胶态光子晶体的磁诱导组装制备与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用外磁场诱导具有超顺磁性的胶态纳米粒子进行自组装来制备光子晶体的技术是近年来才发展起来的一种快速光子晶体制备技术。相对于传统的制备胶态光子晶体的自组装技术,磁诱导自组装技术具有多种优势:首先,传统的胶态纳米粒子自组装技术,例如重力自组装、离心力自组装、电泳自组装以及静电和毛细管力自组装等,需要较长的时间来构筑光子晶体结构。其短则需数小时,长则几天的时间来制备厘米级尺度的光子晶体,难以满足实际应用的要求。而利用磁诱导自组装技术可以瞬间完成光子晶体结构的构筑,实现从无衍射颜色到有衍射颜色的巨大变化。其次,通过磁场强度和磁场方向的改变,可以很容易地操纵其诱导形成的一维光子晶体的结构,从而实现衍射颜色的改变。最后,不同于利用传统的胶态纳米粒子自组装技术所构筑的光子晶体结构,基于磁诱导自组装技术形成的光子晶体结构是可逆的,可以通过磁场的施加和撤销,实现光子晶体结构的形成和消散。磁诱导自组装技术的发展使得人们随意的调控光子晶体的光学性能和制备更加精细和复杂的光子晶体结构成为可能。
     基于磁诱导自组装技术的这些巨大优势,本论文旨在探索磁性胶态纳米粒子的磁诱导自组装机制以及基于磁诱导自组装技术制备功能化的光子晶体材料,例如光子晶体写字板、光子晶体湿度传感器和光子晶体防伪标识等。此外,还着重研究了一种新颖的隐形光子晶体印刷术。详细内容归纳如下:
     1、通过超顺磁性胶态纳米粒子的快速磁诱导自组装和随后的自由基聚合反应,将一维链状光子晶体结构固定在聚丙烯酰胺乙二醇凝胶基体中制备了一种新型的光子晶体写字板。用蒸馏水做墨水,通过聚合物基体的膨胀作用可以在光子晶体写字板上书写各种字母或文字符号。通过去除光子晶体印迹中的水分可以拭去光子晶体符号,使得光子写字板可以重复多次使用。由于写字板可重复书写且墨水无毒,这种光子晶体写字板/墨水系统具有环境友好性。得益于快速的磁诱导自组装技术和自由基聚合反应,这种光子晶体显示写字板的制备时间比基于传统的自组装方法大大减少,这对于未来工业化生产具有重要的意义。
     2、利用快速磁诱导自组装技术和自由基聚合反应,制备了高度稳定的,肉眼可视的自显示光子晶体湿度传感器。随着相对湿度从11%变化到97%,该光子晶体湿度传感器的颜色可以自动从深蓝色到浅红色之间逐渐转变。其整个衍射波长的变化区间接近160nm,这几乎覆盖了整个可见光范围,并且其强度肉眼可见。另外,循环试验表明该光子晶体湿度传感器在光学信号上具有良好的稳定性和重复性。这种低成本、无功耗的光子晶体湿度传感器系统可以实现类似于pH试纸的比色湿度检测。
     3、基于最近发展起来的磁诱导自组装技术,设计了一种新颖的、简单且低成本的制备具有双光子带隙异质结构的光子晶体的方法,并且最终达到了调制其光学衍射颜色的目的。这种方法极大地简化了具有多重光子带隙异质结构的光子晶体的制备过程,并且扩充了调节光子晶体光学衍射颜色的方法。源自这种具有双光子带隙异质结构的光子晶体的结构色,因其具有双重衍射峰且可以通过磁场的施加与撤销实现衍射颜色的显现和消散,难以被普通的化学染料和颜料所模仿。基于这种特殊的具有双光子带隙异质结构的磁响应光子晶体,我们进一步制备了一种新颖的光子晶体防伪标识。由于商品防伪保护的迫切需求,这种光子晶体防伪标识将在防伪领域具有良好的应用前景。
     4、基于磁诱导自组装技术和前期的工作基础,发展了一种新颖的隐形光子晶体印刷术。利用这种隐形光子晶体印刷术,可以简单、快速、方便的制备各种图案的隐形光子晶体印迹,且隐形的光子晶体印迹可以使用随处可见的磁铁来使之显现。这种隐形光子晶体印刷术不仅可以实现光子晶体图案的电脑设计化,人工设计化,此外,印刷在光子晶体纸基底上的隐形光子晶体图案还可以保持较长时间的稳定(三个月以上),这使得这种隐形光子晶体印刷术具有很强的实用性。
Magnetically induced self-assembly of superparamagnetic colloid nanoparticles into periodic structure is a fast preparation technique of photonic crystals, which is developed in recent years. Compared with conventional colloidal assembly methods, magnetically induced self-assembly has several advantages. First, conventional self-assembly approaches that involve gravitational force, centrifugal force, ejectrophoretic deposition, electrostatic interaction and capillary force need a long time to fabricate photonic structure. They may take hours to days or even months to produce colloidal crystals of centimetre scale and the low production efficiency of such self-assembly processes can't satisfy the requirements of practical application. However, with the magnetically induced self-assembly technique, superparamagnetic colloid nanoparticles can self-assemble into photonic structures in one second and intensely diffract the visible light. Second, through the modulation of the magnetic field strength and direction, it is convenient to control the formed one-dimensional photonic structures and further realize the change of diffraction color. Finally, unlike the photonic structures fabricated with conventional self-assembly technique, the formation of photonic structures based on the magnetically induced self-assembly technique is reversible. Through the application and withdrawal of the magnetic fields, the photonic structures can be formed and decomposed. The recent developments in the techniques have enabled convenient modulation of photonic properties and easy fabrication of sophisticated photonic structures.
