脉冲激光沉积法生长掺杂ZnO基薄膜及其相关器件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化锌(ZnO)是一种新型的氧化物半导体材料,具有直接带隙的能带结构,室温下的禁带宽度为3.37 eV,激子束缚能高达60 meV,在下一代短波长光电器件如蓝紫光发光二极管(LEDs)和激光器(LDs)等方面具有潜在应用前景。要实现ZnO在这些光电子器件中的广泛应用,首先必须得到性能良好的n型和p型材料。ZnO的n型掺杂主要集中在Ⅲ族元素(如Al、Ga、In),而理论研究表明F也是ZnO的一种良好的n型掺杂剂,但关于F掺杂ZnO体系的研究工作进展缓慢,因此本论文开展了F掺杂ZnO透明导电薄膜方面的研究。另一方面,对于ZnO的p型掺杂,由于其存在非对称掺杂局限性使性能良好且稳定的p型ZnO薄膜难以实现,是制约其在光电器件得到应用的最大瓶颈。此外,当前国际上对于何种元素是ZnO最佳受主的问题仍然没有统一的定论。因此本论文的重要内容之一是探求合适的p型掺杂元素和掺杂技术,并结合理论和实验进一步探讨其掺杂机理。本论文的主要工作包括如下内容:
     1.利用脉冲激光沉积技术制备了F掺杂ZnO透明导电薄膜,系统地研究了氧偏压对薄膜性能的影响。当氧偏压为0.1 Pa时,薄膜的电学性能最佳:电阻率4.83×10-4Qcm,载流子浓度5.43×1020cm-3和Hall迁移率23.8 cm2V-1s-1,可见光内的平均透过率约90%,在1500 nm处透过率约60%;并以此为基础制备了顶栅结构的全透明ZnO薄膜晶体管,以ZnO薄膜为沟道层,ZnO:F透明导电薄膜作为栅极、源极和漏极的电极材料,栅极绝缘层是Ta2O5薄膜。
     2.采用脉冲激光沉积技术实现Li-F共掺杂ZnO薄膜p型导电的转变,研究了衬底温度对薄膜性能的影响。当衬底温度为550℃时,薄膜具有最好的p型导电性能:电阻率23.45Ωcm,空穴浓度7.57×1017 cm-3和Hall迁移率0.35cm2V-1s-1。进一步利用基于密度泛函理论的第一性原理对ZnO:(Li,F)体系进行了理论计算,探索Li-F共掺杂技术实现p型ZnO的机理。
     3.用脉冲激光沉积法成功制备出了Ag掺杂p型ZnMgO薄膜,详细地研究了衬底温度对薄膜性能的影响。XPS分析表明薄膜中Ag以Ag+形式存在并占据Zn格点位置;当衬底温度为400℃时,薄膜呈现最好的p型导电性能:电阻率24.96Ωcm,空穴浓度7.89×1017cm-3和Hall迁移率0.32 cm2V-1s-1,且p型导电性具有良好的稳定性;并对ZnMgO:Ag和ZnO:Ag薄膜进行了对比研究,结果发现引入Mg之后的ZnMgO:Ag薄膜不仅可以使本征施主态能级加深,同时能有效抑制氧空位的形成,导致本征施主态对受主的补偿作用降低,有利于薄膜p型掺杂的实现。
Zinc oxide (ZnO), as a novel oxide semiconductor with a direct band-gap structure, has been considered as a very promising material for the next-generation short-wavelength optoelectronic devices, such as light-emitting diodes (LEDs) and laser diodes (LDs) due to a wide band-gap of 3.37 eV and a large excition binding energy of 60 meV. To realize these device applications, an imperative issue is to fabrication both high-qulity n-and p-type ZnO. Most of the previous studies related to ZnO-based transparent conducting thin films were carried out using metallic cation dopants such as Group IIIA (e.g., Al, Ga, and In). However, fluorine can be a promising n-type anion doping candidate. To the best of our knowledge, research on F-doped ZnO thin films is very limited. Therefore, we carried out some investigation on fluorine-doped ZnO transparent conducting thin films. On the other hand, it has proven to be difficulty in obtain high-quality, reproducible, and stable p-type doping in ZnO caused by the asymmetric doping limitation, which is the bottleneck of realizing such optoelectronic applications. Also, the optimal choice of acceptor species in ZnO remains to be determined. In this regard, the main work was focused on pursuing the appropriate doping species and doping techniques in p-type ZnO thin films in this dissertation, in an attempt to better understand the p-type doping mechanism by a combinatorial theory and experimental studies. The main work included:
     1. Highly transparent and conducting fluorine-doped ZnO thin films were prepared on glass substrates by pulsed laser deposition. The effects of oxygen pressure on the structural, electrical and optical properties of the films were investigated and discussed in detail. The minimum resistivity of 4.83x10"4Ω-cm. with a carrier concentration of 5.43×1020cm-3 and a Hall mobility of 23.8 cm2V"'s"', were obtained for fluorine-doped ZnO film prepared at the optimal oxygen pressure of 0.1 Pa. The average optical transmittance in the entire visible wavelength region was higher than 90%and the transmittance in 1500 nm was about 60%. In addition, a top-gated transparent ZnO-based thin-film transistor with a ZnO layer as the channel. Ta2O5 as the gate insulator and F-doped ZnO film as the gate/source/drain electrodes has been prepared.
     2. We realized the p-type ZnO thin films via Li-F codoping technique prepared by pulsed laser deposition. The effects of substrate temperature on the structural and electrical properties of the films were investigated in detail. An acceptable p-type conduction, with a resistivity of 23.45Ωcm. a Hall mobility of 0.35 cm3v-1s-1, and a hole concentration of 7.57x1017 cm-3 at room temperature, has been obtained for the Li-F codoped ZnO thin films grown at 550℃The possible formation mechanism of the p-type conduction in Li-F codoped ZnO has been proposed by first-principles calculations based on density functional theory.
