一维ZnO纳米复合结构的生长及其物性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ZnO是一种宽禁带的半导体材料,具有多种多样的一维纳米结构,并且这些纳米结构基本上都是单晶,比起其薄膜结构具有更低的缺陷。由于具有这些特点,一维ZnO纳米结构成为构筑纳米光电器件的结构单元,显示出广阔的应用前景。本论文主要针对一维ZnO纳米结构在构造纳米光电器件过程中,纳米线与纳米线之间的接触控制,纳米线顶端电极的制备,以及电化学生长ZnO纳米柱异质结等问题开展了研究工作,并取得如下结果:
     (1)采用低温电化学沉积方法在p型Si和GaN衬底上生长出高质量ZnO纳米柱阵列;使用气相输运方法得到了无衬底的ZnO纳米线阵列。
     (2)利用水的毛细力作用,实现了相邻ZnO纳米线的连接;并观测到ZnO纳米线具有良好的柔性,其弯曲角度接近直角。
     (3)利用纳米柱顶端曲率半径小,顶端电势比表面电势高的特点,通过采用电化学方法实现了ZnO纳米柱上Ni纳米团簇的可控生长。研究发现在低电位下Ni纳米团簇生长在纳米柱的顶端;而在高电位下, Ni纳米团簇包覆ZnO纳米柱表面,形成Ni/ZnO核-壳结构。
     (4)采用电化学方法制备了n-ZnO纳米柱/p-CuSCN异质结,获得了典型的二极管I-V曲线。并通过改变生长参数,首次生长出CuSCN的微米柱阵列,实现了微米柱阵列的可控生长。
As a wide band gap semiconductor, single-crystal one-dimensional (1D) ZnO nanostructures with various morphologies exhibit fewer defects than their thin-film structure. Because of these merits, one-dimensional (1D) ZnO nanostructures have served as the building blocks for potential applications in optoelectronic devices and show good prospects. This paper presents the study of the link between nanowires, deposition of electrodes on ZnO nanorods and ZnO nanorod based heterojunctions, etc. The results are outlined as follows.
     (1) The controllable growth of high quality ZnO nanorod arrays on p-Si and p-GaN by electrodeposition. The stand-alone ZnO nanorod arrays were fabricated by a vapor transport method.
     (2) The adjacent ZnO nanowires were linked under capillary force. The extremely flexible ZnO nanowire could almost bend into an orthogonal shape.
     (3) The controllable growth of Ni nanoclusters on ZnO nanorods was provided. Due to the difference of the electric potential distribution on nanorod’s top and side surfaces, Ni-end-capped ZnO nanorods were obtained under a low applied potential and Ni/ ZnO nanorod core-shell structures were synthesized under a high applied potential.
     (4) The n-ZnO nanorods/p-CuSCN heterojunction was fabricated and the electrical behavior was analyzed. It was the first time to grow the CuSCN microrod arrays and the morphology of the microrods are controllable.