     Based on the huge advantages of the magnetically induced self-assembly technique, the main objective of this dissertation is to explore the mechanism of magnetically induced self-assembly of magnetic nanoparticles and to fabricate functional photonic crystals based on magnetically induced self-assembly technique, such as photonic wordpad、photonic humidity sensor and photonic anti-counterfeiting labels. Furthermore, a novel invisible photonic printing is studied in detail. The main parts of the as-obtained results are summarized below:
     1A novel photonic wordpad was fabricated through the fast magnetically induced self-assembly of carbon-encapsulated superparamagnetic colloidals, followed by an instant radical polymerization to fix the photonic crystal structures inside a polyacrylamide glycol gel matrix. Distilled water is used as ink to write letters or Chinese characters with a different color on the wordpad because it can swell the polymer matrix and then increase the interparticle spacing within the chains, and as a result a red-shift in optical diffraction occurs. The photonic wordpad not only has an excellent reusability because the ink mark can be written or erased by introducing or removing the water in the surface layer of the photonic wordpad, but also is environmentally friendly and low-carbon owing to the reusability of the wordpad and non-toxicity of the ink. In addition, due to the use of the recent development of magnetically tunable assembly techniques, the processing time of this photonic wordpad is greatly reduced compared to using conventional assembly methods, which has an important significance in the large-scale industrial production in the future.
     2A visually readable and highly stable self-display photonic humidity sensor has been fabricated through the fast magnetically induced self-assembly of carbon-encapsulated superparamagnetic colloidals, followed by an instant radical polymerization. The photonic humidity sensor can self-display brilliant colors from navy blue to light red as the relative humidity changes from11%to97%. The whole shift of the reflection wavelength is nearly160nm, which almost covers the whole visual region and its intensity is readable by the naked eye. In addition, cycle tests demonstrate that the photonic humidity sensor has a good stability and reproducibility in its diffraction signal. Therefore, coupled with low cost and no power consumption, the photonic humidity sensor system can realize colorimetric detection of humidity, similarly to pH indicator paper.
     3Based on the recently developed magnetic-induced self-assembly techniques, we designed a novel, simple and low-cost method to fabricate a special class of photonic crystals with double photonic band-gap hetero-structures, and eventually achieved the purpose of modulating the optical diffraction color of the structural colors. The method greatly simplifies the fabrication of photonic crystals with multiple photonic band-gap hetero-structures and extends the modulation means of the optical diffraction color of structural colors. Furthermore, it is worth noting that due to the resulting structural colors that are derived from the double photonic band-gap hetero-structures consisting of double diffraction peaks and presenting a magnetic switching effect through the application and withdrawal of the magnetic fields (0.05T), which is more difficult to be imitated by those of chemical dyes and pigments, a kind of novel photonic anti-counterfeiting label has been prepared with these structural colors. Due to the widespread counterfeiting of various commercial objects and the urgent requirements of forgery protection, the photonic anti-counterfeiting labels will undoubtedly find applications in anti-counterfeiting fields.
     4Based on the magnetically induced self-assembly technique and our previous work, we have developed a novel photonic printing technique that enables fast and convenient preparation of invisible photonic prints with good tenability and reproducibility. The showing and hiding of the latent photonic prints is instantaneous, and the only required instrument is a magnet, which is easy to obtain and harmless to human body. This invisible photonic printing allows end-user control of the structural design utilizing simple software on a PC and is also applicable to a handwritten-pattern printing method. In addition, the invisible photonic prints were found to be stable for at least three months at room temperature and can be used after prolonged storage. These advantages reveal the excellent flexibility and practicality of this novel invisible printing technique.
引文
[1]E. Yablonovitch, Phys. Rev. Lett.,1987,58,2059.
    [2]S. John, Phys. Rev. Lett.,1987,58,2486.
    [3]R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, E. Olson, Nat. Photonics,2007,1,123.
    [4]J. Zi, X. D. Yu, Y. Z. Li, X. H. Hu, C. Xu, X. J. Wang, X. H. Liu, R. T. Fu, Proc. Natl. Acad. Sci. USA,2003,100,12576.
    [5]S. Kinoshita, S. Yoshioka, K. Kawagoe, Proc. R. Soc. London Ser. B,2002,269, 1417.
    [6]P. Vukusic, J. R. Sambles, C. R. Lawrence, Nature,2000,404,457.
    [7]M. Srinivasarao, Chem. Rev.,1999,99,1935.
    [8]D. Joannopoulos, P. R. Villeneuve, S. Fan, Nature,1997,386,143.
    [9]Y. Fink, J. N. Winn, S. Fan, Science,1998,282,1679.
    [10]E. Lidorikis, A. C. Ferrari, A. C. S. nano,2009,3,1238.
    [11]C. M. Anderson, K. P. Giapis, Phys. Rev. Lett.,1996,77,2949.
    [12]E. Yablonvitch, T. J. Gmitter, K. M. Leung, Phys. Rev. Lett.,1991,67,2295.
    [13]Y. J. Zhao, X. W. Zhao, C. Sun, J. Li, R. Zhu, Z. Z. Gu, Anal. Chem.,2008,8, 1598.
    [14]Y. J. Zhao, X. W. Zhao, J. Hu, M. Xu, W. J. Zhao, Adv. Mater.,2009,21,569.
    [15]Y. C. Zhong, S. A. Zhu, H. M. Su, Appl. Phys. Lett.2005,87,061103.
    [16]S. Wong, M. Deubel, F. P. Willard, Adv. Mater.,2006,18,265-269.