     3. We reported on p-type Ag-doped ZnMgO thin films prepared on quartz substrates by pulsed laser deposition. The effects of substrate temperature on the structural, electrical and optical properties of the films were investigated in detail. XPS measurement confirmed that Ag principally occupies Zn site in the state of Ag+ ion and acts as an acceptor. An acceptable p-type conduction, with a resistivity of 24.96Ωcm. a Hall mobility of 0.32 cm2v-1s-1.and hole concentration of 7.89x1017 cm-3 at room temperature, was obtained for the film grown at the optimal substrate temperature of 400℃Meanwhile, a comparative study of p-type ZnO.Ag and ZnMgO:Ag films showed that the incorporation of Mg can result in the increase of the activation energy of the intrinsic donors and the suppression of charge-compensating oxygen-related defects, thus reduce the charge compensation effect of intrinsic defects, which is favorable to the realization of p-type ZnO thin films.
引文
[1]曾昱嘉.ZnO薄膜p型掺杂的研究及ZnO纳米点的可控生长[博士学位论文].杭州:浙江大学材料系,2008:6-8.
    [2]C. Klingshirn. ZnO:material, physics and applications. ChemPhysChem,2007,8 (2): 782-803.
    [3]A. Janotti and C. G.Van de Walle. Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys.,2009,72 (12):126501-1-29.
    [4]B. G. Lewis and D. C. Paine. Applications and processing of transparent conducting oxides. MRS Bulletin,2000,25 (8):22-27.
    [5]S. B. Zhang, S. H. Wei, and A. Zunger. Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO. Phys. Rev. B,2001,63 (7):075205-1-7.
    [6]C. Jagadish and S. J. Pearton, Zinc oxide bulk, thin films and nanostructures. Elsevier,2006: 1-4.
    [7]C. H. Bates, W. B. White, and R. Roy. New high-pressure polymorph of zinc oxide. Science, 1962,137 (9):993-993.
    [8]S. K. Kim, S. Y. Seong, and C. R. Cho. Structural reconstruction of hexagonal to cubic ZnO films on Pt/Ti/SiO2/Si substrate by annealing. Appl. Phys. Lett.,2003,82 (4):562-564.
    [9]B. Amrani, I. Chiboub, S. Hiadsi, T. Benmessabih, and N. Hamdadou. Structural and electronic properties of ZnO under high pressures. Solid State Commun.,2006,137 (7): 395-399.
    [10]J. Wrobel and J. Piechota. On the structural stability of ZnO phases. Solid State Commun.. 2008,146 (7-8):324-329.
    [11]U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, A comprehensive review of ZnO materials and devices. J. Appl. Phys.,2005, 98 (4):041301-1-103.
    [12]叶志镇,吕建国,张银珠,何海平.氧化锌半导体材料掺杂技术与应用.杭州:浙江大学出版社,2008:5-6.
    [13]B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster. F. Bertram, J. Christen, A. Hoffmann, M. Straβburg, M. Dworzak, U. Haboeck, and A. V. Rodina. Bound exciton and donor-acceptor pair recombinations in ZnO. Physica Status Solidi (b),2004,241 (2): 231-260.
    [14]A. Janotti and C. G. Van de Walle. Native point defects in ZnO. Phys. Rev. B,2007,76 (16): 165202-1-22.
    [15]C. G. Van de Walle. Hydrogen as a cause of doping in zinc oxide. Phys. Rev. Lett.,2000,85 (5):1012-1015.
    [16]G. A. Shi. M. Stavola, S. J. Pearton, M. Thieme, E. V. Lavrov, and J. Weber. Hydrogen local modes and shallow donors in ZnO. Phys. Rev. B.2005,72 (19):195211-1-8.
    [17]S. F. J. Cox, E. A. Davis, S. P. Cottrell, P. J. C. King, J. S. Lord. J. M. Gil. H. V. Alberto. R. C. Vilao, J. Piroto Duarte, N. Ayres de Campos. A. Weidinger, R. L. Lichti, and S. J. C. Irvin. Experimental confirmation of the predieted shallow donor hydrogen state in zinc oxide. Phys. Rev. Lett.,2000,86 (12):2601-2604.
    [18]T. Minami. Transparent conducting oxide semiconductors for transparent electrodes. Semicond. Sci. Technol.,2005,20 (4):S35-S44.
    [19]L. Y. Chen, W. H. Chen, J. J. Wang, and F. C. N. Hong. Hydrogen-doped high conductivity ZnO films deposited by radio-frequency magnetron sputtering. Appl. Phys. Lett..2004,85 (23):5628-5630.
    [20]T. Miyata, Y. Honma, and T. Minami. Preparation of transparent conducting B-doped ZnO films by vacuum arc plasma evaporation. J. Vac. Sci. Technol. A,2007,25 (4):1193-1197.
    [21]S. P. Liu, D. S. Wuu, S. L. Ou, Y. C. Fu, P. R. Lin, M. T. Hung, and R. H. Horng. Highly ultraviolet-transparent ZnO:Al conducting layers by pulsed laser deposition. J. Electrochem. Soc,2011.158(5):K127-K130.
    [22]L. M. Wong, S. Y. Chiam, J. Q. Huang, S. J. Wang, J. S. Pan, and W. K. Chim. Role of oxygen for highly conducting and transparent gallium-doped zinc oxide electrode deposited at room temperature. Appl. Phys. Lett.,2011,98 (2):022106-1-3.
    [23]S. S. Shinde, P. S. Shinde, C. H. Bhosale, and K. Y. Rajpure. Optoelectronic properties of sprayed transparent and conducting indium doped zinc oxide thin films. J. Phys. D:Appl. Phys.,2008,41 (10):105109-1-6.
    [24]Q. Yu, W. Fu, C. Yu, H. Yang, R. Wei, Y. Sui, S. Liu, Z. Liu, M. Li, G. Wang, C. Shao, Y. Liu, and G. Zou. Structural, electrical and optical properties of yttrium-doped ZnO thin films prepared by sol-gel method. J. Phys. D:Appl. Phys.,2007,40 (18):5592-5597.
    [25]T. Minami, T. Yamamoto. and T. Miyata. Highly transparent and conductive rare earth-doped ZnO thin films prepared by magnetron sputtering.Thin Solid Films,2000,366 (1-2):63-68.
