CVD法合成一维GaN纳米结构和GaN薄膜的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮化镓是一种良好的宽带隙Ⅲ-Ⅴ族化合物半导体材料,是当前世界上最先进的半导体材料之一。在室温下,氮化镓的禁带宽度为3.4 eV,是制作光电子器件,蓝、绿发光二极管(LEDs)和激光二极管(LDs)的理想材料。这类光源在高密度光信息存储、高速激光打印、全色动态高亮度光显示、固体照明、信号探测、通讯等方面有着广阔的应用前景和巨大的市场潜力。此外,氮化镓也是制作高温、高频、大功率器件的理想材料。目前,氮化镓材料己经成为世界各国研究的热点。金属有机化学气相沉积(MOCVD)、分子束外延(MBE)和氢化物气相外延(HVPE)等方法已经成为制备氮化镓材料的主流工艺,其中以MOCVD工艺使用的最为广泛。采用上述方法制备氮化镓材料,设备昂贵,工艺复杂,很大程度上限制了氮化镓材料的制备、生产和应用。现在,国际上许多科研机构正在探索新的工艺方法,试图在合适的衬底上制备高质量的氮化镓薄膜。近几年来,由于一维氮化镓纳米结构在可见光和紫外光光电子器件方面的应用前景十分诱人,氮化镓一维结构的合成己经备受关注,国际上掀起了一维氮化镓纳米结构材料的研究热潮。
     本文采用简单的化学气相沉积方法,在硅衬底上合成了高纯的一维氮化镓纳米结构和氮化镓晶体薄膜,分析了合成产物的组分和结构,探讨了化学气相沉积法合成一维氮化镓纳米结构的生长机制与影响因素。
     1、以金属镓和氨气为原料,物理蒸发镀金属镍为催化剂,硅为衬底,用化学气相沉积方法在950℃合成氮化镓纳米带,结果表明纳米带为纤锌六方结构晶体,宽度在50nm到200nm范围内,宽厚比大约为1/20,长度达到几十微米,不均一的径向生长导致了带状结构的形成,其生长机理为VLS机理。
     2、以金属镓和氨气为原料,物理蒸发镀金属镍为催化剂,硅为衬底,用化学气相沉积方法在1050℃合成六角锥形氮化镓纳米结构,锥形结构为六方结构晶体,平均直径为500nm左右,长度为几个微米,其生长是由VLS和VS机理混合控制。
     3、以金属镓和氨气为原料,电镀金属镍为催化剂,硅为衬底,用化学气相沉积方法合成氮化镓纳米线,氮化镓纳米线呈现弯曲形状,表面光滑,长度达到几十微米,直径大概在20nm到200 nm范围内,其生长由VLS机理控制。
     4、以金属镓和氨气为原料,硅为衬底,不使用任何催化剂,用化学气相沉积方法合成蜿蜒曲折形状的氮化镓纳米线,该纳米线不如使用催化剂合成的氮化镓纳米线光滑,其长度达到几十微米,直径大概在30nm到150nm范围内,生长机理是VS机理。
     5、实验中发现衬底的表面形貌对产物的形貌有很大影响。在光滑的衬底表面容易形成纳米线,在粗糙的衬底表面容易形成纳米带。但是衬底的光滑程度和产物的形貌之间的关系还不是很清楚,需要有进一步的研究数据支持;升温速率对样品的形貌有很大影响,升温速率高的时候容易形成线(带)状的结构,而升温速率较低时容易形成薄膜形貌。
     6、氮化镓薄膜和其它一维形貌氮化镓结构,如纳米带环、纳米棒和纳米片等也被合成。
GaN is an excellent wide band gap III—V compound semiconductor material and also one of the best advanced semiconductor materials. Having large direct energy band gap of 3.4 eV at room temperature, GaN is an ideal material for fabricating optoelectronic devices, especially blue and green light emitting diodes (LEDs) and laser diodes (LDs). This kind of materials have good potential application and great market demand in high density optical information memory, high speed laser print, high brightness dynamic, full color display, solid illumination, signal detector and communication. In addition, GaN attracts much attention for fabrication of high temperature, high frequency and high power devices. Presently, much attention is being paid to GaN materials all over the world. MOCVD, MBE, and HVPE have become dominating methods for growing GaN. Among these techniques, MOCVD has been widely used by researchers. However, GaN materials are not well prepared and applied in large scale because of the complicated growth technics and expensive equipments by above methods. Now, a lot of scientific research institutions are exploring new technique to grow high quality GaN film on appropriate wafer. For recently years, one-dimensional GaN nanostructure has gained considerable attention for its potential application both in visible light and ultraviolet light optoelectronic devices, one-dimensional GaN materials have become a worldwide focus.
