0.63,P=0.0053),左侧颞中回局部节点效率与病程呈显著负相关(r=-0.53,P=0.0233),颞叶癫痫患者大脑最短路径(Lp)、全局效率(Eglob)、局部效率(Eloc)、代价(Cost)均有显著性差异,而集群系数(Cp)两组间无显著性差异。
     结论
     颞叶癫痫患者脑白质微结构发生广泛损伤,且损伤程度随着病程的延长而加重,而且左侧大脑半球白质受损较右侧显著。通过基于弥散张量图像构建大脑结构网络显示,颞叶癫痫患者大脑结构网络仍然具有“小世界”属性,但是该网络拓扑结构发生改变,主要表现为全局效率与局部效率下降,而最短路径增加,代价增高;另外,大脑结构网络的核心节点分布亦发生了变化。以上结果表明癫痫电活动导致大脑白质广泛损伤,信息传递效率降低,这可能与癫痫患者情感低落、记忆力减退,认知与学习能力下降等临床症状有关。
     第二部分基于BOLD-fMRI的颞叶癫痫患者脑功能网络研究
     目的
     采用基于血氧水平依赖成像的图像,通过功能连接技术与构建功能结构网络的方法,探讨颞叶癫痫患者静息态脑部脑区间功能连接变化情况,同时探讨脑功能网络“小世界”属性的变化情况,并评价这些指标变化的临床意义。
     材料与方法
     1.研究对象
     研究被试包括63人,其中颞叶癫痫组35人,全部来自广东三九脑科医院住院病人,健康对照组28人,9例被试者从本研究中排除,剩余54例被纳入本次研究:25例正常健康对照组(男性:17例,女性:8例,年龄:24.24±5.31岁),16例左侧颞叶癫痫患者(男性:11例,女性:5例,年龄:23.13±7.14岁)13例右侧颞叶癫痫患者(男性:8例,女性:5例,年龄:26.31±10.10岁)。颞叶癫痫纳入标准:①癫痫发作类型与临床症状符合1981年以及1989年国际抗癫联盟的诊断标准与分类标准;②视频脑电图显示异常痫性放电(Interical epileptiform discharges, IEDs)起源于单侧颞部。排除标准:MRI检查示颅内占位性病变、白质变性、软化灶等其它病变,EEG示可疑不正常,或双侧IEDs(或无单侧定侧意义),EEG定侧结果与临床表现不相符者。正常对照组入选标准同第一部分。
     2.数据采集
     磁共振仪器设备同前;静息态BOLD-fMRI数据采集前,并告之被试者在进行MR检查时务必避免系统性思考问题,保持清醒状态、闭眼,不能睡觉。BOLD数据采集采用梯度回波平面回波序列(GRE-EPI),平行于大脑前、后联合得到全脑轴位成像,具体参数如下:TR=3000ms; TE=50ms;翻转角=900;究康复治疗Matrix=128×128; FOV=230mm×230mm;层厚=4.5mm;层间距=0;共160个动态。静息态扫描时间约7分钟。
     3.图像数据处理分析
     3.1数据预处理
     对采集到的原始DICOM数据首先应用基于Matlab R2009b分析软件平台的SPM5(http://www.fil.ion.ucl.ac.uk/spm)软件进行图像数据处理。具体预处理步骤包括:①将原始图像的DICOM格式转化为用于数据分析的NIFTI格式;②手动去除前十个时间点的扫描图像,保持磁场稳定性;③头动校正(realignment),被试者头动范围超过±1mm或者±1。的数据从研究中剔除;④时间序列校正(slice timing)以扫描位置中心点为参考层,把被试者所有个体静息态BOLD-fMRI图像进行时间差异校正;⑤标准化(normalization)处理,将头动校正后的数据标准化到SPM5内MNI模板并转化到Talairach and Tournoux空间。⑥进行去线性飘移(linearly detrended)与低频滤过(1ow-frequency filtering)处理。预处理之后的时间序列信号做进一步的功能连接分析与图论分析。
     3.2图像分割
     应用AAL-90模板将图像分割为90个感兴趣区(ROIs),每一侧半球为45个ROIs。。再利用MarsBaR工具箱(http://marsbar.sourceforge.net)对每一个感兴趣区提取预处理之后的时间序列信号。
     3.3计算相关矩阵
     将90个脑区之间的静息态BOLD-fMRI时间序列信号进行相关计算,结果得到每一位受试者的90×90的相关矩阵图,由于相关矩阵的对称性,我们对4005(C920=90×89/2=4005)个相关系数进行下一步统计分析。
     3.4大脑功能网络图的构建与可视化
     基于上述构造的相关矩阵,我们以每个脑区为节点,脑区间的相关系数为边,来构建二值矩阵。最后我们基于二值矩阵来计算全局网络参数和节点参数。大脑功能连接网络图的可视化是基于Brainnet viewer Version11软件实现的。
     4.统计学分析
     4.1功能连接比较
     基于matlab2009b,采用两独立样本的t检验的方法分别比较左侧颞叶癫痫病人和正常人之间有差异的功能连接,右侧颞叶癫痫病人和正常人之间有差异的功能连结。由于多重比较的问题,p<0.001认为有统计学意义。
     4.2网络参数的比较
     基于matlab2009b,针对每一个网络参数,采用两独立样本的t检验的方法分别检测左侧颞叶癫痫病人和正常人之间、右侧颞叶癫痫病人和正常人之间是否有差异。由于多重比较的问题,p<0.001认为有统计学意义。
     结果
     1.功能连接分析结果:
     左侧TLE较正常对照组出现多个节点间功能连接增强,如右侧中央前回与右侧海马,右侧额下回眶部与右侧中央后回等;功能连接减弱的节点如左侧扣带回后部与左侧丘脑。右侧TLE较正常对照组出现多个脑区间功能连接增强,如左侧中央前回与左侧海马旁回,左侧额上回背外侧部与左侧嗅皮质等,功能连接减弱的脑区,包括右侧额上回内侧部与右侧颞中回颞极部,左侧扣带回后部与右侧颞中回颞极部,右侧海马与右侧尾状核。
     2.功能网络分析结果:
     2.1左侧颞叶癫痫的集群系数(CP)与局部效率(Eloc)增大,右侧颞叶癫痫患者大脑功能网络拓扑结构参数无显著差异性。
     2.2左侧颞叶癫痫患者右侧颞中回与右侧海马旁回节点参数增加,而右侧丘脑与左侧额中回眶部节点参数下降,尤其以左侧额中回眶部下降显著(P=0.0057);与正常对照组比较,右侧颞叶癫痫患者右侧顶下小叶、双侧角回、右侧中央后回节点节参数增加,其中以右侧顶下小叶的Nbc。增加显著(P=6.8817e-4),而左侧颞下回节点参数减少。
     结论
     左、右侧TLE多个脑区之间功能连接发生异常改变,通过构建脑功能网络方法,显示左侧TLE患者大脑集群系数与局部效率较正常人对照组增加,而右侧TLE患者与正常对照组比较无显著差异;此外,左侧TLE患者的右侧丘脑与左侧额叶眶部节点参数显著下降。以上结果表明左侧TLE对大脑的损害较右侧TLE显著,同时不同脑区间功能连接变化以及多个脑区节点参数变化与癫痫患者记忆受损、情感改变、认知能力下降等有关。
Part one:White matter microstructural damage in temporal lobe epilepsy individuals DTI-TBSS and structure network study
     Objective
     The purpose of present study is to explore white matter microstructure abnormalities of temporal lobe epilepsy (TLE) by using diffusion tensor imaging (DTI) and tract based spatial statistic (TBSS) methods, and the differences between two index of DTI (FA value and MD value) on evaluating white matter microstructure of TLE, in order to setup image basis for clinical diagnosis, analysis, assessment of treatment on TLE. In addition, we explored the change of "small world" properties and their clinical significance through the topology network of brain that created through DTI data.
