癫痫脑电的分类识别及自动检测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
癫痫发作是脑内神经元阵发性异常超同步化电活动的临床表现,具有反复性、突发性和暂时性等特点。作为研究癫痫发作特征的重要工具,脑电图所反映的发作信息是其他生理学方法所不能提供的。利用信号处理技术和模式识别方法自动检测癫痫脑电信号,对于减轻医生负担并提高癫痫的诊断效率具有重要意义。
     目前,在脑电信号的分析研究中,非线性动力学的应用为癫痫脑电的识别提供了更加丰富的重要信息,但是多数非线性脑电特征具有较复杂的计算过程,无法保证检测算法的实时性。同时,传统的“脑电特征提取+分类器”的自动检测方法会提取多个脑电特征,然后组成特征向量或进行特征选择,这样进一步加剧了算法的计算复杂度,并且增加了特征选取的难题。本文立足于脑电信号的特征提取、分类识别和癫痫发作的自动检测的研究,围绕脑电信号的非线性特征提取、分形特性以及基于稀疏表示的脑电分类等内容展开以下研究:
     首先,本文将非线性动力学的重要分支——分形几何理论应用到脑电信号的分析与处理中。将常用于图像分形计算的微分盒维算法引入到一维脑电信号的分形分析中,计算了脑电信号的盒维数及其分形截距,并发现与盒维数相比,其分形截距能够更好的区分癫痫发作期和间歇期的脑电。之后,本文又通过改进毯子覆盖技术计算出脑电信号的多尺度毯子维及其分形截距,并发现在不同尺度上它们在临近癫痫发作前均会出现明显变化。
     其次,本文基于所提出的脑电分形特征进一步提出了癫痫发作检测与预测方法。将脑电信号的微分盒维的分形截距作为其非线性特征,然后结合极端学习机(ELM)分类器,提出了一种适于多导长程脑电的癫痫发作检测方法。采用BLDA算法对脑电的多尺度毯子维及其分形截距在发作前期的变化进行检测,从而实现了对癫痫发作的预报。实验验证的结果不仅说明了本文所提出的脑电分形特征的有效性,而且体现了所提出的检测和预测方法的良好性能。
     再次,本文依据稀疏表示分类方法,提出了一种基于Kernel稀疏表示的癫痫脑电识别算法。在该方法框架中,先通过求解最小l1范数优化问题求得待测脑电在脑电训练集上的稀疏表示系数,然后,分别计算发作期训练样本和间歇期训练样本对待测脑电的稀疏表示重构误差,通过比较误差的大小来确定待测脑电的类别。与常见的“脑电特征提取+分类器”的脑电分类方法不同,基于稀疏表示的脑电识别方法避免了脑电特征提取和选择的问题,更加完整地保留了脑电信号所携带的信息。为了进一步提高识别效果,本文将核函数技术与稀疏表示分类方法相结合,通过预先增强脑电样本的可分性来进一步提高对癫痫脑电的识别率。实验结果表明,基于Kernel稀疏表示的脑电分类方法取得了更加理想的分类性能。
     最后,在基于稀疏表示的癫痫脑电识别方法的基础上,进一步将计算待测脑电稀疏表示系数过程中所利用的最小l1范数优化问题替换为最小l2范数优化问题,从而可以通过正则化最小二乘算法(Regularized Least Square, RLS)解析地求得待测脑电的稀疏系数,避免了复杂的迭代运算,大大降低了算法的复杂性。由于改进后的方法强调来自所有类别的训练样本对测试样本的协作表示所起到的关键作用,因此称为协作表示分类方法。同样,本文将核函数技术与协作表示分类方法相结合,并且将两类脑电训练样本所对应的重构误差相减,所得的差值作为输出的决策变量,从而引入了平滑滤波等后处理环节,提出了较为完善的基于Kernel协作表示的癫痫发作检测方法。利用连续长程脑电数据对该方法的性能进行评价,实验发现,所提出的检测方法不但取得了较理想的检测结果,而且其较快的运算速度基本符合实时在线的发作检测的需求。
     本文的研究工作将有助于进一步推动癫痫自动检测在技术理论、算法和临床应用方面的研究,对于脑电信号的非线性特征提取、分形理论在脑电分析中的应用以及脑电信号的稀疏表示分类方法起到了积极的推进作用。由于实验所用脑电数据的局限性,本文所提出的几种癫痫脑电识别和自动发作检测方法还需要更大量的临床脑电数据来进一步验证它们的性能。
Epilepsy is a chronic neurological disorder characterized by an ongoing liability to recurrent epileptic seizures that result from abnormal, excessive or hypersynchronous neuronal activity in the brain. As an important tool for research of epileptic seizures, electroencephalogram (EEG) contains a mass of physiological and pathological information which cannot be offered by other physiology methods. The automatic seizure detection based on signal processing and pattern recognition is significant in both relieving heavy workload of doctors and improving the diagnosis efficiency for epilepsy.