引文
[1] Iijima S, Helical microtubules of graphitic carbon [J]. Nature, 1991, 354: 56-58 [2] ?zgürü, Alivov Y I, Liu C,et al. A comprehensive review of ZnO materials and devices [J]. Journal of Applied Physics, 2005, 98: 041301 [3]宋词,杭寅,徐军,氧化锌晶体的研究进展[J].人工晶体学报, 2004, 33: 81-87. [4] Muth J F, Kolbas R M, Sharma A K, et al. Excitonic structure and absorption coefficient measurements of ZnO single crystal epitaxial films deposited by pulsed laser deposition [J]. Journal of Applied Physics, 1999, 85: 7884-7887 [5] Li Y, Cheng G S, Zhang L D, Fabrication of highly ordered ZnO nanowire arrays in anodic alumina membranes [J]. Journal of Materials Research, 2000, 15 (11): 2305-2308 [6] Fan H J, Lee W, Scholz R, et al. Arrays of vertically aligned and hexagonally arranged ZnO nanowires: a new template-directed approach [J]. Nanotechnology, 2005, 16: 913-917 [7] Liu D F, Xiang Y J, Liao Q, et al. A simple route to scalable fabrication of perfectly ordered ZnO nanorod arrays [J]. Nanotechnology, 2007, 18: 405303 [8] Wei Y, Wu W, Guo R, et al. Wafer-scale high-throughput ordered growth of vertically aligned ZnO nanowire arrays [J]. Nano Letters, 2010, 10: 3414-3419 [9] Jie Chen,L. Aé, Ch. Aichele, High internal quantum efficiency ZnO nanorods prepared at low temperature [J]. Applied Physics Letters, 2008, 92, 161906 [10] Tang Y, Chen J, Greiner D, et al, Fast growth of high work function and high mobility ZnO nanorods from an aqueous solution [J]. Journal of Physical Chemistry, 2011, 115: 5239-5243 [11] Greene L E, Law M, Goldberger J, Low-temperature wafer-scale production of ZnO nanowire arrays [J]. Angewandte Chemie International Edition, 2003, 42: 3031-3034 [12] Tak Y, Yong K, Controlled growth of well-aligned ZnO nanorod array using a novel solution method [J]. Journal of Physical Chemistry B, 2005, 109: 19263-19269 [13] Lin C C, Chen H P, Liao H C, et al. Enhanced luminescent and electrical properties of hydrogen-plasma ZnO nanorods grown on wafer-scale flexible substrates [J]. Applied Physics Letters, 2005, 86: 183103 [14] Xu L, Liao Q, Zhang J, et al. Single-Crystalline ZnO nanotube arrays onconductive glass substrates by selective disolution of electrodeposited ZnO nanorods [J]. Journal of Physical Chemistry C, 2007, 111: 4549-4552
    [15] Elias J, Tena-Zaera R, Wang G-Y, et al. Conversion of ZnO Nanowires into Nanotubes with Tailored Dimensions [J]. Chemistry of Materials, 2008, 20: 6633-6637
    [16] She G W, Zhang X H, Shi W S, et al. Controlled synthesis of oriented single-crystal ZnO nanotube arrays on transparent conductive substrates [J]. Applied Physics Letters, 2008, 92: 053111
    [17] Jeong M C, Oh B Y, Ham M H, et al. Electroluminescence from ZnO nanowires in n-ZnO film/ZnO nanowire array/p-GaN film heterojunction light-emitting diodes [J]. Applied Physics Letters, 2006, 88: 202105
    [18] Jeong M C, Oh B Y, Ham M H, et al. ZnO-nanowire-inserted GaN/ZnO heterojunction light-emitting diodes [J]. Small, 2007, 3(4): 568-572
    [19] Jiao S J, Lu Y M, Shen D Z, et al. Ultraviolet electroluminescence of ZnO based heterojunction light emitting diode [J]. Physica Status Solidi (a), 2006, 3 (4): 972-975
    [20] K?nenkamp R, Word R C, Schlegel C, Vertical nanowire light-emitting diode [J]. Applied Physics Letters, 2004, 85: 6004-6006
    [21] Nadarajah A, Word R C, Meiss J, et al. Flexible Inorganic Nanowire Light-Emitting Diode [J]. Nano Letters, 2008, 8: 534-537