     In this paper, high purity one-dimensional GaN structure and GaN film were synthesized on Si wafer by CVD, its composition and structure were analyzed, the growth mechanism and influencing factors of one-dimensional GaN growth were discussed.
     1. GaN nanobelts were synthesized by direct reaction of metallic gallium with flowing ammonia using physical evaporating Ni as catalyst on Si substrate via CVD at 950℃. Results indicated that as-synthesized nanobelts were single crystalline, hexagonal wurtzite structure GaN. Its widths were in the range of 50-200 nm, with the ratio of thickness to width to be about 1/20 and their lengths up to several tens of microns. The nommiformity radial growth was assumed to lead to beltlike nanostructure. The catalytic growth mechanism of GaN nanobelts was probably dominated by conventional VLS mechanism.
     2. Hexagonal cone-shaped GaN nanostructure were synthesized by direct reaction of metallic gallium with flowing ammonia using physical evaporating Ni as catalyst on Si substrate via CVD at 1050℃. Results indicated that as-synthesized structure were single crystalline, hexagonal wurtzite structure GaN. Its mean diameter is about 500 nm, with the lengths several microns. Its growth mechanism was probably dominated by conventional VLS and VS mechanism.
     3. GaN nanowires were synthesized by direct reaction of metallic gallium with flowing ammonia using electric plating Ni as catalyst on Si substrate via CVD. Results indicated that as-synthesized nanowires were curved, and had smooth surface. Its diameters were in the range of 20-100 nm, with the lengths several tens of microns. Its growth mechanism was probably dominated by conventional VLS mechanism.
     4. Zigzag GaN nanowires were synthesized by direct reaction of metallic gallium with flowing ammonia on Si substrate by CVD. Results indicated that as-synthesized nanowires were not smoother than nanowires as-synthesized using Ni as catalyst. Its diameters were in the range of 30-150 nm, with the lengths several tens of microns. Its growth mechanism was probably dominated by conventional VS mechanism.
     5. It was found that substrate surface is an important factor affecting product morphology. It is easy to form nanowires on smooth surface and form nanobelts on rough surface. However, the relationship between the smooth degree of substrate and product morphology has not been clear, which needs further investigation. And heating rate is also an important factor affecting product morphology, it was found that it is easy to form nanowire or nanobelt structure with high heating rate and form film morphology with low heating rate.
     6. GaN film and other morphologies such as nanobelt ring, nanorod, and nanosheet were also synthesized.
引文
[1] 翟雷应,GaN和ZnO半导体化合物的合成与表征,[学位论文],太原理工大学,2006。
    [2] W. C. Johnson, J. B. Parsons, M.C. Crew. Nitrogen compounds of gallium, J. Phys. Chem., 1932, 36: 2651.
    [3] R. Juza, J. Hahn. Uber die Kristallstrukturen von Cu3N, GaN and InN, Allgem.Chem, 1938, 239: 282.
    [4] H. G. Grimmeiss, and B.Monemar, Low-temperature luminescence of GaN, J. Appl. Phys., 1970, 41(10):4054-4058.
    [5] H. P. Maruska, and J. J. Tietjen, The preparation and properties of vapor-deposited single-crystal-line GaN. Appl. Phys. Lett., 1969, 15: 327-329.
    [6] H. Gotoh, T. Suga, and H. Suzuki, Low temperature growth of gallium nitride. Jpn. J. Appl. Phys., 1981, 20: 545.
    [7] S.Yoshida, S. Misawa, S. Gonda. Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using A1N-coated sapphire substrates. Appl. Phys. Lett., 1983, 42:427-429.
    [8] H, Amano, N. Sawaki, I. Akasaki. et al. Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AIN buffer layer. Appl. Phys. Lett., 1986, 48: 353-355.
    [9] S. Nakamura. Highly P-Typed Mg-Doped GaN Films Grown with GaN Buffer Layers. Jpn. J. Appl. Phys., 1991, 30(10A): 1708-1711.
    [10] 梁春广,张冀, GaN—第三代半导体的曙光,半导体学报,1999,20(2):89-99。
    [11] 倪贤峰,MOCVD方法生长硅基GaN与AlxGa1-xN薄膜及其性能研究,[学位论文],浙江大学,2004。
    [12] I. Adesida, A. Mahajan, E. Andiden. et al. Reactive ion etching of gallium nitride in silicon tetrachloride plasmas, Appl. Phys. Lett., 1993, 63, 2777-2779.