     At present, the application of the nonlinear dynamics in the analysis of EEG signals brings more rich information to the identification of ictal EEGs. But the high computational cost of most of nonlinear EEG features blocked the real-time seizure detection. Meanwhile the conventional methods of "EEG feature extraction+classifier" usually compute several kinds of EEG features, and then organize them as feature vectors or carry out feature selection. Such ways not only increase computation complexity further, but also add the problem of EEG feature selection. This thesis is based on the research of EEG feature extraction, epileptic EEG recognition and automatic seizure detection, and conducts the following studies in the aspects of EEG nonlinear feature extraction, EEG fractal characteristics, and EEG classification via the theory of sparse representation.
     Firstly, as an important branch of the nonlinear dynamics, the fractal geometry theory is introduced to the analysis and process of EEG signals. The differential box-counting approach for estimating the fractal dimension of an image is improved to fit for one-dimensional EEG signals. Compared to the box-counting dimension, the fractal intercept has stronger discriminatory power for the classification of ictal and interictal EEGs. Afterwards, the blanket technique is introduced to calculate the multi-scale blanket dimension and fractal intercept of EEG signals. It is found that there are obvious changes of their values at different scales before the occurrence of the epileptic seizure.
     Secondly, the novel seizure detection and prediction methods are proposed based on these EEG fractal features. The EEG fractal intercept via differential box-counting approach is combined with extreme learning machine (ELM) to build a detection method which is suited for multi-channel continuous EEG signals. And then the BLDA classifier is trained to discriminate preictal from interictal patterns of the multi-scale blanket dimension and fractal intercept, which enable to predict seizure events. The experimental results not only proved the validity of the presented EEG fractal features, but also showed the good performance of the proposed seizure detection and prediction methods.
     Thirdly, a novel EEG classification method based on kernel sparse representation is presented. In the scheme of sparse representation based classification (SRC), a test EEG sample is sparsely represented on the training set by solving l1-minimization problem, and the represented residuals associated with ictal and interictal training samples are computed. The test EEG sample is categorized through the comparison of the residuals. Unlike the conventional EEG classification methods, the calculation and choice of EEG features are avoided in this framework. Moreover, the kernel trick is employed to generate a kernel version of the SRC method for improving the separability between ictal and interictal classes. The kernel SRC method shows superior performance in the experiments of EEG classification.
     Finally, following the SRC scheme, the l1-minimization problem is replaced with l2-minimization to estimate the sparse coefficients of test EEG sample analytically so that the time-consuming iterative operations are avoided. This improved method emphasizes the key role played by using all training samples to collaboratively represent the test EEG sample, so it is named collaborative representation based classification (CRC) method. Besides, the kernel trick is combined with the CRC method. The decision variable is defined as the residual associated with the non-seizure training samples minus the residual associated with the seizure training samples. And then the post-processing including the smoothing technique is added. Thus a novel seizure detection method for long-term EEG recordings is proposed based on the kernel collaborative representation method. The experiments on the long-term EEG dataset indicate that this detection method not only achieves satisfactory results but also has the potential for the real-time seizure detection.