    [22] Kim D C, Han W S, Cho H K, et al. Multidimensional ZnO light-emitting diode structures grown by metal organic chemical vapor deposition on p-Si [J]. Applied Physics Letters, 2007, 91: 231901
    [23] Xi Y Y, Hsu Y F, Djuri?i? A B,et al. NiO/ZnO light emitting diodes by solution-based growth [J]. Applied Physics Letters, 2008, 92: 113505
    [24] An S J, Chae J H, Yi G-C, et al. Enhanced light output of GaN-based light-emitting diodes with ZnO nanorod arrays [J]. Applied Physics Letters, 2008, 92: 121108
    [25] Law M, Greene L E, Johnson J C, et al. Nanowire dye-sensitized solar cells [J]. Nature materials, 2005, 4: 455-459
    [26] Weintraub B, Wei Y, Wang Z L, Optical fiber/nanowire hybrid structures for efficient three-dimensional dye-sensitized solar cells [J]. Angewandte Chemie International Edition, 2009, 48: 1-6
    [27] Dittrich T, Kieven D, Rusu M, et al. Current-voltage characteristics and transport mechanism of solar cells based on ZnO nanorods/In2S3 /CuSCN [J]. Applied Physics Letters, 2008, 93: 053113
    [28] AéL, Kieven D, Chen J, et al. ZnO nanorod arrays as an ntireflective coating for u(In,Ga)Se2 thin film solar cells [J]. Progress in Photovoltaics: Research and Applications, 2010, 18: 09-213
    [29] Chen J, Ye H, AéL, et al. Tapered aluminum-doped vertical zinc oxide nanorod arrays as light coupling layer for solar energy applications [J]. Solar Energy Materials & Solar Cells, published online
    [30] Liu J, Wang S, Bian Z, et al. Organic/inorganic hybrid solar cells with vertically oriented ZnO nanowires [J]. Applied Physics Letters, 2009, 94: 173107
    [31] Olson D C, Shaheen S E, Collins R T, et al. The effect of atmosphere and ZnO morphology on the performance of hybrid poly(3-hexylthiophene)/ZnO nanofiber photovoltaic devices [J]. Journal of Physical Chemistry C, 2007, 111 : 16670-16678
    [32] Chen J, AéL, Aichele Ch, et al. High internal quantum efficiency ZnO nanorods prepared at low temperature [J].Appl. Phys. Lett. 2008, 92: 161906
    [33] Izaki M, Omi T, Transparent zinc oxide films prepared by electrochemical reaction [J]. Applied Physics Letters, 1996, 68: 2439-2440
    [34] Izaki M, Omi T, Electrolyte Optimization for Cathodic growth of Zinc Oxide films [J]. Journal of Electrochemical Society, 1996, 143: L53-L55
    [35] Lan C J, Cheng H Y, Chung R J, et al. Bi-doped ZnO layer prepared by electrochemical deposition [J]. Journal of the Electrochemical Society 2007, 154: D117-D121
    [36] Yang J, Qiu Y, Yang S, Studies of Electrochemical synthesis of ultrathin ZnO nanorod/nanobelt arrays on Zn substrates in alkaline solutions of amine?alcohol mixtures [J]. Crystal Growth & Design, 2007, 7: 2562–2567
    [37] Vayssieres L, Keis K,Lindquist S E, Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO [J]. The Journal of Physical Chemistry B, 2001, 105(17): 3350-3352
    [38] Schmidt-Mende L, MacManus-Driscoll J L, ZnO-nanostructures, defects, and devices [J]. Materials Today 2007, 10 (5): 40-48
    [39] Ashfold M N R, Doherty R P, Ndifor-Angwafor N G, et al. The kinetics of the hydrothermal growth of ZnO nanostructures [J]. Thin Solid Films 2007, 515: 8679-8683
    [40] Govender K, Boyle D S, Kenway P B, et al. Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution [J].Journal of Materials Chemistry, 2004, 14: 2575
    [41] Subannajui K, Ramgir N, Grimm R, et al. ZnO Nanowire Growth: A Deeper Understanding Based on Simulations and Controlled Oxygen Experiments [J]. Crystal Growth & Design, 2010,10: 1585-1589
    [42]祁景玉.X射线结构分析[M].同济大学出版社,上海,2003:84.