    [17]E. Yablonovitch, J. Opt. Soc. Am. B,1993,10,283.
    [18]S. Fan, P. R. Villeneuve, J. D. Joannopoulos and E. F. Schubert, Phys. Rev. Lett., 1997,78,3294.
    [19]M. Fujta, S. Takahashi, Y. Tanaka, T. Asano and S. Noda, Science,2005,308, 1296.
    [20]E. M. Purcell, Phys. Rev.,1946,69,681.
    [21]J. J. Wierer, A. David and M. M. Megens, Nature Photonics,2009,3,163.
    [22]S. Gupta, G Tutle, M. Sigalas, Appl. Phys. Lett.,1997,71,2412.
    [23]X. Y Lei, H. Li, F. Ding, Appl. Phys. Lett.,1997,71,2889.
    [24]A. C. Arsenault, D. P. Puzzo, I. Manners and G. A. Ozin, Nature Photonics,2007, 1,468.
    [25]D. Cassagne, C. Jouanin, D, Bertho, Physical Review B (Condensed Matter), 1996,53,7134.
    [26]M. Z. Li, F. He, Q. Liao, J. Liu, L. Xu, L. Jiang, Y. L. Song, S. Wang and D. B. Zhu, Angew. Chem. Int. Ed.,2008,47,7258.
    [27]R. Scott, S. M. Yang, D. E. Ozin, Adv. Funct. Mater.,2003,13,225.
    [28]J. H. Holtz, S. A. Asher, Nature,1997,389,829.
    [29]D. A. Mazurenko, A. V. Akimo, A. B. Pevtsov, Phys. E.,2003,17,410.
    [30]D. A. Mazurenko, R. Kerst, J. I. Dikhuis, Phys. Rev. Lett.,2003,91,213903.
    [31]T. F. Krauss, R. M. de la Rue, S. Brand, Nature,1996,383,699.
    [32]O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, I. Kim, Science,1999,284,1819.
    [33]H. Benisty, C. Weisbuch, D. Labilloy, M. Rattier, C. J. M. Smith, T. F. Krauss, R. M. de La Rue, R. Houdre, U. Oesterle, C. Jouanin, D. Cassagne, J. Lightwave Technol.,1999,17,2063.
    [34]S. Noda, A. Chutinan, M. Imada, Nature,2000,407,608.
    [35]S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Bur, Nature,1998,394,251.
    [36]J. G. Fleming, S.Y. Lin, Opt. Lett.,1999,24,49.
    [37]S. Noda, K. Tomoda, N. Yamamoto, A. Chutinan, Science,2000,289,604.
    [38]A. Birner, R. B. Wehrspohn, U. M. Gosele, K. Busch, Adv. Mater,2001,13,377.
    [39]H. Masuda, M. Ohya, H. Asoh, M. Nakao, M. Nohtomi, T. Tamamura, Jpn. J. Appl. Phys.,1999,38, L1403.
    [40]M. C. Wanke, O. Lehmann, K. Muller, Q. Z. Wen, M. Stuke, Science,1997,275, 1284.
    [41]M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, A. J. Turberfield, Nature,2000,404,53.
    [42]S. Shoji and S. Kawata,Appl. Phys. Lett.,2000,76,2668.
    [43]P. V. Braun, R. W. Zehner, C. A. White, M. K. Weldon, C. Kloc, S. S. Patel and P. Wiltzius, Adv. Mater.,2001,13,721.
    [44]S. Lee, G. Yi and S. Yang, Lab. Chip,2006,6,1171-1177.
    [45]M. Holgado, F. Garcia-Santamaria, A. Blanco, M. Ibisate, A. Cintas, H. Miguez, C. J. Serna, C. Molpeceres, J. Requena, A. Mifsud, F. Meseguer and C. Lopez, Langmuir,1999,15,4701.
    [46]P. Jiang, J. F. Bertone, K. S. Hwang and V. L. Colvin, Chem. Mater.,1999,11, 2132.
    [47]O. D. Velev, A. M. Lenhoffand E. W. Kaler, Science,2000,287,2240.
    [48]Y. A. Vlasov, X. Z. Bo, J. C. Sturm and D. J. Norris, Nature,2001,414,289.
    [49]Z. Z. Gu, A. Fujishima and O. Sato, Chem. Mater.,2002,14,760.
    [50]B. G. Prevo and O. D. Velev, Langmuir,2004,20,2099.
    [51]A. K. Arora and B. V. R. Tata, Ordering and Phase Transitions in Colloidal Systems, VCH, Weinheim,1996.
    [52]P. Pieranski, Contemp. Phys.,1983,24,25.
    [53]A. K. Arora, B. V. R. Tata, A. K. Sood and R. Kesavamoorthy, Phys. Rev. Lett., 1988,60,2438.
    [54]W. VanNegen and I. Shook, Adv. Colloid Interface Sci.,1984,21,119.
    [55]J. P. Ge and Y. D. Yin, J. Mater. Chem.,2008,18,5041-5045.
    [56]J. P. Ge, S. Kwon and Y. D. Yin, J. Mater. Chem.,2010,20,5777-5784.
    [57]J. P. Ge, L. He, Y. X. Hu and Y. D. Yin, Nanoscale,2011,3,177-183.
    [58]K. J. M. Bishop, C. E. Wilmer, S. Soh and B. A. Grzybowski, Small,2009,5, 1600.
    [59]R. W. Chabay and B. A. Sherwood, Electric and Magnetic Interactions, Wiley, New York,1995.
    [60]Y. Kraftmakher, Eur. J. Phys.,2007,28,409.