     The research work in this thesis contributes to the development of the study of automatic seizure detection in the aspects of technique theories, algorithms and clinical application. This thesis also promotes the research on nonlinear EEG feature extraction, the application of fractal theory in analysis of EEG signals, and EEG classification via sparse representation. Due to the limitation of the used EEG database size, the proposed ictal EEG identification and seizure detection methods are need to be evaluated further on a much larger range of EEG data.
引文
[1]S. Sanei, J.A. Chambers, EEG Signal Processing, John Wiley & Sons Ltd, Chichester, 2007, p.161.
    [2]T. Gandhi, B.K. Panigrahi, M. Bhatia, and S. Anand. Expert model for detection of epileptic activity in EEG signature, Expert Systems with Applications,2010,37(4): 3513-3520.
    [3]E. Niedermeyer, da Silva F. Lopes, Electroencephalography:basic principles, clinical applications, and related fields,5th Ed. Lippincott Williams & Wilkins, Philadelphia,2005, p.526.
    [4]U.K. Misra, J. Kalita, Clinical Electroencephalography,1st Ed. Elsevier, a division of Reed Elsevier India Private Limited:Noida,2005, p.130.
    [5]黄远桂,吴声伶.临床脑电图学.西安:陕西科学技术出版社,1984:162-195.
    [6]S. Shorvon, Epilepsy, Oxford University Press (2009) p.1.
    [7]R. Fisher, W. van Emde Boas, W. Blume, C. Elger, P. Genton, P. Lee, and J. Engel. Epileptic seizures and epilepsy:definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE), Epilepsia, 2005,46(4):470-472.
    [8]周昌贵,临床脑电图手册,四川辞书出版社,成都,1990.
    [9]郑效来,邱天爽,赵庚申,鲍海平.一种基于EEG特征提取的癫痫棘波综合检测判决方法.中国生物医学工程学报,2005,24(6):696-699.
    [10]H. Adeli, S. Ghosh-Dastidar, Automated EEG-Based Diagnosis of Neurological Disorders:Inventing the Future of Neurology, CRC Press, Florida,2010, p.78.
    [11]C. H. Halpern, U. Samadani, B. Litt, J. L. Jaggi, G. H. Baltuch. Deep brain stimulation for epilepsy, Neurotherapeutics,2008,5(1):59-67.
    [12]刘晓燕,临床脑电图学,人民卫生出版社,北京,2006,p.3.
    [13]L. D. Olson, and M. S. Perry. Localization of epileptic foci using multimodality neuroimaging, International Journal of Neural Systems,2013,23(1):1230001.
    [14]L. B. Good, S. Sabesan, S. T. Marsh, K. S. Tsakalis and L. D. Iasemidis. Control of synchronization of brain dynamics leads to control of epileptic seizures in rodents, International Journal of Neural Systems,2009,19(3):173-196.
    [15]A. Shoeb, J. Guttag, T. Pang and S. Schachter. Non-invasive computerized system for automatically initiating vagus nerve stimulation following patient specific detection of seizures or epileptiform discharges, International Journal of Neural Systems,2009,19(3):157-172.
    [16]M. Ahmadlou, and H. Adeli. Fuzzy synchronization likelihood with application to attention-deficit/hyperactivity disorder, Clinical EEG and Neuroscience,2011, 42(1):6-13.
    [17]R. J. Martis, U. R. Acharya, J. H. Tan, A. Petznick, L. Tong, C. K. Chua, And E. Y. Ng. Application of intrinsic time-scale decomposition (ITD) to EEG signals for automated seizure prediction, International Journal of Neural Systems,2013,23(5): 1350023.
    [18]H. Adeli, S. Ghosh-Dastidar, and N. Dadmehr. Alzheimer's disease:models of computation and analysis of EEGs, Clinical EEG and Neuroscience,2005,36(3): 131-140.
    [19]Z. Sankari, H. Adeli, and A. Adeli. Wavelet coherence model for diagnosis of alzheimer's disease, Clinical EEG and Neuroscience,2012,43(3):268-278.
    [20]M. Ahmadlou, H. Adeli, and A. Adeli. Spatio-temporal analysis of relative convergence (STARC) of EEGs reveals differences between brain dynamics of depressive women and men, Clinical EEG and Neuroscience,2013,44(3): 175-181.