     Materials and Methods
     1. Subjects
     Fifty subjects have participated in present study, including26TLE patients and24normal adults. All patients were recruited from Guangdong999hospital, and underwent MR scan, Video-EEG monitoring, scalp EEG and/or sphenoidal electrodes. The inclusion criteria included the following:①seizure types and epileptic syndromes as diagnosed according to the classification of the International League Against Epilepsy (Anon.,1981,1989);②TLE diagnosis when continuous interictal-ictal scalp video electroencephalography showed interical epileptiform discharges (IEDs) of temporal origin. Unilateral or bilateral hippocampal sclerosis, focal cortical dysplasia (FCD) of temporal lobe were showed on MR imaging. Main clinical symptoms as follows:hoven, dyspnea and dither were indicators of a possible medial TLE, acousma, psychotic symptoms, somatosensory abnormality were indicators of a possible lateral TLE. The final diagnosis of TLE from patients'clinical performance and electro-cephalographic results. The exclusive criteria:with ace-occupying lesion (such as tumor, parasite and vascular malformation), white matter lesion, encephalomalacia on MRI, EEG showed suspicious abnormality, the results of EEG and clinical performance were not consistent. Eight subjects were excluded from this study (including6TLE patients and2health controls), remaining42subjects were included in this study, which included20TLE patients (mean age=25.55±8.67years,16males,4females),22health controls (mean age=25.23±6.67years,13males,9females).
     2. DTI-MRI data acquisition
     DTI-MRI data were collected using a1.5-Tesla scanner (Philips Gyroscan Intera) with a6channel neurovascular (NV) coil to receive the signal. Firstly, axial T1-weighted, T2-weighted images and FLAIR images were acquired for detecting incranial lesions. A Single-shot turbo spin echo sequence was used to obtain the DTI data, TR (repetition time)=11000ms; TE (echo time)=71.614ms; flip angle=90°; matrix size=144×144; FOV (field of view)=230X230; NEX=1; thickness=2mm; slice=67; slice gap=0. Thirty-two diffusion gradient directions with b-value=800s/mm2. In addition, images without diffusion weighting were acquired corresponding to b-value=0.
     3. DTI data preprocessing and TBSS analysis
     The DICOM data format of B0image and32diffusion weighted images of each subject were converted to NIFTI data format with four dimension
     DTI data preprocessing was partly carried out using FSL (FMRIB Software Library, www.fmrib.ox.ac.uk/fsl, version4.19). The procedure of DTI data process included:①Diffusion tensor images were corrected for head movement by using FDT tool of the FSL software.②Mask for each brain was created by using each subject'Bo image with BET tool of the FSL software.③Fractional anisotropy (FA) and mean diffusivity (MD) were obtained with diffusion tensor calculation by using dtifit function, the FA and MD output images were used as input for tract based spatial statistic (TBSS).
     4. Brain structure network graph visualization
     DTI data preprocessing was partly carried out using SPM5software (http://www.fil. ion.ucl.ac.uk/spm) based on Matlab R2009b. The reprocessing as follows:①Dsta with DICOM format were converted to NIFTI format;②Each individual structural image (Ti-weighted image) was coregistered to the Bo image in the DTI space using a linear transformation, the transformed structural image was then mapped to the T1template in the Montreal Neurological Institute (MNI) space using a nonlinear transformation;③The resulting inverse transformation was then used to warp the AAL-90mask from the MNI space to the DTI native space;④The diffusion tensor matrix was then calculated voxel-by-voxel and diagonalization was performed to yield eigenvalues;⑤Fiber bundles of white matter were reconstructed by using FACT algorithm with DTIstudio software;⑥The topological properties of brain structural networks were defined on the basis of a90X90binary graph, which was consisted of nodes and edges, the edges between nodes could be constructed by applying a correlation matrice, the regional centroid of each node was positioned by using Brainnet viewer Version1.1software.
     5. Statistic analysis
     Two-sample t-test was performed with age, years of education between TLE patients and controls, chi-square test was performed with sex between TLE patients and controls. Two-sample t-test was performed with whole brain mean FA value and MD value between TLE patients and controls, we used a statistical significance level of P<0.05. Then, we used Pearson correlation analysis to investigate the underlying relationship between mean FA value of TLE patients and epilepsy duration.
     Two-sample t-test was performed with network topological measures(λ、σ、Cp、 Lp、Eglob、Eloc、Cost) between TLE patients and controls. Then, we used Pearson correlation analysis to investigate the underlying relationship between properties measures (Eglob, Cost) of the brain structure networks and epilepsy duration (P<0.05).
     Results
     1. The results of TBSS:
     Reduced FA values were found in many brain regions, which included bilateral temporal lobes, frontal lobes, parietal lobes and part of the occipital lobes, bilateral internal capsule, centrum semiovale (P<0.05). Increased MD values were found almost in left hemisphere, including left frontal lobe, temporal lobe, parietal lobe and occipital lobe (P<0.05). Moreover, it has a significant negative correlation (r=-0.5535, P=0.0114) for the mean FA value in FA skeleton of each patient with the epilepsy duration.
     2. The results of structural network topological measures:
     Compared to normal controls, the global efficiency (Eglob) showed significantly decreased in TLE patients, and the local efficiency (Eglob) showed significantly decreased also in TLE patients, which included left middle frontal gyrus, bilateral inferior occipital gyrus, left angular gyrus, left Heschl gyrus, right anterior cingulate and paracingulate gyri. Moreover, the shortest path length (t=-4.18, P=1.55e-04) and cost (t=-4.04, P=2.35e-04) showed significantly increased in TLE. It also showed a significant negative correlation (r=-0.63, P=0.0053) for Eglob of left Heschl gyrus in patients with the epilepsy duration. The TLE patients showed statistically significant decrease inEglob, Eloc, and increase in Lp, Cost, compared to health controls. However, it has no statistically significant difference for Cp between TLE patients and controls.
     Conclusion
     It offered the evidence that there have extensive damages of brain white matter on TLE patients, and the severity of this damage increased with the epilepsy duration. Moreover, it seen to be more sensitivity to damage for left hemisphere than right hemisphere. Though graph-theory analysis, we found that the structural network of TLE patients also have "small-word" attributes. However, the topology of structural network parameters have altered remarkably in TLE patients compared to health controls, which included increase of Cp and Cost, decrease of Eglob and Eloc, the location of brain Hubs have also altered. This demonstrated that there have extensive damages of brain white matter on TLE patients, which mean decrease in efficiency of information transfer, that would be related to hypothymergasia, memory losses, learning ability and cognitive decline in TLE patients.
     Part two:Research on brain functional network of temporal lobe epilepsy via BOLD-fMRI and graph theory
     Objective
     To investigate alterations of functional connectivity and small-world topological properties related to temporal lobe epilepsy through functional connection technology and graph-theory based on blood oxygen level-dependent functional MRI and its clinical significance.