    [13] C. J. Sun, P. Kung, A. Saxler. et al.Thermal stability of GaN thin films grown on (0001) Al_2O_3, and (0001) Si 6H-SiC substrates. J. Appl. Phys., 1994, 76(1): 236-241.
    [14] S. J. Pearton, C. R. Abernathy, F. Ren, et al. Dry and wet etching characteristics of InN,A1N, and GaN deposited by electron cyclotron resonance metalorganic molecular beam epitaxy. J. Vac. Sci. Technol. A, 1993, 11(4): 1772.
    [15] M. E Lin, Z. Ma, F. Y. Huang. et al. Low resistance ohmic contacts on wide band-gap GaN. Appl. Phys. Lett., 1994, 64(8): 1003-1005.
    [16] Z. Fan, S. N. Mohanmmad, W. Kim. et al. Very low resistance mutilayer ohmic contact to n-GaN.Appl. Phys. Lett., 1996, 68(12):1672-1674.
    [17] R. Dingle, M. Ilegems. Donor-acceptor pair recombination in GaN. Solid State Commun, 1971, 9,175-180.
    [18] R. Dingle, D. D. Sell, S. E. Stokowaki. et al. Absorption, Reflectance, and Luminescence of GaN Single Crystals. Phys. Rev., 1971, B3: 497-500.
    [19] R. Dingle, D.D. Sell, S. E. Stokowaki. et al. Absorption, Reflectance, and Luminescence of GaN Epitaxial Layers. Phys. Rev, 1971, B4(4): 1211-1218.
    [20] J. I. Pankove, J. E. Berkeyheiser, H. P. Maruska. et al. Luminescent properties of GaN.Solid State Commun, 1971, 8,1051-1053.
    [21] B. Monemar. Fundamental energy gap of GaN from photoluminescence excitation spectra. Phys. Rev, 1974, B10(2): 676-681.
    [22] D. L. Camphausen and G.. A. N. Connell. Pressure and temperature dependence of the absorption edge in GaN. J. Appl. Phys., 1971, 42, 4438-4443.
    [23] H P Maruska and J.J.Tietjen, The preparation and properties of vapor-deposited single-crystal-line GaN, Appl. Phys. Lett., 1969,15(10):327-329.
    [24] N.E. Lee, R.C Powell, Y.W.Kim, et al., Molecular beam epitaxy of GaN (0001) utilizing NH_3 and/or NH_X~+ ions, J. Vac. Sci. Technol, 1995, A, 13, 2293-2401.
    [25] W. Kim, O. Aktas, A. E. Botchkarev, et al, Reactive molecular beam epitaxy of wurtzite GaN: Materials characteristics and growth kinetics, J. Appl. Phys, 1996,79(10):7657-7666.
    [26] H. Liu, A.C. Frenkel, J.G. Kim, et al. Growth of zinc blende-GaN on β -SiC coated (001) Si by molecular beam epitaxy using a radio frequency plasma discharge, nitrogen free-radical source, Appl. Phys. Lett., 1993, 74(10):6124-6127.
    [27] Mackenzie J D, Abemathy C R, Muhr G T, et al. Growth of group Ⅲ nitrides by chemical beam epitaxy, J. Crys. Growth, 1996, 164, 143-148.
    [28] Cho S.H., Tanaka U., Hata K., et al., Photoluminescence properties of GaN grown under ion flux reduced condition by plasma enhanced molecular beam e4pitaxy, Jpn. J. Appl. Phys., 1996, 35, L644-L647.
    [29] Lin M.E., Sverdlov B.N., Morlo H., Growth and characterization of GaN on c-plane (0001) sapphire substrates by plasma-enhanced molecular beam epitaxy, Appl. Phys. Lett., 1993, 74(8):5038-5041.
    [30] H. Amano, I. Akasaki, K. Hiramatsu. et al. Effects of the Buffer Layer in Metalorganic Vapor Phase Epitaxy of GaN on Sapphire Substrate. Thin Solid Film [J], 1988, 163, 415-420.
    [31] O. H. Nam, M. D. Bremser, T. S. Zheleva, et al., Lateral epitaxy of low defect density GaN layers via organometallic vapor phase epitaxy, Appl. Phys. Lett. 1997, 71, 2638-2640.
    [32] T. Gehrke, K. J. Linthicum, E. Preble, et al., Pendeo-Epitaxial growth of gallium nitride on silicon substrates, J. Electron. Mater., 2000, 29, 306-310.