    [61]U. Jeong, X. W. Teng, Y. Wang, H. Yang and Y. N. Xia, Adv.Mater.,2007,19,33.
    [62]S. H. Sun, Adv. Mater.,2006,18,393.
    [63]A. F. Rebolledo, A. B. Fuertes, T. Gonzalez-Carreno, M. Sevilla, T. Valdes-Solis and P. Tartaj, Small,2008,4,254.
    [64]K. Butter, P. H. H. Bomans, P. M. Frederik, G. J. Vroege and A. P. Philipse, Nat. Mater.,2003,2,88.
    [65]J. H. Gao, B. Zhang, X. X. Zhang and B. Xu, Angew. Chem. Int. Ed.,2006,45, 1220.
    [66]K. Nakata, Y. Hu, O. Uzun, O. Bakr and F. Stellacci, Adv. Mater.,2008,20,4294.
    [67]Z. H. Zhou, G. J. Liu and D. H. Han, ACS Nano,2009,3,165.
    [68]Y. Zhang, L. Sun, Y. Fu, Z. C. Huang, X. J. Bai, Y. Zhai, J. Du and H. R. Zhai, J. Phys. Chem. C,2009,113,8152.
    [69]H. Wang, Q. W. Chen, L. X. Sun, H. P. Qi, X. Yang, S. Zhou and J. Xiong, Langmuir,2009,25,7135.
    [70]J. F. Sun, Y. Zhang, Z. P. Chen, H. Zhou and N. Gu, Angew. Chem. Int. Ed.,2007, 46,4767.
    [71]S. L. Tripp, S. V. Pusztay, A. E. Ribbe and A. Wei, J. Am. Chem. Soc.,2002,124, 7914.
    [72]S. L. Tripp, R. E. Dunin-Borkowski and A. Wei, Angew. Chem. Int. Ed.,2003,42, 5591.
    [73]R. M. Erb, H. S. Son, B. Samanta, V. M. Rotello and B. B. Yellen, Nature,2009, 457,999.
    [74]S. Sacanna and A. P. Philipse, Langmuir,2006,22,10209.
    [75]J. M. Weissman, H. B. Sunkara, A. S. Tse and S. A. Asher, Science,1996,274, 959.
    [76]S. H. Foulger, P. Jiang, A. Lattam, D. W. Smith, J. Ballato, D. E. Dausch, S. Grego and B. R. Stoner,Adv. Mater.,2003,15,685.
    [77]Z. Z. Gu, S. Hayami, Q. B. Meng, T. Iyoda, A. Fujishima and O. Sato, J. Am. Chem. Soc.,2000,122,10730.
    [78]M. Ozaki, Y. Shimoda, M. Kasano and K. Yoshino, Adv. Mater.,2002,14,514.
    [79]A. C. Arsenault, D. P. Puzzo, I. Manners and G. A. Ozin, Nat. Photonics,2007,1, 468.
    [80]J. H. Holtz and S. A. Asher, Nature,1997,389,829.
    [81]S. Y. Choi, M. Mamak, G. von Freymann, N. Chopra and G. A. Ozin, Nano Lett., 2006,6,2456.
    [82]H. Fudouzi and Y. N. Xia, Langmuir,2003,19,9653.
    [83]X. L. Xu, G. Friedman, K. D. Humfeld, S. A. Majetich, S. A. Asher, Chem. Mater.,2002,14,1249.
    [84]G. M. Whitesides and M. Boncheva, Proc. Natl. Acad. Sci. USA,2002,99,4769.
    [85]J. P. Ge and Y. D. Yin, Angew. Chem. Int. Ed,2011,50,1492.
    [86]S. Sacanna and A. P. Philipse, Langmuir,2006,22,10209.
    [87]T. Ding, K. Song, K. Clays and C. H. Tung, Adv. Mater,2009,21,1936.
    [88]K. Cheng, Q. W. Chen, Z. D. Wu, M. S. Wang and H. Wang, CrystEngComm, 2011,13,5394.
    [89]X. L. Xu, G. Friedman, K. D. Humfeld, S. A. Majetich and S. A. Asher, Adv. Mater.,2001,13,1681.
    [90]H. E. Horng, C. Y. Hong, W. B. Yeung and H. C. Yang, Appl. Opt.,1998,37, 2674.
    [91]H. E. Horng, C. Y. Hong, S. L. Lee, C. H. Ho, S. Y. Yang and H. C. Yang, J. Appl. Phys.,2000,88,5904.
    [92]H. E.Horng, S. Y. Yang, S. L. Lee, C. Y.Hong andH. C. Yang, Appl. Phys. Lett., 2001,79,350.
    [93]S. L. Pu, X. F. Chen, L. J. Chen,W. J. Liao, Y. P. Chen and Y. X. Xia, Appl. Phys. Lett.,2005,87,021901.
    [94]J. Bibette, J. Magn. Magn. Mater,1993,122,37.
    [95]F. L. Calderon, T. Stora, O. Mondain Monval, P. Poulin and J. Bibette, Phys. Rev. Lett.,1994,72,2959.
    [96]J. Ge, Y. Hu and Y. Yin, Angew. Chem. Int. Ed.,2007,46,7428.
    [97]H. Wang, Y. B. Sun, Q. W. Chen, Y. F. Yu and K. Cheng, Dalton Trans.,2010,39, 9565.
    [98]H. Wang, Q. W. Chen, Y. F. Yu, K. Cheng and Y. B. Sun, J. Phys. Chem. C,2011, 115,11427.
    [99]G. M. Whitesides and M. Boncheva, Proc. Natl. Acad. Sci. USA,2002,99,4769.
    [100]J. P. Ge and Y. D. Yin, Adv. Mater.,2008,20,3485.