    [43]刘恩科,朱秉生,罗晋生.半导体物理学[M].国防工业出版社,北京, 2007: 273-274
    [44]张志杰,贺天民,孙昕,等.用于近代物理实验教学的振动样品磁强计[J].物理实验,2007,27: 38
    [45] Chen Y, Bagall D M, Koh, H J, et al. Plasma assisted molecular beam epitaxy of ZnO on c?-plane sapphire: Growth and characterization [J]. Journal of Applied Physics, 1998, 84: 3912
    [46] Wang B G, Shi E W, Zhong W Z, et al. Twinning morphologies and mechanisms of ZnO crystallites under hydrothermal conditions [J]. Crystal Research Technology, 1998, 33: 937-941
    [47] Zhang H, Yang D, Li D, et al. Controllable growth of ZnO microcrystals by a capping-molecule-assisted hydrothermal process [J].Crystal Growth & Design, 2005, 5: 547-550
    [48] Xu L, Guo Y, Liao Q, et al. Morphological control of ZnO nanostructures by electrodeposition [J].The Journal of Physical Chemistry, 2005, 109: 13519-13522
    [49] Tong Y, Liu Y, Dong L, et al. Growth of ZnO nanostructures with different morphologies by using hydrothermal technique [J]. The Journal of Physical Chemistry, 2006, 110: 20263-20267
    [50] Baganall D M, Chen Y F, Zhu Z, et al. High temperature excitonic stimulated emission from ZnO epitaxial layers [J]. Applied Physics Letters, 1998, 73: 1038
    [51] Jung S W, Park W I, Cheong H D, et al. Time-resolved and time-integrated photoluminescence in ZnO epilayers grown on Al2O3 (0001) by metalorganic vapor phase epitaxy [J]. Applied Physics Letters, 2002,80:1924
    [52] Zhong J, Chen H, Lu Y, et al. Integrated ZnO nanotips on GaN light emitting diodes for enhanced emission efficiency [J]. Applied Physics Letters, 2007, 90: 203515
    [53] PauportéT, Lincot D, Viana B, et al. Toward laser emission of epitaxial nanorod arrays of ZnO grown by electrodeposition [J]. Applied Physics Letters, 2006, 89: 233112
    [54] Vanheusden K, Seager C H, Warren W L, et al. Correlation between photoluminescence and oxygen vacancies in ZnO phosphors [J]. Applied Physics Letters, 1996, 68: 403
    [55] Djuri?i ? A B, Choy W C H, Roy V A L, et al. Photoluminescence and electron paramagnetic resonance of ZnO tetrapod structures [J].Advanced Functional Materials, 2004, 14: 856-864
    [56] Garces N Y, Wang L, Bai L, et al. Role of copper in the green luminescence from ZnO crystals [J]. Applied Physics Letters, 2002, 81: 622
    [57] Reynolds D C, Look D C, Jogai B, et al. Similarities in the bandedge anddeep-centre photoluminescence mechanisms of ZnO and GaN [J].Solid State Communications, 1997, 101: 643-646
    [58] Chen Y, Bagall D M, Koh H J, et al. Plasma assisted molecular beam epitaxy of ZnO on c?-plane sapphire: growth and characterization [J] Journal of Applied Physics, 1998, 84: 3912
    [59] Nguyen C V, Delzeit L, Cassell A M, et al. Preparation of nucleic acid functionalized carbon nanotube arrays [J].Nano Letters, 2002, 2: 1079-1081
    [60] Lau K K S, Bico J, Teo K B K, et al. Superhydrophobic carbon nanotube forests [J].Nano Letters,2003, 3: 1701-1705
    [61] Chakrapani N, Wei B, Carrillo A, et al. Capillarity-driven assembly of two-dimensional cellular carbon nanotube foams [J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101: 4009-4012
    [62] Yan X, Tay B, Yang Y, et al. Fabrication of three-dimensional ZnO?carbon nanotube (CNT) hybrids using self-assembled CNT micropatterns as framework [J]. The Journal of Physical Chemistry C, 2007, 111: 17254-17259
    [63] Correa-Duarte M A, Wagner N, Rojas-Chapana J, et al. Fabrication and biocompatibility of carbon nanotube-based 3D networks as scaffolds for cell seeding and growth [J].Nano Letters, 2003, 4: 2233- 2236