     Materials and Methods
     1. Subjects
     Sixty-three subjects participated in the study, including35TLE patients and28 health adults, all TLE patients were recruited from Guangdong999hospital. The inclusion criteria included the following:①seizure types and epileptic syndromes as diagnosed according to the classification of the International League Against Epilepsy (Anon.,1981,1989);②TLE diagnosis when continuous interictal-ictal scalp video electroencephalography showed interical epileptiform discharges (IEDs) of unilateral temporal origin. The exclusive criteria:with ace-occupying lesion (such as tumor, parasite and vascular malformation), white matter lesion, encephalomalacia on MR image, suspicious abnormality of the results for EEG, the results of EEG suggested bilateral TLE, or not consistent to clinical performance of TLE patients. The inclusion criteria for health controls was as same as part one. Nine participants were excluded from this study, remaining54subjects were included in this study, which included25health controls (mean age=24.24±5.31years,17males,8females),16left TLE patients (mean age=23.13±7.14years,11males,5females),13right TLE patients (mean age=26.31±10.10,8males,5females).
     2. Data acquisition
     MRI data were collected using a1.5-Tesla scanner, participants were instructed to rest with their eyes closed and to be still, without considering the specific problems, and not to fall asleep. BOLD functional images covering the whole brain were acquired axially using an gradient echo-echo planar imaging sequence (GRE-EPI), TR=3000ms, TE=50ms, flip angle=90, matrix=128×128, FOV=230mm×230mm, slice=4.5mm, slice gap=0. For each subjects, the resting state fMRI scanning lasted seven minutes, thus collecting160volumes.
     3. Data processing
     3.1Data preprocessing
     Data preprocessing was partly carried out using SPM5software (http://www.fil. ion.ucl.ac.uk/spm) based on Matlab R2009b. The reprocessing as follows:①Data with DICOM format were converted to NIFTI format;②The first10images were discarded to ensure the magnetization equilibrium;③Then the remaining images were realigned, the subjects would be excluded for head translation or rotation exceeded±1mm or±1°;④lice timing, correct differences in image acquisition time between slices;⑤Normalization, normalize images into a standard Talairach and Tournoux space by MNI template images which supplied with SPM5;⑥The images were proceed with linear detrend and low-frequency filtering, then the preprocessed time series were used for further functional connectivity and graph-theory analysis.
     3.2Image segment
     The images were segmented into90anatomical regions of interests (ROIs)(45ROIs for each hemisphere) using anatomically labeled-90(AAL-90) template. These anatomical ROIs were extracted by the MarsBaR toolbox (http://marsbar.sourceforge. net)
     3.3Computation of correlation matrix
     The resting state BOLD time series were correlated region by region for each subject across the full length of the resting time series. Then a square90X90correlation matrix was obtained for each subject,4005(C920=90X89/2=4005) inter-regional correlations were subjected to statistic analysis.
     3.4functional network graph visualization
     The topological properties of the brain functional networks were defined on the basis of a90X90binary graph, which was consisted of nodes and edges, the edges between nodes could be constructed by applying a correlation matrice, the regional centroid of each node was positioned by using Brainnet viewer Version1.1software.
     4. Statistic analysis
     4.1Function connectivity comparison
     Two-sample t-test was performed with functional connectivity between left TLE patients and controls, and right TLE patients and controls base on matlab R2009b. To account for multiple comparisons, the false discovery rate method was applied, P﹤0.001was supposed to be a significantly functional connectivity.
     4.2Network topological measures comparison
     Two-sample t-test was performed with network topological measures between left TLE patients and controls, and right TLE patients and controls base on matlab2009b. To account for multiple comparisons, the false discovery rate method was applied, P﹤0.001was supposed to be a significantly functional connectivity.
     Results
     1. Results of functional connectivity:
     Left TLE patients produced significantly stronger connectivity than healthy controls between specific ROIs, e.g. right precentral gyrus vs right hippocampus; right inferior frontal gyrus orbital part vs right postcentral gyrus, and produced significantly lower connectivity than healthy controls between left posterior cingulated gyrus vs left thalamus. Right TLE patients produced significantly stronger connectivity than healthy controls between specific ROIs, e.g. left precentral gyrus vs left parahippocampal gyrus; left dorsolateral superior frontal gyrus vs left olfactory cortex, and produced significantly lower connectivity than healthy controls between right medial superior frontal gyrus vs temporal pole of right middle temporal gyrus; left posterior cingulated gyrus vs temporal pole of right middle temporal gyrus; right hippocampus vs right caudate nucleus.
     2. Results of brain functional network:
     2.1Clustering coefficients (Cp) and local efficiency (Eloc) showed significantly larger value in left TLE patients when compared to normal controls. However, there have no alteration with graph theory measures between right TLE and normal controls.
     2.2In the left TLE patients, some nodal parameters showed significant increase, e.g. right middle temporal gyrus; right parahippocampal gyrus, and some nodal parameters showed significant decrease, e.g. right thalamus, left middle frontal gyrus orbital part, especially for left middle frontal gyrus orbital part (P=0.0057). In the right TLE patients, some nodal parameters showed significant increase, e.g. right inferior parietal gyrus, bilateral angular gyrus, right postcentral gyrus, especially for right inferior parietal gyrus (P=6.8817e-4). However, the left inferior temporal gyrus showed significant decrease with nodal parameters.
     Conclusion
     It showed that there have alterations of functional connectivity between many brain regions both in left TLEs or right TLEs, though graph-theory analysis, we found that the clustering coefficients (Cp) and local efficiency (Eloc) showed significantly larger value in left TLE patients when compared to normal controls. However, there has no alteration with graph theory measures between right TLE and normal controls. Furthermore, the nodal parameters of right thalamus and left middle frontal gyrus orbital part showed significant decrease in left TLE patients. It demonstrated that the damages of brain with left TLE were more serious than right TLE. Furthermore, it suggested that the alternation of functional connectivity and nodal parameters would be related to memory losses, emotional changes and cognitive decline in TLE patients.
引文
[1]Mueller SG, Laxer KD, Cashdollar N, et al. Identification of abnormal neuronal metabolism outside the seizure focus in temporal lobe epilepsy. Epilepsia.2004;45: 355-66.
    [2]Engel JJ. Mesial temporal lobe epilepsy:what have we learned? Neuroscientist. 2001;7:340-52.
    [3]Chenevert TL, Brunberg JA, Pipe JG. Anisotropic diffusion in human white matter:demonstration with MR techniques in vivo. Radiology.1990;177:401-5.
    [4]Le Bihan D, Mangin JF, Poupon C, et al. Diffusion tensor imaging:concepts and applications. J Magn Reson Imaging.2001;13:534-46.
    [5]白卓杰,张志强,卢光明,et a1.基于体素分析的扩散张量成像在内侧颞叶癫痫中的应用.临床放射学杂志.2009;28:924-28.
    [6]张泉,张云亭,冯凯琳,et a1.颞叶癫痫患者的颞叶以外白质MR扩散张量成像研究.临床放射学杂志.2009;28:8-11.
    [7]Focke NK, Yogarajah M, Bonelli SB, et al. Voxel-based diffusion tensor imaging in patients with mesial temporal lobe epilepsy and hippocampal sclerosis. Neuroimage.2008;40:728-37.
    [8]Liu Y, Duan Y, He Y, et al. Whole brain white matter changes revealed by multiple diffusion metrics in multiple sclerosis:A TBSS study. Eur J Radiol.2011.
    [9]Watts DJ, Strogatz SH. Collective dynamics of 'small-world' networks. Nature. 1998;393:440-2.
    [10]Lehrer J. Neuroscience:Making connections. Nature.2009;457:524-7.
    [11]Sporns O, Tononi G, Kotter R. The human connectome:A structural description of the human brain. PLoS Comput Biol.2005;1:e42.
    [12]Bullmore E, Sporns O. Complex brain networks:graph theoretical analysis of structural and functional systems. Nat Rev Neurosci.2009; 10:186-98.
    [13]He Y, Chen ZJ, Evans AC. Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb Cortex.2007;17:2407-19.