    [101]J. P. Ge, L. He, J. Goebl and Y. D. Yin, J. Am. Chem. Soc.,2009,131,3484.
    [102]R. Y. Xuan and J. P. Ge, Langmuir,2011,27,5694.
    [103]H. Kim, J. P. Ge, J. Kim, S. E. Choi, H. Lee, H. Lee, W. Park, Y. D. Yin and S. Kwon, Nat. Photonics,2009,3,534.
    [104]R. Y. Xuan and J. P. Ge, J. Mater. Chem.,2012,22,367.
    1 J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals, Princeton University Press, Princeton, NJ 1995.
    2 E. Yablonovitch, Phys. Rev. Lett.,1987,58,2059.
    3 S. John, Phys. Rev. Lett.,1987,58,2486.
    4 Z. Q. Zhang, C. C. Wong, K. K. Fung, Y. L. Ho, W. L. Chan, S. C. Kan, T. L. Chan, N. Cheung, Phys. Rev. Lett.,1998,81,5540.
    5 Y. A. Vlasov, X. Z. Bo, J. C. Sturm, D. J. Norris, Nature,2001,414,289.
    6 G. A. Ozin, S. M. Yang, Adv. Funct. Mater.,2001,11,95.
    7 A. Arsenault, S. B. Fournier-Bidoz, B. Hatton, H. Miguez, N. Tetrault, E. Vekris, S. Wong, S.M. Yang, V. Kitaev, G. A. Ozin, J. Mater. Chem.,2004,14,781.