    [26]Z. B. Fang. Y. S. Tan, H. X. Gong, C. M. Zhen, Z. W. He, and Y. Y. Wang. Transparent conductive Tb-doped ZnO films prepared by rf reactive magnetron sputtering. Mater. Lett., 2005,59 (21):2611-2614.
    [27]H. Huang, X. Ruan, G. Fang, M. Li. and X. Z. Zhao. Influence of annealing on structural, electrical and optical properties of Dy-doped ZnO thin films. J. Phys. D:Appl. Phys.,2007. 40 (22):7041-7045.
    [28]A. K. Pradhan, L. Douglas, H. Mustafa, R. Mundle, D. Hunter, and C. E. Bonner. Pulsed-laser deposited EnZnO films for 1.54//m emission. Appl. Phys. Lett.,2007,90 (7): 072108-1-3.
    [29]J. Clatot, G. Campet, A. Zeinert. C. Labrugere. M. Nistor, and A. Rougier. Low temperature Si doped ZnO thin films for transparent conducting. Sol. Energy Mater. Sol. Cells,2011,95 (4):2357-2362.
    [30]H. Sato, T. Minami, and S. Takata. Highly transparent and conductive group IV impurity-doped ZnO thin films prepared by radio frequency magnetron sputtering. J. Vac. Sci. Technol. A,1993,11 (6):2975-2979.
    [31]E. Holmelund, J. Schou, S. Yougaard, and N. B. Larsen. Pure and Sn-doped ZnO films produced by pulsed laser deposition. Appl. Surf. Sci.,2002,197-198(1-4):467-471.
    [32]Z. L. Tseng, P. C. Kao, C. S. Yang, Y. D. Juang, Y. M. Kuo, and S. Y. Chu. Transparent conducting Ti-doped ZnO thin films applied to organic light-emitting diodes. J. Electrochem. Soc,2011,158 (5):J133-J136.
    [33]M. Lv, X. Xiu, Z. Pang, Y. Dai, and S. Han. Influence of the deposition pressure on the properties of transparent conducting zirconium-doped zinc oxide films prepared by RF magnetron sputtering. Appl. Surf. Sci.,2006,252 (16):5687-5692.
    [34]T. Miyata, S. Suzuki, M. Ishii, and T. Minami. New transparent conducting thin films using multicomponent oxides composed of ZnO and V2O5 prepared by magnetron sputtering. Thin Solid Films,2002,411 (1):76-81.
    [35]J. M. Lin, Y. Z. Zhang, Z. Z. Ye, X. Q. Gu, X. H. Pan, Y. F. Yang, J. G. Lu, H. P. He, and B. H. Zhao. Nb-doped ZnO transparent conducting films fabricated by pulsed laser deposition. Appl. Surf. Sci.,2009,255 (13-14):6460-6463.
    [36]F. Cao, Y. D. Wang, J. Z. Yin, M. L. Cong, and L.Y.Han. Influence of post-annealing temperature on properties of Ta-doped ZnO transparent conductive films. Chin. Phys. Lett., 2009,26(11):114203:1-4.
    [37]X. Xiu, Z. Pang, M. Lv, Y. Dai, L. Yea, and S. Han. Transparent conducting molybdenum-doped zinc oxide films deposited by RF magnetron sputtering. Appl. Surf. Sci., 2007,253 (6):3345-3348.
    [38]J. Hu and R. G. Gordon. Textured fluorine-doped ZnO films by atmospheric pressure chemical vapor deposition and their use in amorphous silicon solar cells. Solar Cells,1991, 30 (1-4):437-450.
    [39]E. Chikoidze, M. Modreanu, V. Sallet, O. Gorochov, and P. Galtier. Electrical properties of chlorine-doped ZnO thin films grown by MOCVD. Physica status solidi (a),2008,205 (7): 1575-1579.
    [40]A. V. Singh, R. M. Mehra, N. Buthrath, A. Wakahara. and A. Yoshida. Highly conductive and transparent aluminum-doped zinc oxide thin films prepared by pulsed laser deposition in oxygen ambient. J. Appl. Phys.,2001,90 (11):5661-5665.
    [41]H. Agura, A. Suzuki, T. Matsushita, T. Aoki, and M. Okuda. Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition. Thin Solid Films,2003, 445 (2):263-267.
    [42]B. Singh, Z. A. Khan, I. Khan, and S. Ghosh. Highly conducting zinc oxide thin films achieved without postgrowth annealing. Appl. Phys. Lett..2010,97 (24):241903-1-3.
    [43]X. H. Yu, J. Ma, F. Ji, Y. H. Wang, X. J. Zhang, C. F. Cheng, and H. L. Ma. Effects of sputtering power on the properties of ZnO:Ga films deposited by r.f. magnetron-sputtering at low temperature. J. Cryst. Growth.,2005,274 (3-4):474-479.
    [44]B. T. Lee, T. H. Kim, and S. H. Jeong. Growth and characterization of single crystalline Ga-doped ZnO films using rf magnetron sputtering. J. Phys. D:Appl. Phys.,2006,39 (5): 957-961.
    [45]J. K. Sheu, K. W. Shu, M. L. Lee, C. J. Tun, and G. C. Chi. Effect of thermal annealing on Ga-doped ZnO films prepared by magnetron sputtering. J. Electrochem. Soc,2007,154 (6): H521-H524.
    [46]S. M. Park, T. Ikegami, and K. Ebihara. Effects of substrate temperature on the properties of Ga-doped ZnO by pulsed laser deposition. Thin Solid Films,2006,513 (1-2):90-94.
    [47]R. C. Scott, K. D. Leedy, B. Bayraktaroglu, D. C. Look, and Y. H. Zhang. Highly conductive ZnO grown by pulsed laser deposition in pure Ar. Appl. Phys. Lett.,2010,97 (7):072113-1-3.
    [48]S. S. Shinde, P. S. Shinde, C. H. Bhosale, and K. Y. Rajpure. Optoelectronic properties of sprayed transparent and conducting indium doped zinc oxide thin films. J. Phys. D:Appl. Phys.,2008,41 (10):105109-1-6.