    [64] Futaba D N, Hata K, Yamada T, et al. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes [J]. Nature Materials, 2006, 5: 987-994
    [65] Liu H, Li S, Zhai J, et al. Self-assembly of large-scale micropatterns on aligned carbon nanotube films [J]. Angewandte Chemie International Edition, 2004, 43: 1146-1149
    [66] Fan J G, Dyer D, Zhang G, et al. Nanocarpet effect: pattern formation during the wetting of vertically aligned nanorod arrays [J].Nano Letters 2004, 4: 2133-2138
    [67] Fan J G, Fu J X, Collins A, et al. The effect of the shape of nanorod arrays on the nanocarpet effect [J]. Nanotechnology, 2008, 19: 045713
    [68] Fan J-G, Zhao Y P, Spreading of a water droplet on a vertically aligned Si nanorod array surface [J]. Applied Physics Letters, 2007, 90: 013102
    [69] Zhao Y P, Fan J G, Clusters of bundled nanorods in nanocarpet effect [J]. Applied Physics Letters, 2006, 88: 103123
    [70] Huang M H, Mao S, Feick H, et al. Room-temperature ultraviolet nanowire nanolasers [J]. Science, 2001, 292: 1897-1899
    [71] Wang X, Zhou J, Song J, et al. Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire [J]. Nano Letters, 2006, 6: 1092768-2772
    [72] Arnold M S, Avouris P, Pan Z W, et al. Field-effect transistors based on single semiconducting oxide nanobelts [J]. The Journal of Physical Chemistry B, 2003, 107: 659-663
    [73] Lee C J, Lee T J, Lyu S C, et al. Field emission from well-aligned zinc oxide nanowires grown at low temperature [J]. Applied Physics Letters,2002, 81: 3648
    [74] Wang Z L, Song J, Piezoelectric nanogenerators based on Zinc Oxide nanowire arrays [J]. Science, 2006, 312: 242-246
    [75] X. Wang, J. Song, J. Liu, Z.L. Wang, Direct-current nanogenerator driven by ultrasonic waves [J]. Science, 2007,316:102-105
    [76] Chen C Q, Shi Y,Zhang Y S, et al. Size dependence of Young’s modulus in ZnO nanowires [J].Physical Review Letters, 2006, 96: 075505
    [77] Shi Y, Chen C Q, Zhang Y S, et al. Determination of the natural frequency of a cantilevered ZnO nanowire resonantly excited by a sinusoidal electric field [J].Nanotechnology, 2007, 18: 075709
    [78] Song J, Wang X, Riedo E, et al. Elastic property of vertically aligned nanowires [J]. Nano Letters, 2005, 5: 1954-1958
    [79] Hughes W L, Wang Z L, Controlled synthesis and manipulation of ZnO nanorings and nanobows [J]. Applied Physics Letters, 2005, 86: 043106
    [80] Chen C Q, Zhu J, Bending strength and flexibility of ZnO nanowires [J]. Applied Physics Letters, 2007, 90: 043105
    [81] Lin Y R, Yang S-S, Tsai S-Y, et al. Visible photoluminescence of ultrathin ZnO nanowire at room temperature [J]. Crystal Growth & Design, 2006, 6: 1951-1955
    [82] Sun Y, Riley D J, Ashfold M N R, Mechanism of ZnO nanotube growth by hydrothermal methods on ZnO film-coated Si substrates [J]. The Journal of Physical Chemistry B, 2006, 110: 15186-15192
    [83] Lu C, Qi L, Yang J, et al. Hydrothermal growth of large-scale micropatterned arrays of ultralong ZnO nanowires and nanobelts on zinc substrate [J]. Chemical Communications, 2006, 33: 3551-3553
    [84] Jiang P, Zhou J J, Fang H F, et al. Hierarchical shelled ZnO structures made of bunched nanowire arrays [J]. Advanced Functional Materials, 2007, 17: 1303-1310
    [85] Sun Y, Ndifor-Angwafor N G, Riley D J, et al. Synthesis and photoluminescence of ultra-thin ZnO nanowire/nanotube arrays formed by hydrothermal growth [J].Chemical Physics Letters, 2006, 431: 352-357
    [86] Meng X Q, Zhao D X, Zhang J Y, et al. Wettability conversion on ZnO nanowire arrays surface modified by oxygen plasma treatment and annealing [J]. Chemical Physics Letters, 2005, 413: 450-453