    8 Y. J. Lee, P. V. Braun, AdV. Mater.,2003,15,563-566.
    9 Z. W. Niu, D. Li, Z. Z. Yang, Z. B. Hu, Y. F. Lu, C. C. Han, Chem. Phys. Chem., 2003,4,865-868.
    10 K. Lee, S. A. Asher, J. Am. Chem. Soc.,2000,122,9534-9537.
    11 J. D. Debord, L. A. Lyon, J. Phys. Chem. B,2000,104,6327-6331.
    12 B. Gates, S. H. Park, Y N. Xia, AdV. Mater.,2000,12,653-656.
    13 M. Kamenjicki, I. K. Lednev, A. Mikhonin, R. Kesavamoorthy, S. A. Asher, AdV. Funct. Mater.,2003,13,774-780.
    14 D. Nakayama, Y. Takeoka, M. Watanabe, K. Kataoka, Angew. Chem., Int. Ed., 2003,42,4197-4200.
    15 J. P. Walker, S. A. Asher, Anal. Chem.,2005,77,1596-1600.
    16 Daniel P. Puzzo, Andre C. Arsenault, Ian Manners, and Geoffrey A. Ozin, Angew. Chem. Int. Ed.,2009,48,943-947
    17 A. C. Arsenault, H. Miguez, V. Kitaev, G. A. Ozin, I. Manners, Adv. Mater.,2003, 15,503.
    18 A. C. Arsenault, D. P. Puzzo, I. Manners, G. A. Ozin, Nat. Photonics,2007,1,468.
    19 J. P. Ge, Y. X. Hu, Y. D. Yin, Angew. Chem. Int. Ed.,2007,46,7428.
    20 J. P. Ge, Y. D. Yin, J. Mater. Chem.,2008,18,5041.
    21 J. P. Ge, Y. D. Yin, Adv. Mater.,2008,20,3485.
    22 G. A. Ozin, A. C. Arsenault, Mater. Today,2008,11,44.
    23 H. Fudouzi, Y. N. Xia, Langmuir, 2003,19,9653.
    24 H. Fudouzi, Y. N. Xia, Adv. Mater.,2003,15,892.
    25 P. Jiang, D. W. Smith, J. M. Ballato, S. H. Foulger, Adv. Mater.,2005,17,179.
    26 P. V. Braun, R. W. Zehner, C. A. White, M. K. Weldon, C. Kloc, S. S. Patel and P. Wiltzius,Adv. Mater.,2001,13,721.
    27 P. Jiang, J. F. Bertone, K. S. Hwang and V. L. Colvin, Chem. Mater.,1999,11, 2132.
    28 O. D. Velev, A. M. Lenhoff and E. W. Kaler, Science,2000,287,2240.
    29 Y. A. Vlasov, X. Z. Bo, J. C. Sturm and D. J. Norris,Nature,2001,414,289.
    30 Z. Z. Gu, A. Fujishima and O. Sato, Chem. Mater.,2002,14,760.
    31 A. K. Arora, B. V. R. Tata, A. K. Sood and R. Kesavamoorthy, Phys. Rev. Lett., 1988,60,2438.
    32 W. Van Negen and I. Shook, Adv. Colloid Interface Sci.,1984,21,119.
    33 Hui Wang, Yu-Bing Sun, Qian-Wang Chen, Yi-Fei Yu and Kai Cheng, Dalton Trans.,2010,39,9565-9569
    34 H Wang, Q. W. Chen, L. X. Sun, H. P. Qi, X. Yang, S. Zhou and J. Xiong, Langmuir,2009,25,7135.
    35 J. P. Ge, Y. X. Hu, M. Biasini, W. P. Beyermann and Y. D. Yin, Angew. Chem., Int. Ed.,2007,46,4342.
    36 Hui Wang, Qian-Wang Chen, Yi-Fei Yu, Kai Cheng, and Yu-Bing Sun, J. Phys. Chem. C,2011,115,11427-11434
    37 D. L. A. de Faria, S. V. Silva and M. T. de Oliveira, J. Raman Spectrosc.,1997,28, 873.
    38 N. Pinna, S. Grancharov, P. Beato, P. Bonville, M. Antonietti and M. Niederberger, Chem. Mater.,2005,17,3044.
    39 A. C. Ferrari and J. Robertson, Phys. Rev. B:Condens. Matter Mater. Phys.,2000, 61,14095.
    40 J. Ristein, R. T. Stief, L. Ley and W. Beyer, J. Appl. Phys.,1998,84,3836.
    41 Q. Gao, F. H. Chen, J. L. Zhang, G. Y. Hong, J. Z. Ni, X. Wei and D. J. Wang, J. Magn. Magn. Mater.,2009,321,1052.
    42 J. Bibette, J. Magn. Magn. Mater.,1993,122,37.
    43 F. L. Calderon, T. Stora, O. M. Monval, P. Poulin and J. Bibette, Phys. Rev. Lett., 1994,72,2959.
    44 T. Tanaka, Sci. Am.,1981,244,110-123.
    45 P. J. Flory, Principals of Polymer Chemistry; Cornell University:Ithaca, NY,1953.
    46 Jianping Ge, James Goebl, Le He, Zhenda Lu, and Yadong Yin, Adv. Mater.,2009, 21,4259-4264.
    1 T. Venugopalan, T. L. Yeo, T. Sun, K. T. V. Grattan, IEEE Sensors. J.,2008,8, 1093-1098.
    2 N. Zhang, K. Yu, Z. Q. Zhu, D. S. Jiang, Sens. Actuators, A,2008,143 (2), 245-250.
    3 N. A. Luechinger, S. Loher, E. K. Athanassiou, R. N. Grass, W. J. Stark, Langmuir, 2007,23,3473-3477.
    4 K. M. Tan, C. M. Tay, S. C. Tjin, C. C. Chan and H. Rahardjo, Sens. Actuators B, 2005,110,335-341.
    5 T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade and B. D. Powell, IEEE Sensors. J.,2005,5,1082-1089.
    6 Q. Kuang, C. S. Lao, Z. L. Wang, Z. X. Xie and L. S. Zheng, J. Am. Chem. Soc., 2007,129,6070-6071.
    7 X. H. Zhang, S. A. McGill and P. Xiong, J. Am. Chem. Soc.,2007,129, 14470-14474.
    8 Y. Wang, S. Park, J. T. W. Yeow, A. Langner and F. Muller, Sens. Actuators B, 2010,149,136-142.
    9 C. L. Dai, Sens. Actuators, B,2007,122,375-380.
    10 X. W. Zhan, M. J. Yang, Z. Q. Lei, Y. Li, Y. Q. Liu, G. Yu and D. B. Zhu, Adv. Mater.,2000,12,51-53.
    11 X. T. Qiu, R. Tang, J. Zhu, J. Oiler, C. J. Yu, Z. Y. Wang and H. Y. Yu, Sens. Actuators, B,2010,147,381-384.
    12 M. Takahashi, M. Inoue, R. Ihara, T. Yoko, T. Nemoto, S. Isoda, L. Malfatti, S. Costacurta and P. Innocenzi, Adv. Mater.,2010,22,3303-3306.
    13 J. W. Grate, L. K. Moore, D. E. Janzen, D. J. Veltkamp, S. Kaganove, S. M. Drew and K. R. Mann, Chem. Mater.,2002,14,1058-1066.
    14 J. Estella, P. de Vicente, J. C. Echeverria and J. J. Garrido, Sens. Actuators, B, 2010,149,122-128.
    15 F. X. Gu, L. Zhang, X. F. Yin and L. M. Tong, Nano Lett.,2008,8,2757-2761.
    16 J. Xu, W. X. Zhang, Z. H. Yang, S. X. Ding, C. Y. Zeng, L. L. Chen, Q. Wang and S. H. Yang, Adv. Funct. Mater.,2009,19,1759-1766.
    17 J. Kunzelman, B. R. Crenshaw and C. Weder, J. Mater. Chem.,2007,17, 2989-2991.
    18 R. Yang Mu, S. Chen Ko, Sens. Actuators, B,1998,49,240.
    19 E. Traversa, Sens. Actuators, B,1995,23,135.
    20 Y. Sakai, Sens. Actuators, B,1993,13,82.
    21 H. E. Posch, O. S. Wolfbeis, Sens. Actuators,1988,15,77.
    22 I. Klimant, O. S. Wolfbeis, Anal. Chem.,1995,67,3160.
    23 Y. J. Lee, P. V. Braun, AdV. Mater.,2003,15,563-566.
    24 Z. W. Niu, D. Li, Z. Z. Yang, Z. B. Hu, Y. F. Lu, C. C. Han, Chem. Phys. Chem., 2003,4,865-868.
    25 K. Lee, S. A. Asher, J. Am. Chem. Soc.,2000,122,9534-9537.
    26 J. D. Debord, L. A. Lyon, J. Phys. Chem. B,2000,104,6327-6331.
    27 B. Gates, S. H. Park, Y. N. Xia, AdV. Mater.,2000,12,653-656.
    28 M. Kamenjicki, I. K. Lednev, A. Mikhonin, R. Kesavamoorthy, S. A. Asher, AdV. Funct. Mater.,2003,13,774-780.
    29 R. A. Barry and P. Wiltzius, Langmuir,2006,22,1369.
    30 J. Huang, C. A. Tao, Q. An, C. X. Lin, X. S. Li, D. Xu, Y. G. Wu, X. G. Li, D. Z. Shen and G. T. Li, Chem. Commun.,2010,46,4103-4105.