    [49]B. N. Pawar, D. H. Ham, R. S. Mane, T. Ganesh, B. W. Cho, and S. H. Han. Fluorine-doped zinc oxide transparent and conducting electrode by chemical spray synthesis. Appl. Surf. Sci., 2008,254 (20):6294-6297.
    [50]H. Y. Xu, Y. C. Liu, R. Mu, C. L. Shao, Y. M. Lu, D. Z. Shen, and X. W. Fan. F-doping effects on electrical and optical properties of ZnO nanocrystalline films. Appl. Phys. Lett., 2005,86(12):123107-1-3.
    [51]E. Chikoidze, M. Modreanu, V. Sallet, O. Gorochov, and P. Galtier. Electrical properties of chlorine-doped ZnO thin films grown by MOCVD. Physica status solidi (a),2008,205 (7): 1575-1579.
    [52]T. J. Coutts, D. L. Young, and X. Li. Characterization of transparent conducting oxides. MRS Bulletin,2000,25 (8):58-65.
    [53]J. P. Lin and J. M. Wu. The effect of annealing processes on electronic properties of sol-gel derived Al-doped ZnO films. Appl. Phys. Lett.,2008,92 (13):134103-1-3.
    [54]J. H. Kim, B. D. Ahn, C. H. Lee, K. A, Jeon, H. S. Kang, and S. Y. Lee. Effect of rapid thermal annealing on electrical and optical properties of Ga doped ZnO thin films prepared at room temperature. J. Appl. Phys.,2006,100 (11):113515-1-3.
    [55]K. K. Kim, S. Niki, J. Y. Oh, J. O. Song, T. Y. Seong, S. J. Park, S. Fujita, and S. W. Kim. High electron concentration and mobility in Al-doped n-ZnO epilayer achieved via dopant activation using rapid-thermal annealing. J. Appl. Phys.,2005,97 (6):066103-1-3.
    [56]S. Cornelius, M. Vinnichenko, N. Shevchenko, A. Rogozin, A. Kolitsch, and W. Moller. Achieving high free electron mobility in ZnO:Al thin films grown by reactive pulsed magnetron sputtering. Appl. Phys. Lett.,2009,94 (4):042103-1-3.
    [57]R. J. Mendelsberg, S. H. N. Lim, Y. K. Zhu, J. Wallig, D. J. Milliron, and A. Anders. Achieving high mobility ZnO:Al at very high growth rates by dc filtered cathodic arc deposition. J. Phys. D:Appl. Phys.,2011,44 (23):232003-1-5.
    [58]S. H. Lee, T. S. Lee, K. S. Lee, B. Cheong, Y. D. Kim, and W. M. Kim. Characteristics of hydrogen co-doped ZnO:Al thin films. J. Phys. D:Appl. Phys.,2008,41 (9):095303-1-7.
    [59]C. J. Xian, J. K. Ahn, N. J. Seong, S. G. Yoon, K. H. Jang, and W. H. Park. Effect of indium concentration on the structural and electrical properties of Al-doped ZnO thin films grown by pulsed laser deposition. J. Phys. D:Appl. Phys.,2008,41 (21):215107-1-5.
    [60]I. Kim, K. S. Lee, T. S. Lee, J. Jeong, B. Cheong, Y. J. Baik, and W. M. Kim. Effect of fluorine addition on transparent and conducting Al doped ZnO films. J. Appl. Phys.,2006, 100 (6):063701-1-6.
    [61]S. D. Kirby and R. B. van Dover. Improved conductivity of ZnO through codoping with In and Al. Thin Solid Films,2009,517 (6):1958-1960.
    [62]Y. C. Lin, J. H. Jiang, and W. T. Yen. Effect of Cr and V dopants on the chemical stability of AZO thin film. Appl. Surf. Sci.,2009,255 (6):3629-3634.
    [63]D. W. Kang, J. Y. Kwon, D. J. Lee, and M. K. Han. Boron and aluminum codoped ZnO transparent conducting films with high electrical stability. J. Electrochem. Soc,2012,159 (2): H61-H65.
    [64]J. Clatot, G. Campet, A. Zeinert, C. Labrugere, M. Nistor, and A. Rougier. Low temperature Si doped ZnO thin films for transparent conducting. Sol. Energy Mater. Sol. Cells,2011,95 (4):2357-2362.
    [65]D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G. Cantwell. Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy. Appl. Phys. Lett.,2002,81 (10):1830-1832.
    [66]J. G. Ma, Y. C. Liu, R. Mu, J. Y. Zhang, Y. M. Lu, D. Z. Shen, and X. W. Fan. Method of control of nitrogen content in ZnO films:Structural and photoluminescence properties. J. Vac. Sci. Technol. B,2004,22 (1):94-98.
    [67]J. Z. Wang, E. Elamurugu, N. Franco, E. Alves, A. M. Botelho do Rego, G. Goncalves. R. Martins, and E. Fortunate Influence of deposition pressure on N-doped ZnO films by RF Magnetron sputtering. J. Nanosci. Nanotechnol.,2010,10 (4):2674-2678.
    [68]W. Mu, L. L. Kerr, and N. Leyarovska. Extended x-ray absorption fine structure study of p-type nitrogen doped ZnO. Chem. Phys. Lett.,2009,469(4-6):318-320.
    [69]W. Liu, S. L. Gu, J. D. Ye, S. M. Zhu, S. M. Liu, X. Zhou, R. Zhang, Y. Shi, Y. D. Zheng. Y. Hang, and C. L. Zhang. Blue-yellow ZnO homostructural light-emitting diode realized by metalorganic chemical vapor deposition technique. Appl. Phys. Lett.,2006,88 (9): 092101:1-3.
    [70]T. M. Barnes, K. Olson, and C. A. Wolden. On the formation and stability of p-type conductivity in nitrogen-doped zinc oxide. Appl. Phys. Lett.,2005,86 (11):112112-1-3.
    [71]X. N. Li, B. Keyes, S. Asher, S. B. Zhang, S. H. Wei, T. J. Coutts, S. Limpijumnong, and C. G. Van de Walle. Hydrogen passivation effect in nitrogen-doped ZnO thin films. Appl. Phys. Lett.,2005,86 (12):122107-1-3.