    [21]C. M. Michel, and M. M. Murray. Towards the utilization of EEG as a brain imaging tool, Neurolmage,2012,61(2):371-385.
    [22]M. Ahmadlou, H. Adeli, and A. Amir. Graph theoretical analysis of organization of functional brain networks in ADHD, Clinical EEG and Neuroscience,2012,43(1): 5-13.
    [23]M. Ahmadlou, H. Adeli, and A. Adeli. Improved visibility graph fractality with application for diagnosis of autism spectrum disorder, Physica A,2012,391(20): 4720-4726.
    [24]M. Ahmadlou, and H. Adeli. Wavelet-synchronization methodology:a new approach for EEG-based diagnosis of ADHD, Clinical EEG and Neuroscience, 2010,41(1):1-10.
    [25]M. Ahmadlou, H. Adeli, and A. Adeli. Fuzzy synchronization likelihood-wavelet methodology for diagnosis of autism spectrum disorder, Journal of Neuroscience Methods,2012,211(2):203-209.
    [26]G. Rodriguez-Bermudez, P. J. Garcia-Laencina, and J. Roca-Dorda. Efficient automatic selection and combination of EEG features in least squares classifiers for motor-imagery brain computer interfaces, International Journal of Neural Systems, 2013,23(4):1350015.
    [27]F. Lotte, M. Congedo, A. Le'cuyer, F. Lamarche, B. Arnaldi. A Review of Classification Algorithms for EEG-Based Brain-Computer Interfaces, Journal of Neural Engineering,2007,4(2):R1-R13.
    [28]A. Vallabhaneni, T. Wang, B. He. Brain-computer Interface. Neural Engineering, Bioelectric Engineering,2005:pp.85-121.
    [29]Q. Wei, W. Tu. Channel selection by Genetic Algorithms for Classifying Single-Trial ECoG during Motor Imagery. Conf IEEE Eng Med Biol Soc.2008; 20-24.
    [30]H. Zhao, C. Yu, C. Liu, H. Wang. ECoG-based brain-computer interface using relative wavelet energy and probabilistic neural relative wavelet energy and probabilistic neural. Conf Bio-med Eng Informatics.2010; 873-877.
    [31]M. Li, J. Yang, D. Hao, S. Jia. ECoG recognition of motor imagery based on SVM Ensemble. Conf IEEE Rob. Biomimetics.2009; 1967-1972.
    [32]N. F. Ince, F. Goksu, A. H. Tewfik. ECoG based brain computer Interface with subset selection. Communications in Computer and Information Science,2009,25: 357-374.
    [33]E. C. Leuthardt, G. Schalk, J. R. Wolpaw, J. G. Ojemann, D. W. Moran. A brain-computer interface using electrocorticographic signals in humans. Journal of Neural Engineering,2004,1(2):63-71.
    [34]T. Ball, M. Kern, I. Mutschler, A. Aertsen, A. Schulze-Bonhage. Signal quality of simultaneously recorded invasive and non-invasive EEG, Neuroimage,2009,46(3): 708-716.
    [35]黄华品,陈清棠,郑安.健康人不同生理状态下的脑电近似熵的观测.中国应用生理学杂志,2000,16(4):321-323.
    [36]D. S. L. Lloyd, C. D. Binnie, B. G. Batchelor. Pattern recognition in EEG, Advances in Behavioral Biology,1972,5:153-166.
    [37]R. Sankar, J. Natour. Automatic computer analysis of transients in EEG, Computers in Biology and Medicine,1992,22(6):407-422.
    [38]J. Gotman. Automatic recognition of epileptic seizures in the EEG, Electroencephalography and Clinical Neurophysiology,1982,54(5):530-540.
    [39]J. Gotman. Automatic seizure detection:improvements and evaluation, Electroencephalography and Clinical Neurophysiology,1990,76(4):317-324.
    [40]H. Qu, J. Gotman, Improvement in seizure detection performance by automatic adaptation to the EEG of each patient, Electroencephalography and Clinical Neurophysiology,1993,86(2):79-87.