    [87] Mastrangelo C H, Hsu C H, Mechanical stability and adhesion of microstructures under capillary forces. I. Basic theory [J]. Journal of Microelectromechanical Systems, 1993, 2: 33-43
    [88] Mastrangelo C H, Hsu C H, Mechanical stability and adhesion of microstructures under capillary forces. II. Experiments [J]. Journal of Microelectromechanical Systems, 1993, 2: 44-55
    [89] Raccurt O, Tardif F, Arnaud d’Avitaya F, et al. Influence of liquid surface tension on stiction of SOI MEMS [J].Journal of Micromechanics and Microengineering 2004, 14: 1083
    [90] Scheck C, Evans P, Zangari G, et al. Sharp ferromagnet/semiconductor interfaces by electrodeposition of Ni thin films onto n-GaAs(001) substrates [J]. Applied Physics Letters, 2003, 82: 2853
    [91] Bubbiotti G, Carlotti G, Tacchi S, et al. Thickness dependence of magnetic anisotropy in thin Ni films electrodeposited onto the (011) and (001) surfaces of n-GaAs [J] Journal of Applied Physics, 2005, 97: 10J102
    [92] Munford M L, Seligman L, Satrorelli M L, et al. Electrodeposition of magnetic thin films of cobalt on silicon [J]. Journal of Magnetism and Magnetic Materials, 2001, 226-230: 1613-1615
    [93] Wolf S A, Awschalom D D, Buhrman R A, et al. Spintronics: a spin-based electronics vision for the future [J]. Science, 2001, 294: 1488-1495
    [94] Chang Y J, Erskine J L, Diffusion layers and the Schottky-barrier height in nickel silicide—silicon interfaces [J]. Physical Review B, 1983, 28: 5766-5773
    [95] Chow G M, Zhang J, Li Y Y, et al. Electroless polyol synthesis and properties of nanostructured NixCo100?x films [J]. Materials Science and Engineering: A, 2001, 304-306: 194-199
    [96] Zeng Q, Baker I, Sun Y, et al. Thickness dependence of the microstructure and magnetic anisotropy of sputtered Fe50Ni50 films [J]. Journal of Applied Physics. 2006, 99: 08M302
    [97] Kim J G, Han K H, Song S H, et al. Magnetic properties of sputtered soft magnetic Fe–Ni films with an uniaxial anisotropy [J]. Thin Solid Films, 2003, 440: 54-59
    [98] Li Y, Meng G W, Zhang L D et al. Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties [J]. Applied Physics Letters, 2000, 76: 2011-2013
    [99] Liu C H, Zapien, J A, Yao Y, et al. High-Density, Ordered Ultraviolet Light-Emitting ZnO Nanowire Arrays [J]. Advanced Materials, 2003, 15: 838-841
    [100] Zheng M J, Zhang L D, Li G H, et al. Fabrication and optical properties oflarge-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique [J]. Chemical Physics Letters, 2002 363: 123-128
    [101] Chen W, Tao X, Liu Y, et al. Facile route to high-density, ordered ZnO nanowire arrays and their photoluminescence properties [J]. Applied Surface Science, 2006, 252: 8683-8687
    [102] Zhao A, Liang J, Xiong Z et al. Preparation of bowl-like hexagonal ZnO nanostructures by a template-assisted solvent-thermal route [J]. Chemistry Letters, 2007, 36(3): 432
    [103] Yang C J, Wang S M, Liang S W, et al. Low-temperature growth of ZnO nanorods in anodic aluminum oxide on Si substrate by atomic layer deposition [J]. Applied Physics Letters, 2007 90: 033104
    [104] Conley Jr J F, Stecker L, Ono Y. Directed assembly of ZnO nanowires on a Si substrate without a metal catalyst using a patterned ZnO seed layer [J]. Nanotechnology, 2005, 16: 292
    [105] Hsu H C, Cheng C S, Chang C C, et al. Orientation-enhanced growth and optical properties of ZnO nanowires grown on porous silicon substrates [J]. Nanotechnology, 2005, 16: 297-301