    [72]S. J. Jiao, Y. M. Lu, Z. Z. Zhang, B. H. Li, B. Yao, J. Y. Zhang, D. X. Zhao, D. Z. Shen. and X. W. Fan. Optical and electrical properties of highly nitrogen-doped ZnO thin films grown by plasma-assisted molecular beam epitaxy. J. Appl. Phys..2007,102(11):113509:1-3.
    [73]X. H. Li, H. Y. Xu, X. T. Zhang, Y. C. Liu, J. W. Sun, and Y. M. Lu. Local chemical states and thermal stabilities of nitrogen dopants in ZnO film studied by temperature-dependent x-ray photoelectron spectroscopy. Appl. Phys. Lett.,2009,95 (19):191903-1-3.
    [74]Y F. Lu, Z. Z. Ye, Y. J. Zeng, H. P. He, L. P. Zhu, and B. H. Zhao. Low-temperature growth of p-type ZnO thin films via plasma-assisted MOCVD. Chem. Vap. Deposition.2007.13 (6-7):295-297.
    [75]K. Minegishi. Y. Koiwai. Y. Kikuchi, K. Yano, M. Kasuga. and A. Shimizu. Growth of p-type zinc oxide films by chemical vapor deposition. Jpn. J. Appl. Phys.,1997,36 (2): L1453-L1455.
    [76]Z. Y. Xiao, Y. C. Liu, B. H. Li, J. Y. Zhang, D. X. Zhao, Y. M. Lu, D. Z. Shen, and X. W. Fan. Electrical transport properties in nitrogen-doped p-type ZnO thin film. Semicond. Sci. Technol.,2006,21 (12):1522-1526.
    [77]C. C. Lin, S. Y. Chen, S. Y. Cheng, and H. Y. Lee. Properties of nitrogen-implanted p-type ZnO films grown on SisN4/Si by radio-frequency magnetron sputtering. Appl. Phys. Lett., 2004,84 (24):5040-5042.
    [78]Y. Yan. S. B. Zhang, and S. T. Pantelides. Control of doping by impurity chemical potentials: Predictions for p-type ZnO. Phys. Rev. Lett.,2001,86 (25):5723-5726.
    [79]X. Y. Chen, Z. Z. Zhang, B. Yao, M. M. Jiang, S. P. Wang, B. H. Li, C. X. Shan, L. Liu, D. X. Zhao, and D. Z. Shen. Effect of compressive stress on stability of N-doped p-type ZnO. Appl. Phys. Lett.,2011,99 (9):091908-1-3.
    [80]Y. Nakano, T. Morikawa, T. Ohwaki, and Y. Taga. Electrical characterization of p-type N-doped ZnO films prepared by thermal oxidation of sputtered Zr3N2 films. Appl. Phys. Lett., 2006,88(17):172103-1-3
    [81]M. Ding, D. X. Zhao. B. Yao, B. H. Li, Z. Z. Zhang, and D. Z. Shen. The p-type ZnO film realized by a hydrothermal treatment method. Appl. Phys. Lett..2011,98 (6):062102-1-3.
    [82]T. Aoki, Y. Hatanaka, and D. C. Look. ZnO diode fabricated by excimer-laser doping. Appl. Phys. Lett.,2000,76 (22):3257-3258.
    [83]K. K. Kim, H. S. Kim, D. K. Hwang, J. H. Lim, and S. J. Park. Realization of p-type ZnO thin films via phosphorus doping and thermal activation of the dopant. Appl. Phys. Lett., 2003,83(1):63-65.
    [84]V. Vaithianathan, B. T. Lee, and S. S. Kim. Pulsed-laser-deposited p-type ZnO films with phosphorus doping. J. Appl. Phys.,2005,98 (4):043519-1-4.
    [85]G. X. Hu, H. Gong, E. F. Chor, and P. Wu. ZnO homojunctions grown by cosputtering ZnO and Zn3P2 targets. Appl. Phys. Lett..2006,89 (2):021112-1-3.
    [86]F. X. Xiu, Z. Yang, L. J. Mandalapu, and J. L. Liu. Donor and acceptor competitions in phosphorus-doped ZnO. Appl. Phys. Lett..2006,88 (15):152116-1-3.
    [87]Z. G. Yu, P. Wu, and H. Gong. Control of p-and n-type conductivities in P doped ZnO thin films using radio-frequency sputtering. Appl. Phys. Lett.,2006,88 (13):132114-1-3.
    [88]P. Wang, N. F. Chen, and Z. G. Yin. P-doped p-type ZnO films deposited on Si substrate by radio-frequency magnetron sputtering. Appl. Phys. Lett.,2006,88 (15):152102-1-3.
    [89]A. Allenic, W. Guo, Y. B. Chen. M. B. Katz. G Y. Zhao, Y. Che, Z. D. Hu, B. Liu, S. B. Zhang, and X. Q. Pan. Amphoteric phosphorus doping for stable p-type ZnO. Adv. Mater., 2007,19 (20):3333-3337.
    [90]X. H. Pan. J. Jiang, Y. J. Zeng. H. P. He, L. P. Zhu, Z. Z. Ye, B. H. Zhao, and X. Q. Pan. Electrical and optical properties of phosphorus-doped p-type ZnO films grown by metalorganic chemical vapor deposition. J. Appl. Phys.,2008,103 (2):023708-1-4.
    [91]J. K. Kim, J. W. Lim, H. T. Kim, S. H. Kim, and S. J. Yun. Fabrication of p-type ZnO thin films using rf-magnetron sputter depositon. Electrochem. Solid-State Lett.,2009,12 (4): H109-H112.
    [92]B. Yao, Y. P. Xie, C. X. Cong, H. J. Zhao, Y. R. Sui, T. Yang, and Q. He. Mechanism of p-type conductivity for phosphorus-doped ZnO thin film. J. Phys. D:Appl. Phys.,2009,42 (1): 015407-1-4.
    [93]H. F. Liu and S. J. Chua. Doping behavior of phosphorus in ZnO thin films:Effects of doping concentration and postgrowth thermal annealing. Appl. Phys. Lett.,2010,96 (9):091902-1-3.