    [41]C. W. Ko, Y. D. Lin, H. W. Chung, G. J. Jan. An EEG spike detection algorithm using artificial neural network with multi-channel correlation, Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society,1998,20(4):2070-2073.
    [42]C. J. James, R. D. Jones, P. J. Bones, G. J. Carroll. Detection of epileptiform discharges in the EEG by a hybrid system comprising mimetic, self-organized artificial neural network, and fuzzy logic stages, Clinical Neurophysiology,1999, 110(12):2049-2063.
    [43]J. Gotman, D. Flanagan, J. Zhang, B. Rosenblatt. Automatic seizure detection in the newborn:methods and initial evaluation, Electroencephalography and Clinical Neurophysiology,1997,103(3):356-362.
    [44]R. Hopfengartner, F. Kerling, V. Bauer, H. Stefan. An efficient, robust and fast method for the offline detection of epileptic seizures in long-term scalp EEG recordings, Clinical Neurophysiology,2007,118(11):2332-2343.
    [45]A. M. Chan, F. T. Sun, E. H. Boto, B. M. Wingeier. Automated seizure onset detection for accurate onset time determination in intracranial EEG, Clinical Neurophysiology,2008,119(12):2687-2696.
    [46]Z. Rogowski, I. Gath, E. Bental. On the prediction of epileptic seizures, Biological Cybernetics,1981,42(1):9-15.
    [47]S. R. Mousavi, M. Niknazar, B. V. Vahdat. Epileptic seizure detection using AR model on EEG signals, Cairo International Biomedical Engineering Conference, 2008:1-4.
    [48]M. K. Kiymik, I. Guler, A. Dizibiiyuk, M. Akin. Comparison of STFT and wavelet transform methods in determining epileptic seizure activity in EEG signals for real-time application, Computers in Biology and Medicine,2005,35(7):603-616.
    [49]A. J. Gabor, R. R. Leach, F. U. Dowla. Automated seizure detection using a self-organizing neural network, Electroencephalography and clinical Neurophysiology,1996,99(3):257-266.
    [50]Y. U. Khan, J. Gotman. Wavelet based automatic seizure detection in intracerebral electroencephalogram. Clinical Neurophysiology,2003,114(5):898-908.
    [51]H. Adeli, Z. Zhou, N. Dadmehr. Analysis of EEG records in an epileptic patient using wavelet transform, Journal of Neuroscience Methods,2003,123(1):69-87.
    [52]K. Lehnertz, C. Elger. Spatio-temporal dynamics of the primary epileptogenic area in temporal lobe epilepsy characterized by neuronal complexity loss, Electroencephalography and Clinical Neurophysiology,1995,95(2):108-117.
    [53]L. D. Iasemidis, J. C. Sackellares, H. P. Zaveri, W. J. Williams. Phase space topography and the Lyapunov exponent of electrocorticograms in partial seizure, Brain Topography,1990,2(3):187-201.
    [54]L. Diambra, J. C. Bastos de Figueiredo, C. P. Malta. Epileptic activity recognition in EEG recording, Physica A:Statistical Mechanics and its Applications,1999, 273(3-4):495-505.
    [55]白冬梅,邱天爽,李小兵.样本熵及在脑电癫痫检测中的应用,生物医学工程学杂志,2007,24(1):200-205.
    [56]L. D. Iasemidis, D. S. Shiau, W. Chaovalitwongse, J. C. Sackellares, P. M. Pardalos, J. C. Principe, P. R. Carney, A. Prasad, B. Veeramani, K. Tsakalis. Adaptive epileptic seizure prediction system, IEEE Transactions on Biomedical Engineering, 2003,50(5):616-627.
    [57]J. Martinerie, C. Adam, M. Le Van Quyen, M. Baulac, S. Clemenceau, B. Renault, F. J. Varela. Epileptic seizures can be anticipated by non-linear analysis, Nature Medicine,1998,4(10):1173-1176.
    [58]M. Le Van Quyen, J. Martinerie, M. Baulac, F. Varela. Anticipating epileptic seizures in real time by a non-linear analysis of similarity between EEG recordings, NeuroReport,1999,10(10):2149-2155.