    [33] Nakamura S. GaN growth using GaN buffer layer [J]. J. Appl. Phys., 1991, 30(10): L1705-L1707.
    [34] 文尚胜,高亮度GaN基蓝色LED的研究进展,量子电子学报,2003,20(1):10-16。
    [35] Han Weiqiang, Fan Shoushan, LiQunqing, Hu Yongdan, Sythesis of gallium nitride nanorods through a carbon nanotube-confined reaction [J], Science,1997, 277(29): 1287-1289.
    [36] 杨志祥,GaN薄膜及纳米棒的制备与表征,[学位论文],浙江大学,2006。
    [37] G. S. Cheng, S. H. Chen, X.G. Zhu, Highly Ordered Nanostructures of Sigle Crystalline GaN Nanowires in anodic alumina membranes [J], Mat. Sci. Eng. A, 2000, 286,165-168.
    [38] Iijima, S. Helical microtubules of graphitic carbon, Nature, 1991,354, 56-58.
    [39] Han W, Redlich P, Ernst F, and Ruble M, Synthesis of GaN-carbon compsite nanotubes and GaN nanorods by arc discharge in nitrogen atmosphere, Appl. Phys. Lett., 2000, 76(5): 652-654.
    [40] Duang X F, Lieber C M. Laser-assisted Catalytic Growth of Single Crystal GaN Nanowires [J], J Am Chem Soc., 2000, 122(1):188-189.
    [41] Shi W.S., Zheng Y.E, Wang N., et al., Microstructure of gallium nitride nanowires synthesized by oxide-assisted method, Chem. Phys. Lett., 2001, 345:377-380.
    [42] J.Y. Li, X.L. Chen, Z.Y. Oiao, Formation of GaN nanorods by a sublimation method. J. Cryst. Growth, 2000, 213, 408-410.
    [43] Maoqi He, Peizhen Zhou, S. Noor Mohammad, Growth of GaN nanowires by direct reaction of Ga with NH3. J. Cryst. Growth, 2001,231,357-365.
    [44] W. S. Shi, Y. F. Zheng, N.Wang, C. S. Lee, S. T. Lee, Microstructures of gallium nitride nanowires synthesized by oxide-assisted method, Chem. Phys. Lett., 2001, 345, 377-380.
    [45] 马洪磊,杨莺歌,薛成山,马瑾,肖洪地,刘建强,GaN纳米结构的制备,稀有金属,2004,28(3),455-458。
    [46] H.Y. Peng, X.T. Zhou, N. Wang, Bulk-quantity GaN nanowires synthesized from hot filament chemical vapor deposition, Chem. Phys. Lett., 2000,327, 263-270.
    [47] 顾星,叶志镇,Ⅲ族氮化物基发光二极管制造工艺,纳米器件与技术,2003,2:6-10。
    [48] Nakamura S., Mukai T., Senoh M., High brightness InGaN/AIGaN double heterostructure blue green light emitting diodes, Appl. Phys. Lett., 1994, 64(13):1687-1689.
    [49] Nakamura S., Senoh M., Iwasa N., et al., Superbright green InGaN single-quantum well structure light-emitting diodes, Jpn. J. Appl. Phys., 1995, 34, L1332-L1335.
    [50] 李春华,半导体低维纳米材料的制备与表征,[学位论文],太原理工大学,2006。
    [51] Khan M.A., Bhattarai, JN Kuznia, High electron mobility transistor based on a GaN AlGaN heterojunction, Appl. Phys. Lett., 1993, 63(9):1214-1215.
    [52] 王占国,陈立泉,屠海令等,中国材料工程大典(11卷),化学工业出版社,2006,485-486。
    [53] Xu Bingshe, Yang Dong, Wang Fei, et al. Synthesis of large-scale GaN nanobelts by chemical vapor deposition, Appl. Phys. Lett., 2006, 89(7):074106-074108.
    [54] Synthesis and structure of gallium nitride nanobelts, Seung Yong Bae, Hee Won Seo,Jeunghee Park, et al., Chem. Phys. Lett., 2002, 365:525-529.
    [55] Yang Li, Zhang Xing, Huang Ru, et al, Morphologies of one-dimensional GaN nanostructures grown through technology, Physica E,2005, 28, 237-241.
    [56] Wagner R. S.,Ellis W. C.,Vapor-liguid-solid mechanism of single crystal growth,Appl. Phys. Lett.,1964, 4(5), 89-90.
    [57] Pan Z. W, Dai Z R, Wang Z L. Nanobelts of Semiconductor Oxides, Science, 2001,291: 1947-1949.