    [94]Y. R. Ryu, S. Zhu, D. C. Look, J. M. Wrobel, H. M. Jeong, and H. W. White. Synthesis of p-type ZnO films. J. Cryst. Growth,2000,216 (1-4):330-334.
    [95]Y. R. Ryu, T. S. Lee, and H. W. White. Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition. Appl. Phys. Lett.,2003,83 (1):87-89.
    [96]D. C. Look, G.M. Renlund, R. H. Burgener Ⅱ, and J. R. Sizelove. As-doped p-type ZnO produced by an evaporation/sputtering process. Appl. Phys. Lett.,2004,85 (22):5269-5271.
    [97]H. S. Kang, G. H. Kim, D. L. Kim, H. W. Chang, B. D. Ahn, and S. Y. Lee. Investigation on the p-type formation mechanism of arsenic doped p-type ZnO thin film. Appl. Phys. Lett., 2006,89(18):181103-1-3.
    [98]S. P. Wang, C. X. Shan, B. H. Li, J. Y. Zhang, B. Yao, D. Z. Shen, and X. W. Fan. A facile route to arsenic-doped p-type ZnO films. J. Cryst. Growth.,2009,311(14):3577-3580.
    [99]P. Wang, N. F. Chen, Z. G. Yin, F. Yang, C. T. Peng, R. X. Dai, and Y. M. Bai. As-doped p-type ZnO films by sputtering and thermal diffusion process. J. Appl. Phys.,2006,100 (4): 043704-1-4.
    [100]Y. R. Ryu, J. A. Lubguban, T. S. Lee, H. W. White, T. S. Jeong, C. J. Youn, and B. J. Kim. Excitonic ultraviolet lasing in ZnO-based light emitting devices. Appl. Phys. Lett.,2007,90 (13):131115-1-3.
    [101]H. S. Guan, X. C. Xia, Y. T. Zhang, F. B. Gao, W. C. Li, G. G. Wu, X. P. Li, and G. T. Du. Study of arsenic doping ZnO thin films grown by metal-organic chemical vapour deposition via x-ray photoelectron spectroscopy. J. Phys.:Condens. Matter.,2008,20 (29):292202-1-5.
    [102]V. Vaithianathan, B. T. Lee, and S. S. Kim. Preparation of As-doped p-type ZnO films using a Zn3As2/ZnO target with pulsed laser deposition. Appl. Phys. Lett.,2005,86 (6):062101-1-3.
    [103]J. C. Fan, C. Y. Zhu, S. Fung, Y. C. Zhong, K. S. Wong, Z. Xie, G. Brauer, W. Anwand, W. Skorupa, C. K. To. B. Yang, C. D. Beling, and C. C. Ling. Arsenic doped p-type zinc oxide films grown by radio frequency magnetron sputtering. J. Appl. Phys.,2009,106 (7): 073709-1-6.
    [104]F. X. Xiu, Z. Yang, L. J. Mandalapu, D. T. Zhao, J. L. Liu, and W. P. Beyermann. High-mobility Sb-doped p-type ZnO by molecular-beam epitaxy. Appl. Phys. Lett.,2005,87 (15):152101-1-3.
    [105]W. Guo, A. Allenic, Y. B. Chen, X. Q. Pan, Y. Che, Z. D. Hu, and B. Liu. Microstructure and properties of epitaxial antimony-doped p-type ZnO films fabricated by pulsed laser deposition. Appl. Phys. Lett.,2007,90 (24):242108-1-3.
    [106]J. Z. Zhao, H. W. Liang. J. C. Sun, Q. J. Feng, J. M. Bian, Z. W. Zhao. H. Q. Zhang, L. Z. Hu. and G. T. Du. P-type Sb-doped ZnO thin films prepared by metallorganic chemical vapour deposition using metallorganic dopant. Electrochem. Solid-State Lett.,2008.11 (12): H323-H326.
    [107]X. H. Pan, Z. Z. Ye, J. S. Li, X. Q. Gu, Y. J. Zeng, H. P. He, L. P. Zhu, and Y. Che. Fabrication of Sb-doped p-type ZnO thin films by pulsed laser deposition. Appl. Surf. Sci., 2007,253 (11):5067-5069.
    [108]J. M. Qin, B. Yao, Y. Yan, J. Y. Zhang, X. P. Jia, Z. Z. Zhang. B. H. Li, C. X. Shan, and D. Z. Shen. Formation of stable and reproducible low resistivity and high carrier concentration p-type ZnO doped at high pressure with Sb. Appl. Phys. Lett.,2009,95 (2):022101-1-3
    [109]K. Samanta, P. Bhattacharya, and R. S. Katiyar. Raman scattering studies of p-type Sb-doped ZnO thin films. J. Appl. Phys.,2010,108(11):113501-1-4.
    [110]C. J. Lan, H. Y. Cheng, R. J. Chung, J. H. Li. K. F. Kao, and T. S. Chin. Bi-doped ZnO layer prepared by electrochemical deposition. J. Electrochem. Soc,2007,154 (3):Dl 17-D121.
    [Ill]F. X. Xiu, L. J. Mandalapu, Z. Yang, J. L. Liu, G. F. Liu, and J. A. Yarmoff. Bi-induced acceptor states in ZnO by molecular-beam epitaxy. Appl. Phys. Lett.,2006,89 (5): 052103-1-3.
    [112]C. H. Park, S. B. Zhang, and S. H. Wei. Origin of p-type doping difficulty in ZnO:The impurity perspective. Phys. Rev. B,2002.66 (7):073202-1-3.
    [113]M. G. Wardle, J. P. Goss, and P. R. Briddon. Theory of Li in ZnO:A limitation for Li-based p-type doping. Phys. Rev. B,2005,71 (15):155205-1-10.
    [114]Y. J. Zeng, Z. Z. Ye, W. Z. Xu, L. L.Chen, D. Y. Li, L. P. Zhu, B. H. Zhao, and Y. L. Hu. Realization of p-type ZnO films via monodoping of Li acceptor. J. Cryst. Growth.,2005. 283(1-2):180-184.