    [14]Gong G, He Y, Concha L, et al. Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. Cereb Cortex.2009;19:524-36.
    [15]Smith SM, Jenkinson M, Woolrich MW, et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage.2004;23 Suppl1:S208-19.
    [16]Smith SM, Jenkinson M, Johansen-Berg H, et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage.2006;31:1487-505.
    [17]Smith SM, Nichols TE. Threshold-free cluster enhancement:addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage.2009;44:83-98.
    [18]Zarei M, Damoiseaux JS, Morgese C, et al. Regional white matter integrity differentiates between vascular dementia and Alzheimer disease. Stroke.2009;40: 773-9.
    [19]Nichols TE, Holmes AP. Nonparametric permutation tests for functional neuroimaging:a primer with examples. Hum Brain Mapp.2002;15:1-25.
    [20]Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophys J.1994;66:259-67.
    [21]Mori S, Zhang J. Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron.2006;51:527-39.
    [22]Clark CA, Hedehus M, Moseley ME. In vivo mapping of the fast and slow diffusion tensors in human brain. Magn Reson Med.2002;47:623-8.
    [23]Yoshiura T, Wu O, Zaheer A, et al. Highly diffusion-sensitized MRI of brain: dissociation of gray and white matter. Magn Reson Med.2001;45:734-40.
    [24]Neil JJ, Shiran SI, McKinstry RC, et al. Normal brain in human newborns: apparent diffusion coefficient and diffusion anisotropy measured by using diffusion tensor MR imaging. Radiology.1998;209:57-66.
    [25]Giannelli M, Cosottini M, Michelassi MC, et al. Dependence of brain DTI maps of fractional anisotropy and mean diffusivity on the number of diffusion weighting directions. J Appl Clin Med Phys.2010;11:2927.
    [26]Le Bihan D. Molecular diffusion, tissue microdynamics and microstructure. Nmr Biomed.1995;8:375-86.
    [27]Schaefer PW, Grant PE, Gonzalez RG. Diffusion-weighted MR imaging of the brain. Radiology.2000;217:331-45.
    [28]Song SK, Sun SW, Ju WK, et al. Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. Neuroimage.2003;20:1714-22.
    [29]Song SK, Yoshino J, Le TQ, et al. Demyelination increases radial diffusivity in corpus callosum of mouse brain. Neuroimage.2005;26:132-40.
    [30]Jellison BJ, Field AS, Medow J, et al. Diffusion tensor imaging of cerebral white matter:a pictorial review of physics, fiber tract anatomy, and tumor imaging patterns. AJNR Am J Neuroradiol.2004;25:356-69.
    [31]Alexander AL, Hasan K, Kindlmann G, et al. A geometric analysis of diffusion tensor measurements of the human brain. Magn Reson Med.2000;44:283-91.
    [32]Shu N, Li J, Li K, et al. Abnormal diffusion of cerebral white matter in early blindness. Hum Brain Mapp.2009;30:220-7.
    [33]Smith SM, Jenkinson M, Johansen-Berg H, et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage.2006;31:1487-505.
    [34]Assaf BA, Mohamed FB, Abou-Khaled KJ, et al. Diffusion tensor imaging of the hippocampal formation in temporal lobe epilepsy. AJNR Am J Neuroradiol.2003;24: 1857-62.
    [35]Concha L, Beaulieu C, Gross DW. Bilateral limbic diffusion abnormalities in unilateral temporal lobe epilepsy. Ann Neurol.2005;57:188-96.
    [36]Kimiwada T, Juhasz C, Makki M, et al. Hippocampal and thalamic diffusion abnormalities in children with temporal lobe epilepsy. Epilepsia.2006;47:167-75.
    [37]Salmenpera TM, Simister RJ, Bartlett P, et al. High-resolution diffusion tensor imaging of the hippocampus in temporal lobe epilepsy. Epilepsy Res.2006;71:102-6.
    [38]Briellmann RS, Wellard RM, Jackson GD. Seizure-associated abnormalities in epilepsy:evidence from MR imaging. Epilepsia.2005;46:760-6.
    [39]Hufnagel A, Weber J, Marks S, et al. Brain diffusion after single seizures. Epilepsia.2003;44:54-63.
    [40]Parmar H, Lim SH, Tan NC, et al. Acute symptomatic seizures and hippocampus damage:DWI and MRS findings. Neurology.2006;66:1732-5.
    [41]Diehl B, Symms MR, Boulby PA, et al. Postictal diffusion tensor imaging. Epilepsy Res.2005;65:137-46.
    [42]Assaf BA, Mohamed FB, Abou-Khaled KJ, et al. Diffusion tensor imaging of the hippocampal formation in temporal lobe epilepsy. AJNR Am J Neuroradiol.2003;24: 1857-62.
    [43]Lee JH, Chung CK, Song IC, et al. Limited utility of interictal apparent diffusion coefficient in the evaluation of hippocampal sclerosis. Acta Neurol Scand.2004; 110: 53-8.
    [44]Vermathen P, Ende G, Laxer KD, et al. Temporal lobectomy for epilepsy: recovery of the contralateral hippocampus measured by (1)H MRS. Neurology. 2002;59:633-6.
    [45]Arfanakis K, Hermann BP, Rogers BP, et al. Diffusion tensor MRI in temporal lobe epilepsy. Magn Reson Imaging.2002;20:511-9.
    [46]Gross DW, Concha L, Beaulieu C. Extratemporal white matter abnormalities in mesial temporal lobe epilepsy demonstrated with diffusion tensor imaging. Epilepsia. 2006;47:1360-3.
    [47]Concha L, Beaulieu C, Gross DW. Bilateral limbic diffusion abnormalities in unilateral temporal lobe epilepsy. Ann Neurol.2005;57:188-96.
    [48]Kimiwada T, Juhasz C, Makki M, et al. Hippocampal and thalamic diffusion abnormalities in children with temporal lobe epilepsy. Epilepsia.2006;47:167-75.
    [49]Avoli M, Rogawski MA, Avanzini G. Generalized epileptic disorders:an update. Epilepsia.2001;42:445-57.
    [50]Binnie CD. Cognitive impairment during epileptiform discharges:is it ever justifiable to treat the EEG? Lancet Neurol.2003;2:725-30.
    [51]Diehl B, Busch RM, Duncan JS, et al. Abnormalities in diffusion tensor imaging of the uncinate fasciculus relate to reduced memory in temporal lobe epilepsy. Epilepsia.2008;49:1409-18.
    [52]Wieshmann UC, Symms MR, Clark CA, et al. Wallerian degeneration in the optic radiation after temporal lobectomy demonstrated in vivo with diffusion tensor imaging. Epilepsia.1999;40:1155-8.
    [53]梁夏,王金辉,贺永.人脑连接组研究:脑结构网络和脑功能网络.科学通报.2010;55:1565-83.
    [54]Latora V, Marchiori M. Efficient behavior of small-world networks. Phys Rev Lett.2001;87:198701.
    [55]汪小帆,苏厚胜.复杂动态网络控制研究进展.力学进展.2008;38:751-65.
    [56]Barabasi AL, Albert R. Emergence of scaling in random networks. Science. 1999;286:509-12.
    [57]Newman ME, Watts DJ. Scaling and percolation in the small-world network model. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics.1999;60: 7332-42.
    [58]Humphries MD, Gurney K, Prescott TJ. The brainstem reticular formation is a small-world, not scale-free, network. Proc Biol Sci.2006;273:503-11.
    [59]White JG, Southgate E, Thomson JN, et al. The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci. 1986;314:1-340.