    [58] 张立德,解思深,范守善等,纳米材料和纳米结构—国家重大基础研究项目新进展,化学工业出版社,2005,114-114。
    [59] Jian Jikang, Chen X. L., He M, et al, Large-scale GaN nanobelts and nanowires grown from milled Ga2O3 powders, Chem. Phys. Lett., 2003, 368(3):416-420.
    [60] Balkas C. M. and Davis R. F., Synthesis routes and characterization of high-purity single-phase gallium nitide, J. Am. Ceram. Soc., 1996, 79(99):2309-2312.
    [61] Kim T. Y., Lee S. H., Mo Y. H., et al, Growth of GaN nanowires on Si substrate using Ni catalyst in vertical chemical vapor deposition reactor, J. Cryst. Growth, 2003, 257(1): 97-103.
    [62] Yang Dong, Liang Jian, Jia Wei, ea al, Catalytic synthesis of hexagonal cone-shaped gallium nitride crystal, Appl. Phys. A, (under review)
    [63] Cai X. M., Djurisic A. B., Xie M. H., et al, Growth mechanism of stacked-cone and smooth-surface GaN nanowires, Appl, Phys. Lett., 2005,87(18): 183103-183105.
    [64] Kuykendall Tevye, Pauzauskie Peter, Sangkwon, et al, Metalrganic Chemical Vapor Deposition Route to GaN Nanowires with Triangular Cross Sections, Nano Lett., 2003, 3(8):1063-1066.
    [65] Tham Douglas, Nam Changyong and Fischer John E., Defects in GaN Nanowires, Adv. Funct. Mater., 2006,16,1197-1202.
    [66] 高质量氮化镓纳米线的结构表征,李春华,刘光焕,梁建等,电子显微学报,2006,25(5):377-380。
    [67] Xu Bingshe, Zhai Leiying, Liang Jian et al, Synthesis and characterization of high purity GaN nanowires, J. Cryst. Growth, 2006, 291(1): 34-39.
    [68] Xu Xiang, Cao Chuanbao, Huang Fulin et al, Synthesis and characterization of crystalline galliun nitride nanoribbon rings, J. Cryst. Growth, 2004, 263:25-29.
    [69] Qiu Hailin, Cao. Chuanbao, Li Jie et al, Synthesis, optical properties and growth mechanism of leaf-like GaN crystal, J. Cryst. Growth, 2006, 291:491-496.
    [70] Nam C. Y., Tham D., and Fischer J. E., Effect of the polar surface on GaN nanostructure morphology and growth orientation, Appl. Phys. Lett., 2004, 85(23):5676-5678.
    [71] Li Hongwei, Chin Alan H, and Sunkara Mahendra K., Direction-Dependent Homoepitaxial Growth of GaN Nanowires, Adv. Mater., 2006, 18:216-220.
    [72] 郭可信,叶恒强,吴玉琨.电子衍射图,北京:科学出版社,1983,70。
    [73] Q. Wan, K. Yu, T. H. Wang et al, Low-field electron emission from tetrapod-like ZnO nanostructures synthesized by rapid evaporation, Appl. Phys. Lett.,2003, 83(11):2253-2255.
    [74] Nahlah Elkashef, R. S. Srinivasa, S. Major etal, Sputter deposition of gallium nitride films using a GaAs target, Thin Solid Film, 1998, 333:9-12.
    [75] C. R. Kingsley, T. J. Whitaker, A .T.S. Wee, etal, Development of chemical beam epitaxy for the deposition of gallium nitride, Mater. Sci. Eng. B, 1995, 29:78-82.
    [76] M. Dinescu, P. Verardi, C. Boulmer-Leborgne, etal, GaN thin film deposition by laster ablation of liquid Ga target in nitrogen reactive atmosphere, Appl. Surf. Sci., 1998, (127-129):559-563.
    [77] F. M. Amanullah, K. j. Pratap, and V. Hari Babu, Compositional analysis and depth profile studies on undoped and doped tin oxide films prepared by spary technique,Mater. Sci. Eng. B, 1998, 52:93-98.
    [78] T. J. Chuang, C. R. Brundle, and D. W. Rice, Interpretation of the x-ray photoemission spectra of cobalt oxides and cobalt oxide surfaces, Surf. Sci., 1976, 59(2):413-429.
    [79] D. D. Sarma, M. S. Hegde, and C. N. R. Rao, Study of surface oxidation of rare earth metals by photoelectron spectroscopy, J. Chem. Soc: Faraday Trans. II, 1981, 77(99):1509-1520.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700