    [115]Y. J. Zeng, Z. Z. Ye, W. Z. Xu, D. Y. Li, J. G. Lu, L. P. Zhu. and B. H. Zhao. Dopant source choice for formation of p-type ZnO:Li acceptor. Appl. Phys. Lett.,2006,88 (6):062107-1-3.
    [116]Y. J. Zeng. Z. Z. Ye, J. G. Lu. W. Z. Xu, L. P. Zhu, and B. H. Zhao. Identification of acceptor states in Li-doped p-type ZnO thin films. Appl. Phys. Lett.,2006.89 (4):042106-1-3..
    [117]J. G Lu, Y. Z. Zhang, Z. Z. Ye, Y. J. Zeng, H. P. He, L. P. Zhu, J. Y. Huang. L. Wang, J. Yuan, B. H. Zhao, and X. H. Li. Control of p-and n-type conductivities in Li-doped ZnO thin films. Appl. Phys. Lett..2006,89 (11):112113-1-3.
    [118]L. L. Chen, H. P. He, Z. Z. Ye, Y. J. Zeng, J. G Lu. B. H. Zhao, and L. P. Zhu. Influence of post-annealing temperature on properties of ZnO:Li thin films. Chem. Phys. Lett..2006.420 (4-6):358-361.
    [119]D. Y. Wang, J. Zhou, and G. Z. Liu. Effect of Li-doped concentration on the structure, optical and electrical properties of p-type ZnO thin films prepared by sol-gel method. J. Alloy Compd.,2009.481 (1-2):802-805.
    [120]K. C. Chiu. Y. W. Kao, and J. H. Jean. Fabrication of p-type Li-doped ZnO films by RF magnetron sputtering. J. Am. Ceram. Soc,2010,93 (7):1860-1862.
    [121]K. C. Chiu and J. H. Jean. Effects of processing parameters on electrical properties of p-type Li-doped ZnO films by DC pulsed sputtering. J. Am. Ceram. Soc,2011,94 (11):3711-3715.
    [122]L. L. Yang, Z. Z. Ye, L. P. Zhu, Y. J. Zeng, Y. F. Lu, and B. H. Zhao. Fabrication of p-type ZnO thin films via DC reactive magnetron sputtering by using Na as the dopant source. J. Electron. Mater.,2007,36 (4):498-501.
    [123]S. S. Lin, J. G. Lu, Z. Z. Ye, H. P. He, X. Q. Gu, L. X. Chen, J. Y. Huang, and B. H. Zhao. P-type behavior in Na-doped ZnO films and ZnO homojunction light-emitting diodes. Solid State Commun.2008,148 (1-2):25-28.
    [124]S. S. Lin, Z. Z. Ye, J. G. Lu, H. P. He, L. X. Chen, X. Q. Gu, J. Y. Huang, L. P. Zhu. and B. H. Zhao. Na doping concentration tuned conductivity of ZnO films via pulsed laser deposition and electroluminescence from ZnO homojunction on silicon substrate. J. Phys. D:Appl. Phys., 2008,41 (15):155114-1-6.
    [125]S. S. Lin, H. P. He, Y. F. Lu, and Z. Z. Ye. Mechanism of Na-doped p-type ZnO films: Suppressing Na interstitials by codoping with H and Na of appropriate concentrations. J. Appl. Phys.,2009,106 (9):093508-1-5.
    [126]J. J. Lai, Y. J. Lin, Y. H. Chen, H. C. Chang, C. J. Liu, Y. Y. Zou, Y. T. Shih, and M. C. Wang. Effects of Na content on the luminescence behaviour, conduction type, and crystal structure of Na-doped ZnO films. J. Appl. Phys.,2011,110 (1):013704-1-4.
    [127]J. Wu and Y. T. Yang. Deposition of K-doped p type ZnO thin films on (0001) A12O3 substrates. Mater. Lett.,2008,62 (12-13):1899-1901.
    [128]Y. F. Yan, M. M. Aljassim, and S. H. Wei. Doping of ZnO by group-IB elements. Appl. Phys. Lett.,2006,89 (18):181912-1-3.
    [129]Q. X. Wan, Z. H. Xiong, J. N. Dai, J. P. Rao, and F. Y. Jiang. First-principles study of Ag-based p-type doping difficulty in ZnO. Opt. Mater.,2008,30 (6):817-821.
    [130]O. Volnianska, P. Boguslawski, J. Kaczkowski, P. Jakubas, A. Jezierski, and E. Kaminska. Theory of doping properties of Ag acceptors in ZnO. Phys. Rev. B,2009,80 (24): 245212-1-8.
    [131]H. S. Kang, B. D. Ahn, J. H. Kim, G. H. Kim, S. H. Lim, H. W. Chang, and S. Y. Lee. Structural, electrical, and optical properties of p-type ZnO thin films with Ag dopant. Appl. Phys. Lett.,2006,88 (20):202108-1-3.
    [132]L. Duan, B. X. Lin, W. Y. Zhang, S. Zhong, and Z. X. Fu. Enhancement of ultraviolet emissions from ZnO films by Ag doping. Appl. Phys. Lett.,2006,88 (23):232110-1-3.
    [133]I. S. Kim, E. K. Jeong, D. Y. Kim. M. Kumar, and S. Y. Choi. Investigation of p-type behavior in Ag-doped ZnO thin films by E-beam evaporation. Appl. Surf. Sci.,2009,255 (7): 4011-4014.
    [134]F. J. Lugo, H. S. Kim, S. J. Pearton, C. R. Abernathy, B. P. Gila. D. P. Norton. Y. L. Wang, and F. Ren. Rectifying ZnO:Ag/ZnO:Ga thin-film junctions. Electrochem. Solid State Lett., 2009,12(5):H188-H190.
    [135]R. Deng, B. Yao, Y. F. Li, T. Yang, B. H. Li, Z. Z. Zhang, C. X. Shan, J. Y. Zhang, and D. Z. Shen. Influence of oxygen/argon ratio on structural, electrical and optical properties of Ag-doped ZnO thin films. J. Cryst. Growth.,2010,312 (11):1813-1816.