    [59]M. Le Van Quyen, J. Martinerie, V. Navarro, P. Boon, M. D'Have, C. Adam, B. Renault, F. Varela, M. Baulac. Anticipation of epileptic seizures from standard EEG recordings, The Lancet,2001,357(9251):183-188.
    [60]T. Maiwald, M. Winterhalder, R. Aschenbrenner-Scheibe, H. U. Voss, A. Schulze-Bonhage, J. Timmer. Comparison of three nonlinear seizure prediction methods by means of the seizure prediction characteristic, Physica D:Nonlinear Phenomena,2004,194(3-4):357-368.
    [61]J. Arnhold, P. Grassberger, K. Lehnertz, C. E. Elger. A robust method for detecting interdependences:application to intracranially recorded EEG, Physica D: Nonlinear Phenomena,1999,134(4):419-430.
    [62]H. Osterhage, F. Mormann, M. Staniek, K. Lehnertz. Measuring synchronization in the epileptic brain:a comparison of different approaches, International Journal of Bifurcation and Chaos,2007,17(10):3539-3544.
    [63]孟欣,徐京华,顾凡及.癫痫病人脑电信号的奇异谱.生物物理学报,2001,17(1):86-90.
    [64]李小俚,欧阳高翔,关新平,李岩.基于EEG模糊相似性的癫痫发作预测.中国生物医学工程学报,2006,25(3):346-350.
    [65]S. Grewal, J. Gotman. An automatic warning system for epileptic seizures recorded on intracerebral EEGs, Clinical Neurophysiology,2005,116(10):2460-2472.
    [66]L. Guo, D. Rivero, A. Pazos. Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks, Journal of Neuroscience Methods,2010,193(1):156-163.
    [67]E. D. Ubeyli. Lyapunov exponents/probabilistic neural networks for analysis of EEG signals, Expert Systems with Applications,2010,37(2):985-992.
    [68]S. P. Kumar, N. Sriraam, P. G. Benakop, B. C. Jinaga. Entropies based detection of epileptic seizures with artificial neural network classifiers, Expert Systems with Applications,2010,37(4):3284-3291.
    [69]A. Temko, E. Thomas, W. Marnane, G. Lightbody, G. Boylan. EEG-based neonatal seizure detection with Support Vector Machines, Clinical Neurophysiology,2011, 122(3):464-473.
    [70]A. Aarabi, F. Wallois, R. Grebe. Automated neonatal seizure detection:A multistage classification system through feature selection based on relevance and redundancy analysis, Clinical Neurophysiology,2006,117(2):328-340.
    [71]A. Aarabi, R. Grebe, F. Wallois, A multistage knowledge-based system for EEG seizure detection in newborn infants, Clinical Neurophysiology,2007,118(12): 2781-2797.
    [72]J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, Y. Ma. Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(2):210-227.
    [73]L. Zhang, M. Yang, and X. Feng. "Sparse representation or collaborative representation:which helps face recognition?" in 2011 Proc. IEEE Int. Conf. Computer Vision, pp.471-478.
    [74]M. Yang, L. Zhang, D. Zhang, S. Wang, "Relaxed Collaborative Representation for Pattern Classification" in 2012, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.2224-2231.
    [75]M. Yang, L. Zhang, J. Yang, D. Zhang, "Robust Sparse Coding for Face Recognition" in 2011, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.625-632.
    [76]M. Yang, L. Zhang, J. Yang, D. Zhang. Regularized robust coding for face recognition, IEEE Transactions on Image Processing,2013,22(5):1753-1766.
    [77]K. P. Indiradevi, E. Elias, P. S. Sathidevi, S. Dinesh Nayak, K. Radhakrishnan. A multi-level wavelet approach for automatic detection of epileptic spikes in the electroencephalogram, Computers in Biology and Medicine,2008,38(7):805-816.
    [78]P. J. Durka, Adaptive time-frequency parametrization of epileptic spikes. Physical Review E,2004,69(5):1914-1925.
    [79]P. J. Durka, K. J. Blinowska. A unified time-frequency parametrization of EEGs, IEEE Engineering in Medicine and Biology Magazine,2001,20(5):47-53.