    31 E. T. Tian, J. X. Wang, Y. M. Zheng, Y. L. Song, L. Jiang and D. B. Zhu, J. Mater. Chem.,2008,18,1116-1122.
    32 P. V. Braun, R. W. Zehner, C. A. White, M. K. Weldon, C. Kloc, S. S. Patel and P. Wiltzius, Adv. Mater.,2001,13,721.
    33 P. Jiang, J. F. Bertone, K. S. Hwang and V. L. Colvin, Chem. Mater.,1999,11, 2132.
    34 O. D. Velev, A. M. Lenhoff and E. W. Kaler, Science,2000,287,2240.
    35 Y. A. Vlasov, X. Z. Bo, J. C. Sturm and D. J. Norris, Nature,2001,414,289.
    36 Z. Z. Gu, A. Fujishima and O. Sato, Chem. Mater.,2002,14,760.
    37 A. K. Arora, B. V. R. Tata, A. K. Sood and R. Kesavamoorthy, Phys. Rev. Lett., 1988,60,2438.
    38 W. Van Negen and I. Shook, Adv. Colloid Interface Sci.,1984,21,119.
    39 R. Y. Xuan, Q. S. Wu, Y. D. Yin and J. P. Ge, J. Mater. Chem.,2011,21, 3672-3676.
    40 H. Wang, Y. B. Sun, Q. W. Chen, Y. F. Yu and K. Cheng, Dalton Trans.,2010,39, 9565-9569.
    41 H. B. Hu, Q. W. Chen, H. Wang, R. Li and W. Zhong, J. Mater. Chem.,2011,21, 13062-13067
    42 J. P. Ge, Y. X. Hu and Y.D. Yin, Angew. Chem.,2007,119,7572-7575
    43 J. P. Ge and Y. D. Yin, Adv. Mater.,2008,20,3485-3491.
    44 J. P. Ge, J. Goebl, L. He, Z. Lu and Y. D. Yin, Adv.Mater.,2009,21,4259-4264.
    1 M. Srinivasarao, Chem. Rev.,1999,99,1935-1961.
    2 P. Vukusic, J. R. Sambles and C. R. Lawrence, Nature,2000,404,457.
    3 A. R. Parker, R. C. McPhedran, D. R. Mckenzie, L. C. Botten and N. P. Nicorovici, Nature,2001,409,36-37.
    4 S. Kinoshita, S. Yoshioka and K. Kawagoe, Proc. R. Soc. B,2002,269,1417-1421.
    5 J. Zi et al. Proc. Natl Acad. Sci. USA,2003,100,12576-12578.
    6 R. A. Potyrailo et al. Nature Photon.,2007,1,123-128.
    7 S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Bur, Nature,1998,394,251.
    8 J. G. Fleming, S.Y. Lin, Opt. Lett.,1999,24,49.
    9 S. Noda, K. Tomoda, N. Yamamoto, A. Chutinan, Science,2000,289,604.
    10 A. Birner, R. B. Wehrspohn, U. M. Gosele, K. Busch, Adv.Mater.,2001,13,377.
    11 H. Masuda, M. Ohya, H. Asoh, M. Nakao, M. Nohtomi, T. Tamamura, Jpn. J. Appl. Phys.,1999,38, L1403.
    12 M. C. Wanke, O. Lehmann, K. Muller, Q. Z. Wen, M. Stuke, Science,1997,275, 1284.
    13 M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, A. J. Turberfield, Nature,2000,404,53.
    14 S. Shoji, S. Kawata, Appl. Phys. Lett.,2000,76,2668.
    15 P. V. Braun, R. W. Zehner, C. A. White, M. K. Weldon, C. Kloc, S. S. Patel and P. Wiltzius,Adv. Mater.,2001,13,721.
    16 P. Jiang, J. F. Bertone, K. S. Hwang and V. L. Colvin, Chem. Mater.,1999,11, 2132.
    17 O. D. Velev, A. M. Lenhoffand E. W. Kaler, Science,2000,287,2240.
    18 Y. A. Vlasov, X. Z. Bo, J. C. Sturm and D. J. Norris, Nature,2001,414,289.
    19 Z. Z. Gu, A. Fujishima and O. Sato, Chem. Mater.,2002,14,760.
    20 A. K. Arora, B. V. R. Tata, A. K. Sood and R. Kesavamoorthy, Phys. Rev. Lett., 1988,60,2438.
    21 W. VanNegen and I. Shook, Adv. Colloid Interface Sci.,1984,21,119.
    22 S. Kubo, Z. Z. Gu, K. Takahashi, Y. Ohko, O. Sato, A. Fujishima, J. Am. Chem. Soc.,2002,124,10950.
    23 O. Sato, S. Kubo, Z. Z. Gu, Ace. Chem. Res.,2009,42,1.
    24 H. B. Hu, Q. W. Chen, H. Wang, R. Li, W. Zhong, J. Mater. Chem.,2011,21, 13062.
    25 H. B. Hu, Q. W. Chen, K. Cheng, J. Tang, J. Mater. Chem.,2012,22,1021-1027.
    26 J. P. Ge, H. Lee, L. He, J. Kim, Z. D. Lu, H. Kim, J. Goebl, S. Kwon, Y. D. Yin, J. Am. Chem. Soc.,2009,131,15687.
    27 R. Y. Xuan, J. P. Ge, Langmuir,2011,27,5694.
    28 P. Jiang, G. N. Ostojic, R. Narat, D. M. Mittleman, V. L. Colvin, Adv. Mater.,2001, 13,389.
    29 S. G Romanov, H. M. Yates, M. E. Pemble, R. M. De La Rue, J. Phys.:Condens. Matter,2000,12,8221.