    [106] Chang C C, Chang C S. Growth of ZnO nanowires without catalyst on porous silicon [J]. Japanese Journal of Applied Physics, 2004, 43: 8360-8364
    [107] Goldberger J, Fan R, Yang P Inorganic nanotubes: a novel platform for nanofluidics [J].Accounts of Chemical Research, 2006, 39: 239-248
    [108] Liu Q, Liu H, Han M, et al. Nanometer-sized nickel hollow spheres [J]. Advanced Materials, 2005, 17: 1995-1999
    [109] Jin P, Chen Q, Hao L, et al. Synthesis and catalytic properties of nickel-silica composite hollow nanospheres [J]. Journal of Physical Chemistry B, 2004, 108: 6311-6314
    [110] Wang D, Song C, Hu Z, et al. Hollow spheres and thin films of nickel hydroxide and nickel oxide with hierarchical structures [J]. Journal of Physical Chemistry B, 2005, 109: 1125-1129
    [111] Bao J, Liang Y, Xu Z et al. Facile Synthesis of Hollow Nickel Submicrometer Spheres [J]. Advanced Materials, 2003, 15: 1832-1835
    [112] Sug W J, Park W I, Yi G C, et al. Fabrication and controlled magnetic properties of Ni/ZnO nanorod heterostructures[J]. Advanced Materials, 2003, 15: 1358-1361
    [113] Evans P, Scheck C, Schad R et al. Electrodeposition of epitaxial nickel films on GaAs [J]. Journal of Magnetism and Magnetic Materials, 2003 260: 467-472
    [114] Fukumura T, Jin Z, Ohtomo A, et al. An oxide-diluted magnetic semiconductor: Mn-doped ZnO [J]. Applied Physics Letters, 1999, 75: 336
    [115] Wang D, Park S, Lee Y, Eom T, et al. Epitaxial ZnMnO/ZnO Coaxial Nanocable [J]. Crystal Growth & Design, 2009, 9: 2124-2127
    [116] Tanase M, Silevitch D M, Hultgren A, et al. Magnetic trapping and self-assembly of multicomponent nanowires [J]. Journal of Applied Physics, 2002, 91: 8549
    [117] Bentley A K, Trethewey J S, Ellis A B, et al. Magnetic trapping and self-assembly of multicomponent nanowires [J]. Nano Letters, 2004, 4: 487-490
    [118] Lee S W, Jeong M C, Myoung J M, et al. Magnetic alignment of ZnO nanowires for optoelectronic device applications [J]. Applied Physics Letters, 2007, 90: 133115
    [119] Zach M P,Penner R M,Nanocrystalline nickel nanoparticles [J]. Advanced Materials, 2000, 12: 878-883
    [120] Day T M, Unwin P R, Macpherson J V, et al. Factors controlling the electrodeposition of metal nanoparticles on pristine single walled carbon nanotubes [J]. Nano Letters, 2007, 7: 51-57
    [121] Duan G, Cai W, Luo Y, et al. Hierarchical structured Ni nanoring and hollow sphere arrays by morphology inheritance based on ordered through-pore template and electrodeposition [J]. Journal of Physical Chemistry B, 2006, 110: 15729-15733
    [122] Hwang J H, Dravid V P, Teng M H, Host J J, et al. Magnetic Properties of Graphitically Encapsulated Nickel Nanocrystals [J]. Journal of Materials Research, 1997, 12: 1076-1082
    [123] Eagleton T S, Searson P C, Electrochemical synthesis of 3D ordered ferromagnetic nickel replicas using self-assembled colloidal crystal templates [J]. Chemistry of Materials, 2004, 16: 5027-5032
    [124] Duan G, Cai W, Li Y, et al. Transferable ordered Ni hollow sphere arrays induced by electrodeposition on colloidal monolayer [J]. Journal of Physical Chemistry B, 2006, 110: 7184-7188
    [125] Yao B D, Chan Y F, Wang N, Formation of ZnO nanostructures by a simple way of thermal evaporation [J]. Applied Physics Letters, 2002, 81: 757-759
    [126] Chiou J W, Krishna Kumar K P, Jan J C, et al. Diameter dependence of the electronic structure of ZnO nanorods determined by x-ray absorption spectroscopy and scanning photoelectron microscopy [J]. Applied Physics Letters, 2004, 85: 3220-3222