    [80]吴敏,孙玉宝,韦志辉,肖亮,汤黎明.基于稀疏表示的两阶段脑电癫痫波检测算法研究,中国生物医学工程学报,2009,28(4):535-543.
    [81]B. B. Mandelbrot, The fractal geometry of nature. New York:Freeman; 1983.
    [82]K. Falconer(著),曾文曲(译).分形几何数学基础及其应用(第2版).人民邮电 出版社,2007.
    [83]J. Gangepain, C. Roques-Carmes. Fractal approach to two dimensional and three dimensional surface roughness, Wear,1986,109(1-4):119-126.
    [84]J. M. Keller, R. M. Crownover, S. Chen. Texture description and segmentation through fractal geometry, Computer Vision, Graphics, and Image Processing,1989, 45(2):150-166.
    [85]N. Sarkar, B. B. Chaudhuri. An efficient differential box-counting approach to compute fractal dimension of image, IEEE Transactions on Systems, Man and Cybernetics,1994,24(1):115-120.
    [86]J. Gotman, P. Gloor. Automatic recognition and quantification of interictal epileptic activity in the human scalp EEG, Electroencephalography and Clinical Neurophysiology,1976,41(5):513-529.
    [87]S. Peleg, J. Naor, R. Hartley, D. Avnir. Multiple resolution texture analysis and classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984,6(4):518-523.
    [88]S. L. Peik, T. E. Hong. Individual Recognition Based on Human Iris Using Fractal dimensions Approach. The first International Conference on Biometric Authentication. Hong Kong China, July 2004,467-474.
    [89]S. Grewal, J. Gotman. An automatic warning system for epileptic seizures recorded on intracerebral EEGs, Clinical Neurophysiology,2005,116(10):2460-2472.
    [90]G. B. Huang, Q. Y. Zhu, C. K. Siew. Extreme learning machine:Theory and applications, Neurocomputing,2006,70(1-3):489-501.
    [91]G. B. Huang, Q. Zhu, C. K. Siew. Extreme learning machine:a new learning scheme of feedforward neural networks. International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary,2004:985-990.
    [92]T. P. L. Bartlett. The sample complexity of pattern classification with neural networks:the size of the weights is more important than the size of the network, IEEE Transactions on Information Theory,1998,44(2):525-536.
    [93]N. Y. Liang, P. Saratchandran, G. B. Huang, N. Sundararajan. Classification of mental tasks from eeg signals using extreme learning machine. International Journal of Neural Systems,2006,16(1):29-38.
    [94]https://epilepsy.uni-freiburg.de/freiburg-seizure-prediction-project/eeg-database/
    [95]K. K. Majumdar, P. Vardhan. Automatic seizure detection in ECoG by differential operator and windowed variance, IEEE Transactions on Neural Systems and Rehabilitation Engineering,2011,19(4):356-365.
    [96]U. Hoffmann, J. M. Vesin, T. Ebrahimi, and K. Diserens. An efficient P300-based brain-computer interface for disabled subjects, Journal of Neuroscience Methods, 2008,167(1):115-125.
    [97]B. Schelter, M. Winterhalder, T. Maiwald, A. Brandt, A. Schad, A. Schulze-Bonhage, and J. Timmer. Testing statistical significance of multivariate time series analysis techniques for epileptic seizure prediction, Chaos,2006,16(1): 013108.
    [98]M. Winterhalder, T. Maiwald, H. U. Voss, R. Aschenbrenner-Scheibe, J. Timmer, and A. Schulze-Bonhage. The seizure prediction characteristic:a general framework to assess and compare seizure prediction methods, Epilepsy & Behavior, 2003,4(3):318-325.
    [99]M. Winterhalder, B. Schelter, T. Maiwald, A. Brandt, A. Schad, A. Schulze-Bonhage, and J. Timmer. Spatio-temporal patient-individual assessment of synchronization changes for epileptic seizure prediction, Clinical Neurophysiology,2006,117(11):2399-2413.