    [60]Felleman DJ, Van Essen DC. Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex.1991; 1:1-47.
    [61]Young MP, Scannell JW, O'Neill MA, et al. Non-metric multidimensional scaling in the analysis of neuroanatomical connection data and the organization of the primate cortical visual system. Philos Trans R Soc Lond B Biol Sci.1995;348: 281-308.
    [62]Young MP. Objective analysis of the topological organization of the primate cortical visual system. Nature.1992;358:152-5.
    [63]Sporns O, Zwi JD. The small world of the cerebral cortex. Neuroinformatics. 2004;2:145-62.
    [64]Lichtman JW, Sanes JR. Ome sweet ome:what can the genome tell us about the connectome? Curr Opin Neurobiol.2008;18:346-53.
    [65]Bassett DS, Meyer-Lindenberg A, Achard S, et al. Adaptive reconfiguration of fractal small-world human brain functional networks. Proc Natl Acad Sci U S A. 2006;103:19518-23.
    [66]Desikan RS, Segonne F, Fischl B, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage.2006;31:968-80.
    [67]Schleicher A, Morosan P, Amunts K, et al. Quantitative architectural analysis:a new approach to cortical mapping. J Autism Dev Disord.2009;39:1568-81.
    [68]Toga AW, Thompson PM, Mori S, et al. Towards multimodal atlases of the human brain. Nat Rev Neurosci.2006;7:952-66.
    [69]Zilles K, Amunts K. Receptor mapping:architecture of the human cerebral cortex. Curr Opin Neurol.2009;22:331-9.
    [70]Hagmann P, Cammoun L, Gigandet X, et al. Mapping the structural core of human cerebral cortex. PLoS Biol.2008;6:e159.
    [71]Schmahmann JD, Pandya DN, Wang R, et al. Association fibre pathways of the brain:parallel observations from diffusion spectrum imaging and autoradiography. Brain.2007;130:630-53.
    [72]Mechelli A, Friston KJ, Frackowiak RS, et al. Structural covariance in the human cortex. J Neurosci.2005;25:8303-10.
    [73]Lerch JP, Worsley K, Shaw WP, et al. Mapping anatomical correlations across cerebral cortex (MACACC) using cortical thickness from MRI. Neuroimage.2006;31: 993-1003.
    [74]Thompson PM, Cannon TD, Narr KL, et al. Genetic influences on brain structure. Nat Neurosci.2001;4:1253-8.
    [75]Mechelli A, Crinion JT, Noppeney U, et al. Neurolinguistics:structural plasticity in the bilingual brain. Nature.2004;431:757.
    [76]Achard S, Bullmore E. Efficiency and cost of economical brain functional networks. PLoS Comput Biol.2007;3:e17.
    [77]Chen ZJ, He Y, Rosa-Neto P, et al. Revealing modular architecture of human brain structural networks by using cortical thickness from MRI. Cereb Cortex. 2008;18:2374-81.
    [78]Schmitt JE, Lenroot RK, Wallace GL, et al. Identification of genetically mediated cortical networks:a multivariate study of pediatric twins and siblings. Cereb Cortex. 2008;18:1737-47.
    [79]He Y, Chen Z, Evans A. Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer's disease. J Neurosci.2008;28:4756-66.
    [80]Bassett DS, Bullmore E, Verchinski BA, et al. Hierarchical organization of human cortical networks in health and schizophrenia. J Neurosci.2008;28:9239-48.
    [81]He Y, Dagher A, Chen Z, et al. Impaired small-world efficiency in structural cortical networks in multiple sclerosis associated with white matter lesion load. Brain. 2009;132:3366-79.
    [82]Le Bihan D. Looking into the functional architecture of the brain with diffusion MRI. Nat Rev Neurosci.2003;4:469-80.
    [83]Mori S, van Zijl PC. Fiber tracking:principles and strategies-a technical review. Nmr Biomed.2002; 15:468-80.
    [84]Hagmann P, Kurant M, Gigandet X, et al. Mapping human whole-brain structural networks with diffusion MRI. PLoS One.2007;2:e597.
    [85]Iturria-Medina Y, Sotero RC, Canales-Rodriguez EJ, et al. Studying the human brain anatomical network via diffusion-weighted MRI and Graph Theory. Neuroimage.2008;40:1064-76.
    [86]Tzourio-Mazoyer N, Landeau B, Papathanassiou D, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage.2002; 15:273-89.
    [87]Hagmann P, Cammoun L, Gigandet X, et al. Mapping the structural core of human cerebral cortex. PLoS Biol.2008;6:e159.
    [88]Li Y, Liu Y, Li J, et al. Brain anatomical network and intelligence. PLoS Comput Biol.2009;5:e1000395.
    [89]Gong G, Rosa-Neto P, Carbonell F, et al. Age- and gender-related differences in the cortical anatomical network. J Neurosci.2009;29:15684-93.
    [90]Chavez M, Hwang DU, Martinerie J, et al. Degree mixing and the enhancement of synchronization in complex weighted networks. Phys Rev E Stat Nonlin Soft Matter Phys.2006;74:66107.
    [91]Percha B, Dzakpasu R, Zochowski M, et al. Transition from local to global phase synchrony in small world neural network and its possible implications for epilepsy. Phys Rev E Stat Nonlin Soft Matter Phys.2005;72:31909.
    [92]Netoff TI, Clewley R, Arno S, et al. Epilepsy in small-world networks. J Neurosci.2004;24:8075-83.
    [93]Ponten SC, Bartolomei F, Stam CJ. Small-world networks and epilepsy:graph theoretical analysis of intracerebrally recorded mesial temporal lobe seizures. Clin Neurophysiol.2007;118:918-27.
    [94]Warrier C, Wong P, Penhune V, et al. Relating structure to function:Heschl's gyrus and acoustic processing. J Neurosci.2009;29:61-9.
    [95]Tan LH, Spinks JA, Feng CM, et al. Neural systems of second language reading are shaped by native language. Hum Brain Mapp.2003;18:158-66.
    [96]Sikes RW, Vogt BA. Nociceptive neurons in area 24 of rabbit cingulate cortex. J Neurophysiol.1992;68:1720-32.
    [97]Talbot JD, Marrett S, Evans AC, et al. Multiple representations of pain in human cerebral cortex. Science.1991;251:1355-8.
    [98]Rainville P, Duncan GH, Price DD, et al. Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science.1997;277:968-71.
    [99]吴敏范,吴春福,张桦,et a1.扣带回前部内脏伤害感受神经元的生物电活动.生物化学与生物物理进展.2002;29:927-31.
    [100]吴敏范,姚阳,李玉芳,et a1.猫双侧扣带回前部内脏伤害感受神经元自发电活动特性的差异.生理学报.2010;65:450-54.
    [1]Belliveau JW, Cohen MS, Weisskoff RM, et al. Functional studies of the human brain using high-speed magnetic resonance imaging. J Neuroimaging.1991;1:36-41.
    [2]Lowe MJ, Mock BJ, Sorenson JA. Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations. Neuroimage.1998;7: 119-32.
    [3]Raichle ME. Cognitive neuroscience. Bold insights. Nature.2001;412:128-30.
    [4]Rauch A, Rainer G, Logothetis NK. The effect of a serotonin-induced dissociation between spiking and perisynaptic activity on BOLD functional MRI. Proc Natl Acad Sci U S A.2008;105:6759-64.
    [5]Raichle ME, Mintun MA. Brain work and brain imaging. Annu Rev Neurosci. 2006;29:449-76.
    [6]Friston KJ, Frith CD, Frackowiak RS, et al. Characterizing dynamic brain responses with fMRI:a multivariate approach. Neuroimage.1995;2:166-72.