    [127] Shi L, Xu Y, Hark S, et al. Optical and electrical performance of SnO2 capped ZnO nanowire arrays [J]. Nano Letters, 2007, 7: 3559-3563
    [128] Park Y H, Shin Y H, Noh S J, et al. Optical quenching of NiO/Ni coated ZnO nanowires [J]. Applied Physics Letters, 2007, 91: 012102
    [129] Penner R M, Mesoscopic metal particles and wires by electrodeposition [J].Journal of Physical Chemistry B, 2002, 106: 3339-3353
    [130] Liu Z, Li S, Yang Y, et al. Complex-surfactant-assisted hydrothermal route to ferromagnetic nickel nanobelts [J]. Advanced Materials, 2003, 15: 1946-1948
    [131] Shalish I, Temkin H, Naranamurti V, Size-dependent surface luminescence in ZnO nanowires [J]. Physical Review B, 2004, 69: 245401
    [132] van Dijken A, Meulenkamp E A, Vanmaekelbergh D, et al. The kinetics of the radiative and nonradiative processes in nanocrystalline ZnO particles upon photoexcitation [J]. Journal of Physical Chemistry B, 2000, 104: 1715-1723
    [133] Yang H S, Han S Y, Heo Y W, et al. Fabrication of Hybrid n-ZnMgO/n-ZnO/ p-AlGaN/ p-GaN Light-Emitting Diodes [J].Japanese Journal of Applied Physics, 2005, 44: 7296–7300
    [134] Yu Q X, Xu B, Wu Q H, et al. Optical properties of ZnO/GaN heterostructure and its near-ultraviolet light-emitting diode [J]. Applied Physics Letters, 2003, 83: 4713-4715
    [135] Ataev B M, Alivov Y I, Mamedov V V, et al. Fabrication and Properties of an n-ZnO:Ga/p-GaN:Mg/a-Al2O3 Heterojunction [J]. Semiconductors, 2004, 38: 672–674
    [136] Hsueh K P, Huang S C, Li C T, et al. Temperature-dependent study of n-ZnO/p-GaN diodes [J]. Applied Physics Letters, 2007, 90: 132111
    [137] PeiróA M, Ravirajan P, Govender K, et al. Hybrid polymer/metal oxide solar cells based on ZnO columnar structures [J]. Journal of Materials Chemistry, 2006, 16: 2088–2096
    [138] Wadeasa A, Nur O, Willander M, The effect of the interlayer design on the electroluminescence and electrical properties of n-ZnO nanorod/p-type blended polymer hybrid light emitting diodes [J].Nanotechnology 2009, 20: 065710
    [139] Lee C Y, Wang J Y, Chou Y, et al. Enhanced ultraviolet electroluminescence from ZnO nanowires in TiO2/ZnO coaxial nanowires/ poly(3,4-ethylenedioxythiophene) -poly(styrene-sulfonate) heterojunction [J]. Journal of Applied Physics, 2010, 107: 034310
    [140] Bano N, Zaman S, Zainelabdin A, et al. ZnO-organic hybrid white light emitting diodes grown on flexible plastic using low temperature aqueous chemical method [J]. Journal of Applied Physics, 2010, 108: 043103
    [141] Chang C Y, Tsao F C, Pan C J, et al. Electroluminescence from ZnO nanowire/polymer composite p-n junction [J]. Applied Physics Letters, 2006, 88: 173503
    [142] Titkov I E, Zubrilov A S, Delimova L A, et al. White Electroluminescence from ZnO/GaN Structures [J].Semiconductors 2007, 41: 564–569
    [143] Ne J M, Auret F D, Wu L, et al. Fabrication and characterisation of NiO/ZnO structures [J]. Sensors and Actuators B 2004, 100: 270–276
    [144] Li L, Gibson E A, Qin P, et al. Double-layered NiO photocathodes for p-type DSSCs with record IPCE [J]. Advanced Materials, 2010, 22: 1759-1762
    [145] Nattestad A, Ferguson M, Kerr R, et al. Dye-sensitized nickel(II)oxide photocathodes for tandem solar cell applications [J]. Nanotechnology 2008, 19: 295304
    [146] Mori S, Fukuda S, Sumikura S, et al. Charge-transfer processes in dye-sensitized NiO solar cells [J] The Journal of Physical Chemistry C, 2008, 112: 16134–16139

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700