    30 M. Egen, R. Voss, B. Griesebock, R. Zentel, Chem, Mater.,2003,15,3786.
    31 S. M. Yang, H. Miguez, G. A. Ozin, Adv.Funct.Mater.,2002,12,425.
    32 J. P. Ge, Y. X. Hu, T. Zhang, T. Huynh, Y. D. Yin, Langmuir,2008,24,3671.
    33 H. Wang, Y. B. Sun, Q. W. Chen, Y. F. Yu, K. Cheng, Dalton Trans.,2010,39, 9565.
    34 H. Wang, Q. W. Chen, Y. F. Yu, K. Cheng, Y. B. Sun,J.Phys. Chem. C,2011,115, 11427,
    35 J. P. Ge, Y. D. Yin, Adv. Mater.,2008,20,3485.
    36 X. L. Xu, G Friedman, K. D. Humfeld, S. A. Majetich and S. A. Asher, Chem. Mater.2002,14,1249.
    37 J. P. Ge, Y. X. Hu, and Y. D. Yin, Angew. Chem.2007,119,7572.
    [1]A. Arsenault et al. J. Mater. Chem.,2004,14,781-794.
    [2]G. A. Ozin and S. M. Yang, Adv. Funct. Mater.,2001,11,95-104.
    [3]Y. A. Vlasov, X. Z. Bo, J. C. Sturm and D. J. Norris, Nature,2001,414,289-293.
    [4]A. C. Arsenault, D. P. Puzzo, I. Manners and G. A. Ozin, Nat. Photonics,2007,1, 468-472.
    [5]K. Ueno, J. Sakamoto, Y. Takeoka and M. Watanabe,J. Mater. Chem.,2009,19, 4778-4783.
    [6]J. P. Ge, Y. X. Hu and Y. D. Yin, Angew. Chem. Int. Ed.,2007,46,7428-7431.
    [7]J. P. Ge et al. J. Am. Chem. Soc.,2009,131,15687-15694.
    [8]C. I. Aguirre, E. Reguera and A. Stein, Adv. Funct. Mater.,2010,20,2565-2578.
    [9]J. M. Weissman, H. B. Sunkara, A. S. Tse and S. A. Asher, Science,1996,274, 959-960.
    [10]J. H. Holtz and S. A. Asher, Nature,1997,389,829-832.
    [11]J. Kobler, B. V. Lotsch, G. A. Ozin and T. Bein, ACS Nano,2009,3,1669-1676.
    [12]Y. J. Zhao, Adv. Mater.,2009,21,569-572.
    [13]Y. J. Zhao, Angew. Chem. Int. Ed.,2009,48,7350-7352.
    [14]M. Z. Li, Angew.Chem. Int. Ed.,2008,47,7258-7262.
    [15]D. Wang, M. Park, J. Park and J. Moon, Appl. Phys. Lett.,2005,86,241114.
    [16]J. G. McGrath, R. D. Bock, J. M. Cathcart and L. A. Lyon, Chem. Mater.,2007, 19,1584-1591.
    [17]L. Y. Cui et al. J. Mater. Chem.,2009,19,5499-5502.
    [18]D. Allard, B. Lange, F. Fleischhaker, R. Zentel and M. Wulf, Soft Mater.,2005,3, 121-131.
    [19]S. Kubo et al. J. Am. Chem. Soc.,2002,124,10950-10951.
    [20]O. Sato, S. Kubo and Z. Z. Gu, Acc. Chem. Res.,2009,42,1-10.
    [21]N. Tetreault, H. Miguez, S. M. Yang, V. Kitaev and Ozin, G A. Adv. Mater.,2003, 15,1167-1172.
    [22]P. Jiang, D. W. Smith, J. M. Ballato and S. H. Foulger, Adv. Mater.,2005,17, 179-184.
    [23]J. P. Ge, J. Goebl, L. He, Z. D. Lu and Y. D. Yin, Adv. Mater.,2009,21, 4259-4264.
    [24]H. Kim et al. Nat. Photonics,2009,3,534-540.
    [25]H. Fudouzi and Y. N. Xia, Adv. Mater.,2003,15,892-896.
    [26]R. Y. Xuan and J. P. Ge, Langmuir,2011,27,5694-5699.
    [27]K. Matsubara, M. Watanabe and Y. Takeoka, Angew. Chem. Int. Ed.,2007,46, 1688-1692.
    [28]H. B. Hu, Q. W. Chen, H. Wang, R. Li and W. Zhong, J. Mater. Chem.,2011,21, 13062-13067.
    [29]I. B. Burgess et al. J. Am. Chem. Soc.,2011,133,12430-12432.
    [30]R. Y. Xuan and J. P. Ge, J. Mater. Chem.,2012,22,367-372.
    [31]H. B. Hu, Q. W. Chen, K. Cheng and J. Tang, J. Mater. Chem.,2012,22, 1021-1027.
    [32]H. B. Hu, Q. W. Chen, J. Tang, X. Y. Hu and X. H. Zhou, J. Mater. Chem.,2012, 22,11048-11053.
    [33]J. P. Ge and Y. D. Yin, Adv. Mater.,2008,20,3485-3491.
    [34]K. Efimenko, W. E. Wallace and J. Genzer, J. Colloid Interface Sci.,2002,254, 306-315.
    [35]H. K. Ye, Z. Y. Gu and D. H. Gracias, Langmuir,2006,22,1863-1868.
    [36]C. Y. Xue, W. Zhang, W. H. Stella-Choo and K. L. Yang, Langmuir,2011,27, 13410-13414.
    [37]Y. Berdichevsky, J. Khandurina, A. Guttman and Y. H. Lo, Sensors and Actuators B,2004,97,402-408.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700