    [7]Grasby PM, Frith CD, Friston KJ, et al. A graded task approach to the functional mapping of brain areas implicated in auditory-verbal memory. Brain.1994;117 (Pt 6): 1271-82.
    [8]Buchel C, Coull JT, Friston KJ. The predictive value of changes in effective connectivity for human learning. Science.1999;283:1538-41.
    [9]Biswal B, Yetkin FZ, Haughton VM, et al. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med.1995;34: 537-41.
    [10]Damoiseaux JS, Rombouts SA, Barkhof F, et al. Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A.2006; 103:13848-53.
    [11]Fleisher AS, Sherzai A, Taylor C, et al. Resting-state BOLD networks versus task-associated functional MRI for distinguishing Alzheimer's disease risk groups. Neuroimage.2009;47:1678-90.
    [12]Greicius MD, Srivastava G, Reiss AL, et al. Default-mode network activity distinguishes Alzheimer's disease from healthy aging:evidence from functional MRI. Proc Natl Acad Sci U S A.2004;101:4637-42.
    [13]Bluhm RL, Miller J, Lanius RA, et al. Spontaneous low-frequency fluctuations in the BOLD signal in schizophrenic patients:anomalies in the default network. Schizophr Bull.2007;33:1004-12.
    [14]Zhou Y, Shu N, Liu Y, et al. Altered resting-state functional connectivity and anatomical connectivity of hippocampus in schizophrenia. Schizophr Res.2008; 100: 120-32.
    [15]Morgan VL, Price RR, Arain A, et al. Resting functional MRI with temporal clustering analysis for localization of epileptic activity without EEG. Neuroimage. 2004;21:473-81.
    [16]张志强,卢光明,钟元,et a1.内侧颞叶癫痫患者脑缺省模式网络改变的功能MRI研究.医学研究生学报.2009;22:36-43.
    [17]Tian L, Jiang T, Wang Y, et al. Altered resting-state functional connectivity patterns of anterior cingulate cortex in adolescents with attention deficit hyperactivity disorder. Neurosci Lett.2006;400:39-43.
    [18]van de Ven VG, Formisano E, Prvulovic D, et al. Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest. Hum Brain Mapp.2004;22:165-78.
    [19]Beckmann CF, DeLuca M, Devlin JT, et al. Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci.2005;360:1001-13.
    [20]Kiviniemi V, Kantola JH, Jauhiainen J, et al. Independent component analysis of nondeterministic fMRI signal sources. Neuroimage.2003; 19:253-60.
    [21]De Luca M, Beckmann CF, De Stefano N, et al. fMRI resting state networks define distinct modes of long-distance interactions in the human brain. Neuroimage. 2006;29:1359-67.
    [22]Garrity AG, Pearlson GD, McKiernan K, et al. Aberrant "default mode" functional connectivity in schizophrenia. Am J Psychiatry.2007; 164:450-7.
    [23]Jafri MJ, Pearlson GD, Stevens M, et al. A method for functional network connectivity among spatially independent resting-state components in schizophrenia. Neuroimage.2008;39:1666-81.
    [24]Sorg C, Riedl V, Muhlau M, et al. Selective changes of resting-state networks in individuals at risk for Alzheimer's disease. Proc Natl Acad Sci U S A.2007; 104: 18760-5.
    [25]Achard S, Salvador R, Whitcher B, et al. A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci.2006;26:63-72.
    [26]Cordes D, Haughton V, Carew JD, et al. Hierarchical clustering to measure connectivity in fMRI resting-state data. Magn Reson Imaging.2002;20:305-17.
    [27]Morgan VL, Price RR, Arain A, et al. Resting functional MRI with temporal clustering analysis for localization of epileptic activity without EEG. Neuroimage. 2004;21:473-81.
    [28]Watts D.T, Strogatz SH. Collective dynamics of'small-world'networks. Nature. 1998;393:440-2.
    [29]Frackowiak RS, Friston KJ. Functional neuroanatomy of the human brain: positron emission tomography--a new neuroanatomical technique. J Anat.1994; 184 (Pt 2):211-25.
    [30]Smith SM, Miller KL, Salimi-Khorshidi G, et al. Network modelling methods for FMRI. Neuroimage.2011;54:875-91.
    [31]Zang YF, He Y, Zhu CZ, et al. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev.2007;29:83-91.
    [32]McCormick DA. Spontaneous activity:signal or noise? Science.1999;285: 541-3.
    [33]Golanov EV, Yamamoto S, Reis DJ. Spontaneous waves of cerebral blood flow associated with a pattern of electrocortical activity. Am J Physiol.1994;266: R204-14.
    [34]Moosmann M, Ritter P, Krastel I, et al. Correlates of alpha rhythm in functional magnetic resonance imaging and near infrared spectroscopy. Neuroimage.2003;20: 145-58.
    [35]Yang H, Long XY, Yang Y, et al. Amplitude of low frequency fluctuation within visual areas revealed by resting-state functional MRI. Neuroimage.2007;36:144-52.
    [36]Zhang Z, Lu G, Zhong Y, et al. fMRI study of mesial temporal lobe epilepsy using amplitude of low-frequency fluctuation analysis. Hum Brain Mapp.2010;31: 1851-61.
    [37]刘虎,范国光,徐克,et a1.低频振幅fMRI评价精神分裂症患者静息状态下脑功能活动.中国医学影像技术.2010;26:1659-62.
    [38]Jiang GH, Qiu YW, Zhang XL, et al. Amplitude low-frequency oscillation abnormalities in the heroin users:a resting state fMRI study. Neuroimage.2011;57: 149-54.
    [39]Greicius MD, Krasnow B, Reiss AL, et al. Functional connectivity in the resting brain:a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A. 2003;100:253-8.
    [40]Raichle ME, MacLeod AM, Snyder AZ, et al. A default mode of brain function. Proc Natl Acad Sci U S A.2001;98:676-82.
    [41]Fox MD, Snyder AZ, Vincent JL, et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A.2005;102:9673-8.
    [42]Fransson P. Spontaneous low-frequency BOLD signal fluctuations:an fMRI investigation of the resting-state default mode of brain function hypothesis. Hum Brain Mapp.2005;26:15-29.
    [43]Raichle ME, Snyder AZ. A default mode of brain function:a brief history of an evolving idea. Neuroimage.2007;37:1083-90,1097-9.
    [44]Mason MF, Norton MI, Van Horn JD, et al. Wandering minds:the default network and stimulus-independent thought. Science.2007;315:393-5.
    [45]Liao W, Zhang Z, Pan Z, et al. Default mode network abnormalities in mesial temporal lobe epilepsy:a study combining fMRI and DTI. Hum Brain Mapp.2011;32: 883-95.
    [46]Morgan VL, Gore JC, Abou-Khalil B. Functional epileptic network in left mesial temporal lobe epilepsy detected using resting fMRI. Epilepsy Res.2010;88:168-78.
    [47]Sheline YI, Barch DM, Price JL, et al. The default mode network and self-referential processes in depression. Proc Natl Acad Sci U S A.2009; 106:1942-7.
    [48]姚志剑,王丽,卢青,et a1.抑郁症静息态默认状态网络内功能连接的初步探讨.中国神经精神疾病杂志.2008;34:278-82.
    [49]Andrews-Hanna JR, Reidler JS, Sepulcre J, et al. Functional-anatomic fractionation of the brain's default network. Neuron.2010;65:550-62.
    [50]Andrews-Hanna JR, Snyder AZ, Vincent JL, et al. Disruption of large-scale brain systems in advanced aging. Neuron.2007;56:924-35.