    [100]H. Feldwisch-Drentrup, B. Schelter, M. Jachan, J. Nawrath, J. Timmer, and A. Schulze-Bonhage. Joining the benefits:Combining epileptic seizure prediction methods, Epilepsia,2010,51(8):1598-1606.
    [101]A. Aarabi, and B. He. A rule-based seizure prediction method for focal neocortical epilepsy, Clinical Neurophysiology,2012,123(6):1111-1122.
    [102]E. Candes, J. Romberg, and T. Tao. Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information, IEEE Transactions on Information Theory,2006,52(2):489-509.
    [103]E. Candes, and M. B. Wakin. An introduction to compressive sampling, IEEE Signal Processing Magazine,2008,25(2):21-30.
    [104]张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解.科学通报,2006,51(6):628-633.
    [105]L. Zhang, W. Zhou, P. Chang, J. Liu, Z. Yan, T Wang, and F Li. Kernel sparse representation-based classifier, IEEE Transactions on Signal Processing,2012, 60(4):1684-1695.
    [106]S. Yang, Y. Han, and X. R. Zhang, A sparse kernel representation method for image classification, in 2012 Proc. Int. Joint Conf. Neural Networks, pp.1-7.
    [107]N. Paivinen, S. Lammi, A. Pitkanen, J. Nissinen, M. Penttonen, T. Gronfors. Epileptic seizure detection:A nonlinear viewpoint, Computer Methods and Programs in Biomedicine,2005,79(2):151-159.
    [108]http://cvxr.com/cvx/
    [109]S. J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky. An interior-point method for large-scale 11-regularized least squares, IEEE Journal of Selected Topics in Signal Processing,2007,1(4):606-617.
    [110]R. Andrzejak, K. Lehnertz, F. Mormann, C. Rieke, P. David, and C.E. Elger. Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity:dependence on recording region and brain state, Phys. Rev. E Stat. Nonlin. Soft. Matter Phys.,2001,64(6):061907.
    [111]A. M. White, P. A. Williams, D. J. Ferraro, S. Clark, S. D. Kadam, F. E. Dudek, K. J. Staley. Efficient unsupervised algorithms for the detection of seizures in continuous EEG recordings from rats after brain injury, Journal of Neuroscience Methods,2006,152(1-2):255-266.
    [112]N. Kannathal, M. L. Choo, U. R. Acharya, and P. K. Sadasivan. Entropies for detection of epilepsy in EEG, Computer Methods and Programs in Biomedicine, 2005,80(3):187-194.
    [113]A. Subasi. EEG signal classification using wavelet feature extraction and a mixture of expert model, Expert Systems with Applications,2007,32(4): 1084-1093.
    [114]L. Guo, D. Rivero, J. Seoane, and A. Pazos. Classification of EEG signals using relative wavelet energy and artificial neural networks, in 2009 Proc. the first ACM/SIGEVO Summit on Genetic and Evolutionary Computation, pp.177-183.
    [115]K. Polat, and S. Gunes. Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform, Applied Mathematics and Computation,2007,187(2):1017-1026.
    [116]Q. Yuan, W. Zhou, S. Li, and D. Cai. Epileptic EEG classification based on extreme learning machine and nonlinear features. Epilepsy Research,2011, 96(1-2):29-38.
    [117]S. Li, W. Zhou, Q. Yuan, S. Geng, and D. Cai. Feature extraction and recognition of ictal EEG using EMD and SVM, Computers in Biology and Medicine,2013, 43(7):807-816.
    [118]Y. Wang, W. Zhou, Q. Yuan, X. Li, Q. Meng, X. Zhao, and J. Wang. Comparison of ictal and interictal EEG signals using fractal features, International Journal of Neural Systems,2013,23(6):1350028.
    [119]W. Li, Y. Wang, and Z. Zhang, "A hierarchical framework for image-based human age estimation by weighted and OHRanked sparse representation-based classification," in 2012 Proc.5th IAPR Int. Conf. Biometrics, pp.19-25.
    [120]A. Aarabi, R. Fazel-Rezai, and Y. Aghakhani. A fuzzy rule-based system for epileptic seizure detection in intracranial EEG, Clinical Neurophysiology,2009, 120(9):1648-1657.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700