    [51]Friston K. Functional integration and inference in the brain. Prog Neurobiol. 2002;68:113-43.
    [52]Friston KJ. Dysfunctional connectivity in schizophrenia. World Psychiatry. 2002;1:66-71.
    [53]Lee L, Harrison LM, Mechelli A. A report of the functional connectivity workshop, Dusseldorf 2002. Neuroimage.2003; 19:457-65.
    [54]Tononi G, Edelman GM, Sporns O. Complexity and coherency:integrating information in the brain. Trends Cogn Sci.1998;2:474-84.
    [55]Zeki S, Shipp S. The functional logic of cortical connections. Nature.1988;335: 311-7.
    [56]Sporns O, Zwi JD. The small world of the cerebral cortex. Neuroinformatics. 2004;2:145-62.
    [57]Sporns O, Chialvo DR, Kaiser M, et al. Organization, development and function of complex brain networks. Trends Cogn Sci.2004;8:418-25.
    [58]Achard S, Salvador R, Whitcher B, et al. A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci.2006;26:63-72.
    [59]Achard S, Bullmore E. Efficiency and cost of economical brain functional networks. PLoS Comput Biol.2007;3:e17.
    [60]Bassett DS, Meyer-Lindenberg A, Achard S, et al. Adaptive reconfiguration of fractal small-world human brain functional networks. Proc Natl Acad Sci U S A. 2006;103:19518-23.
    [61]Smit DJ, Stam CJ, Posthuma D, et al. Heritability of "small-world" networks in the brain:a graph theoretical analysis of resting-state EEG functional connectivity. Hum Brain Mapp.2008;29:1368-78.
    [62]Stam CJ, Reijneveld JC. Graph theoretical analysis of complex networks in the brain. Nonlinear Biomed Phys.2007;1:3.
    [63]Stam CJ, de Bruin EA. Scale-free dynamics of global functional connectivity in the human brain. Hum Brain Mapp.2004;22:97-109.
    [64]Eguiluz VM, Chialvo DR, Cecchi GA, et al. Scale-free brain functional networks. Phys Rev Lett.2005;94:18102.
    [65]Salvador R, Suckling J, Coleman MR, et al. Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb Cortex.2005; 15: 1332-42.
    [66]Achard S, Salvador R, Whitcher B, et al. A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci.2006;26:63-72.
    [67]Micheloyannis S, Pachou E, Stam CJ, et al. Using graph theoretical analysis of multi channel EEG to evaluate the neural efficiency hypothesis. Neurosci Lett. 2006;402:273-7.
    [68]Stam CJ, Jones BF, Nolte G, et al. Small-world networks and functional connectivity in Alzheimer's disease. Cereb Cortex.2007; 17:92-9.
    [69]Chen ZJ, He Y, Rosa-Neto P, et al. Revealing modular architecture of human brain structural networks by using cortical thickness from MRI. Cereb Cortex. 2008;18:2374-81.
    [70]He Y, Chen ZJ, Evans AC. Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb Cortex.2007;17:2407-19.
    [71]Stam CJ. Functional connectivity patterns of human magnetoencephalographic recordings:a 'small-world' network? Neurosci Lett.2004;355:25-8.
    [72]Achard S, Bullmore E. Efficiency and cost of economical brain functional networks. PLoS Comput Biol.2007;3:e17.
    [73]Iturria-Medina Y, Sotero RC, Canales-Rodriguez EJ, et al. Studying the human brain anatomical network via diffusion-weighted MRI and Graph Theory. Neuroimage.2008;40:1064-76.
    [74]Ferri R, Rundo F, Bruni O, et al. Small-world network organization of functional connectivity of EEG slow-wave activity during sleep. Clin Neurophysiol.2007;118: 449-56.
    [75]Posthuma D, de Geus EJ, Mulder EJ, et al. Genetic components of functional connectivity in the brain:the heritability of synchronization likelihood. Hum Brain Mapp.2005;26:191-8.
    [76]Wang L, Zang Y, He Y, et al. Changes in hippocampal connectivity in the early stages of Alzheimer's disease:evidence from resting state fMRI. Neuroimage. 2006;31:496-504.
    [77]Allen G, Barnard H, McColl R, et al. Reduced hippocampal functional connectivity in Alzheimer disease. Arch Neurol.2007;64:1482-7.
    [78]Wang K, Liang M, Wang L, et al. Altered functional connectivity in early Alzheimer's disease:a resting-state fMRI study. Hum Brain Mapp.2007;28:967-78.
    [79]Supekar K, Menon V, Rubin D, et al. Network analysis of intrinsic functional brain connectivity in Alzheimer's disease. PLoS Comput Biol.2008;4:el000100.
    [80]Buckner RL, Sepulcre J, Talukdar T, et al. Cortical hubs revealed by intrinsic functional connectivity:mapping, assessment of stability, and relation to Alzheimer's disease. J Neurosci.2009;29:1860-73.
    [81]Liang M, Zhou Y, Jiang T, et al. Widespread functional disconnectivity in schizophrenia with resting-state functional magnetic resonance imaging. Neuroreport. 2006;17:209-13.
    [82]Liu Y, Liang M, Zhou Y, et al. Disrupted small-world networks in schizophrenia. Brain.2008;131:945-61.
    [83]Bassett DS, Bullmore E, Verchinski BA, et al. Hierarchical organization of human cortical networks in health and schizophrenia. J Neurosci.2008;28:9239-48.
    [84]Wang L, Zhu C, He Y, et al. Altered small-world brain functional networks in children with attention-deficit/hyperactivity disorder. Hum Brain Mapp.2009;30: 638-49.
    [85]Ponten SC, Bartolomei F, Stam CJ. Small-world networks and epilepsy:graph theoretical analysis of intracerebrally recorded mesial temporal lobe seizures. Clin Neurophysiol.2007;118:918-27.
    [86]Srinivas KV, Jain R, Saurav S, et al. Small-world network topology of hippocampal neuronal network is lost, in an in vitro glutamate injury model of epilepsy. Eur J Neurosci.2007;25:3276-86.
    [87]Dupont S, Van de Moortele PF, Samson S, et al. Episodic memory in left temporal lobe epilepsy:a functional MRI study. Brain.2000; 123 (Pt 8):1722-32.
    [88]刘兆健,王惠南,卢光明,et al. fMRI颞叶癫痫默认模式网络的研究.上海生物医学工程.2007;28:195-98.
    [89]Amar A, Giovanini AF, Rosa MP, et al. [Microvascular density in carcinoma of the tongue]. Rev Assoc Med Bras.2002;48:204-8.
    [90]于欢,洪震.癫痫患者的认知功能障碍.中国临床康复.2004;8:4586-88.
    [91]郑金瓯,党超,梁志坚,et a1.颞叶癫痫患者执行功能的功能磁共振研究.中国神经精神疾病杂志.2011;37:166-70.
    [92]Al-Asmi A, Benar CG, Gross DW, et al. fMRI activation in continuous and spike-triggered EEG-fMRI studies of epileptic spikes. Epilepsia.2003;44:1328-39.
    [93]许新梅,王惠南,卢光明,et al.颞叶癫痫脑”默认模式”的fMRI研究.生物物理学报.2008;24:139-44.
    [94]Laufs H, Hamandi K, Salek-Haddadi A, et al. Temporal lobe interictal epileptic discharges affect cerebral activity in "default mode" brain regions. Hum Brain Mapp. 2007;28:1023-32.
    [95]Briellmann RS, Wellard RM, Jackson GD. Seizure-associated abnormalities in epilepsy:evidence from MR imaging. Epilepsia.2005;46:760-6.
    [96]Focke NK, Yogarajah M, Bonelli SB, et al. Voxel-based diffusion tensor imaging in patients with mesial temporal lobe epilepsy and hippocampal sclerosis. Neuroimage.2008;40:728-37.
    [97]Riley JD, Franklin DL, Choi V, et al. Altered white matter integrity in temporal lobe epilepsy:association with cognitive and clinical profiles. Epilepsia.2010;51: 536-45.
    [98]Aghakhani Y, Kobayashi E, Bagshaw AP, et al. Cortical and thalamic fMRI responses in partial epilepsy with focal and bilateral synchronous spikes. Clin Neurophysiol.2006; 117:177-91.
    [99]Kringelbach ML. The human orbitofrontal cortex:linking reward to hedonic experience. Nat Rev Neurosci.2005;6:691-702.
    [100]Fransson P. Spontaneous low-frequency BOLD signal fluctuations:an fMRI investigation of the resting-state default mode of brain function hypothesis. Hum Brain Mapp.2005;26:15-29.
    [101]Johnson SC, Baxter LC, Wilder LS, et al. Neural correlates of self-reflection. Brain.2002; 125:1808-14.
    [102]Hagmann P, Cammoun L, Gigandet X, et al. Mapping the structural core of human cerebral cortex. PLoS Biol.2008;6:e159.
    [103]Wang J, Wang L, Zang Y, et al. Parcellation-dependent small-world brain functional networks:a resting-state fMRI study. Hum Brain Mapp.2009;30:1511-23.
    [104]He Y, Chen Z, Evans A. Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer's disease. J Neurosci.2008;28:4756-66.
    [105]Stam CJ, de Haan W, Daffertshofer A, et al. Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer's disease. Brain. 2009; 132:213-24.
    [1]Biswal B. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI[J]. MRM,1995,34:537-41.
    [2]Murphy K, Birn R, Handwerker D, et al. The impact of global signal regression on resting state correlations:are anti-correlated networks introduced? [J]. Neuroimage,2009,44(3):893-905.
    [3]Beckmann CF, DeLuca M, Devlin JT, et al.Investigations into resting-state connectivity using independent component analysis[J]. Philos Trans R Soc Lond B Biol Sci,2005,360(1457):1001-13.
    [4]Birn R, Murphy K, Bandettini P.The effect of respiration variations on independent component analysis results of resting state functional connectivity[J]. Hum Brain Mapp,2008,29(7):740-50.
    [5]Pierpaoli C, Jezzard P, Basser PJ, et al. Diffusion tensor MR imaging of the human brain[J]. Radiology,1996,201(3):637-48.
    [6]Koch M, Norris D, Hund-Georgiadis M.An investigation of functional and anatomical connectivity using magnetic resonance imaging[J]. Neuroimage,2002,16(1):241-50.
    [7]Greicius MD, Srivastava G, Reiss AL, et al. Default-mode network activity distinguishes Alzheimer's disease from healthy aging:evidence from functional MRI[J]. Proc Natl Acad Sci USA,2004,101(13):4637-42.
    [8]Raichle M, MacLeod A, Snyder A, et al.A default mode of brain function[J]. Proc Natl Acad Sci USA,2001,98(2):676-82.
    [9]Greicius M, Supekar K, Menon V,et al.Resting-state functional connectivity reflects structural connectivity in the default mode network[J]. Cereb Cortex,2009,19(1):72-78. Epub 2008 Apr 9.
    [10]van den Heuvel M, Mandl R, Luigjes J, et al. Microstructural organization of the cingulum tract and the level of default mode functional connectivity [J]. J Neurosci,2008,28(43):10844-51.
    [11]van den Heuvel M, Mandl R, Hulshoff Pol H.Normalized cut group clustering of resting-state FMRI data[J]. PLoS ONE,2008,3(4):e2001.
    [12]Skudlarski P, Jagannathan K, Calhoun V, et al.Measuring brain connectivity: diffusion tensor imaging validates resting state temporal correlations[J]. Neuroimage,2008,43(3):554-561.
    [13]Hagmann P, Cammoun L, Gigandet X, et al.Mapping the structural core of human cerebral cortex[J]. PLoS Biol,2008,6(7):e159.
    [14]Honey C, Sporns O, Cammoun L, et al.Predicting human resting-state functional connectivity from structural connectivity [J]. Proc Natl Acad Sci USA,2009,106(6):2035-40.
    [15]Andrews-Hanna J, Snyder A, Vincent J,et al.Disruption of large-scale brain systems in advanced aging[J]. Neuron,2007,56(5):924-935.
    [16]Damoiseaux J, Smith S, Witter M, et al. White matter tract integrity in aging and Alzheimer's disease[J]. Hum Brain Mapp,2009,30(4):1051-59.
    [17]Good CD, Johnsrude IS, Ashburner J, et al.A voxel-based morphometric study of ageing in 465 normal adult human brains[J]. Neuroimage,2001,14(1 Pt l):21-36.
    [18]Lowe M, Beall E, Sakaie K,et al.Resting state sensorimotor functional connectivity in multiple sclerosis inversely correlates with transcallosal motor pathway transverse diffusivity[J]. Hum Brain Mapp,2008,29(7):818-27.
    [19]Yuan Zhou, Ni Shu, Yong Liu, et al.Altered resting-state functional connectivity and anatomical connectivity of hippocampus in schizophrenia[J]. Schizophrenia Research,2008,100:120-32.
    [20]Zhihao Li, Anna Bacon Moore, Callie Tyner,et al. Asymmetric connctivity reducion and its relationship to "HAROLD" in aging brain[J]. Brain Research,2009,1295:149-58.
    [21]Johnston J, Vaishnavi S, Smyth M, et al. Loss of resting interhemispheric functional connectivity after complete section of the corpus callosum[J]. J Neurosci,2008,28(25):6453-58.
    [22]Uddin L, Mooshagian E, Zaidel E, et al. Residual functional connectivity in the split-brain revealed with resting-state functional MRI[J]. Neuroreport,2008, 19(7):703-9.
    [23]Quigley M, Cordes D, Turski P, et al. Role of the corpus callosum in functional connectivity [J]. AJNR Am J Neuroradiol,2003,24(2):208-12.
    [24]Kanaan, R.A.A., Kim, et al. Diffusion tensor imaging in schizophrenia[J]. Biol. Psychiatr,2005,58 (12),921-29.
    [25]Muller, R.A. The study of autism as a distributed disorder[J]. Ment. Retard. Dev. Disabil. Res. Rev,2007,13 (1),85-95.
    [26]Salat, D.H., Tuch, et al. Age-related alterations in white matter microstructure measured by diffusion tensor imaging[J]. Neurobiol. Aging,2005,26 (8), 1215-27.
    [27]Zhang Y, Schuff N, Jahng G, et al. Diffusion tensor imaging of cingulum fibers in mild cognitive impairment and Alzheimer disease[J]. Neurology,2007, 68(1):13-19.
    [28]Cherkassky, V.L., Kana, et al. Functional connectivity in a baseline restingstate network in autism[J]. Neuroreport,2006,17 (16),1687-90.
    [29]Cao, Q.J., Zang, Y.F., et al. Abnormal neural activity in children with attention deficit hyperactivity disorder:a resting-state functional magnetic resonance imaging study[J]. Neuroreport,2006,17 (10),1033-6.
    [30]Bluhm, R.L., Miller, J., et al. Spontaneous low-frequency fluctuations in the BOLD signal in schizophrenic patients:anomalies in the default network[J]. Schizophr. Bull,2007,33 (4),1004-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700