    [136]K. S. Ahn. T. Deutsch. Y. F. Yan, C. S. Jiang, C. L. Perkins, J. Turner, and A. J. Mowafak. Synthesis of band-gap-reduced p-type ZnO films by Cu incorporation. J. Appl. Phys..2007. 102 (2):023517-1-6.
    [137]G Xiong, J. Wilkinson, B. Mischuck. S. Tuzemen, K. B. Ucer. and R. T. Williams. Control of p-and n-type conductivity in sputter deposition of undoped ZnO. Appl. Phys. Lett.,2002,80 (7):1195-1197.
    [138]M. S. Oh, S. H. Kim, and T. Y. Seong. Growth of nominally undoped p-type ZnO on Si by pulsed-laser deposition. Appl. Phys. Lett.,2005,87 (12):122103-1-3
    [139]Y. J. Zeng, Z. Z. Ye, W. Z. Xu, J. G. Lu, H. P. He, L. P. Zhu. B. H. Zhao, Y. Che, and S. B. Zhang, p-type behavior in nominally undoped ZnO thin films by oxygen plasma growth. Appl. Phys. Lett.2006,88 (26):262103-1-3.
    [140]S. Limpijumnong, S. B. Zhang, S. H. Wei, and C. H. Park. Doping by large-size-mismatched impurities:The microscopic origin of arsenic-or antimony-doped p-type zinc oxide. Phys. Rev. Lett.,2004,92 (15):155504-1-4.
    [141]T. Yamamoto and H. K. Yoshida. Solution using a codoping method to unipolarity for the fabrication of p-type ZnO. Jpn J. Appl. Phys.,1999,38 (2B):L166-L169.
    [142]叶志镇,吕建国,张银珠,何海平.氧化锌半导体材料掺杂技术与应用.杭州:浙江大学出版社,2008:104-105.
    [143]Y. R. Sui, B. Yao, Z. Hua, G. Z. Xing, X. M. Huang, T. Yang, L. L. Gao, T. T. Zhao, H. L. Zhao, H. L. Pan, H. Zhu, W. W. Liu, and T. Wu. Fabrication and properties of B-N codoped p-type ZnO thin films. J. Phys. D:Appl. Phys.,2009,42 (6):065101-1-5.
    [144]J. G. Lu, Z. Z. Ye, F. Zhuge, Y. J. Zeng, B. H. Zhao, and L. P. Zhu. p-type conduction in N-Al co-doped ZnO thin films. Appl. Phys. Lett.,2004,85 (15):3134-3135.
    [145]L. P. Zhu, Z. Z. Ye, F. Zhuge, G. D. Yuan, and J. G. Lu. Al-N codoping and p-type conductivity in ZnO using different nitrogen sources. Surf. Coat. Technol.,2005,198 (1-3): 354-356.
    [146]S. M. Chou, M. H. Hon, and I. C. Leu. Synthesis of p-type Al-N codoped ZnO films using N2O as a reactive gas by RF magnetron sputtering. Appl. Surf. Sci.,2008,255 (5): 2958-2962.
    [147]H. P. He, F. Zhuge, Z. Z. Ye, L. P. Zhu, F. Z. Wang, B. H. Zhao, and J. Y. Huang. Strain and its effect on optical properties of Al-N codoped ZnO films. J. Appl. Phys.,2006.99 (2): 023503-1-5.
    [148]L. W. Lai, J. T. Yan. C. H. Chen, L. R. Lou, and C. T. Lee. Nitrogen function of aluminum-nitride codoped ZnO films deposited using cosputter system. J. Mater. Res.,2009, 24 (7):2252-2258.
    [149]S. L. Yao, J. D. Hong, C.T. Lee, C.Y. Ho, and D. S. Liu. Determination of activation behavior in annealed Al-N codoped ZnO films. J. Appl. Phys.,2011,109 (10):103504-1-8.
    [150]M. Joseph, H. Tabata, H. Saeki, K. Ueda, and T. Kawai. Fabrication of the low-resistive p-type ZnO by codoping method. Physica B,2001,302-303 (1):140-148.
    [151]M. Kumar, T. H. Kim, S. S. Kim, and B. T. Lee. Growth of epitaxial p-type ZnO thin films by codoping of Ga and N. Appl. Phys. Lett.,2006,89 (11):112103-1-3.
    [152]K. Nakahara, H. Takasu, P. Fons. A. Yamada, K. Iwata, K. Matsubara, R. Hunger, and S. Niki. Interactions between gallium and nitrogen dopants in ZnO films grown by radical-source molecular-beam epitaxy. Appl. Phys. Lett.,2001,79 (25):4139-4141.
    [153]A. V. Singh, R. M. Mehra, A. Wakahara, and A. Yoshida. p-type conduction in codoped ZnO thin films. J. Appl. Phys.,2003,93 (1):396-399.
    [154]H. Matsui, H. Saeki, H. Tabata, and T. Kawai. Influence of codoping with Ga on the electrical and optical properties of N-doped ZnO films. J. Electrochem. Soc,2003,150 (9): G508-G512.
    [155]H. Wang, H. P. Ho, and J. B. Xu. Photoelectron spectroscopic investigation of nitrogen chemical ststes in ZnO:(N,Ga) thin films. J. Appl. Phys.,2008,103 (10):103704-1-6.
    [156]L. L. Chen, J. G. Lu, Z. Z. Ye, Y. M. Lin, B. H. Zhao, Y. M. Ye, J. S. Li, and L. P. Zhu. p-type behavior in In-N codoped ZnO thin films. Appl. Phys. Lett.,2005,87 (25): 252106-1-3.
    [157]Y. G. Cao, L. Miao, S. Tanemura, M. Tanemura, Y. Kuno, and Y. Hayashi. Low resistivity p-ZnO films fabricated by sol-gel spin coating. Appl. Phys. Lett..2006,88 (25):251116-1-3.
    [158]H. B. Ye, J. F. Kong, W. Z. Shen, J. L. Zhao, and X. M. Li. Origins of shallow level and hole mobility in codoped p-type ZnO thin films. Appl. Phys. Lett.,2008,92 (23):231913-1-3.
    [159]J. D. Ye, S. L. Gu, F. Li, S. M. Zhu, R. Zhang, Y. Shi, Y. D. Zheng, X. W. Sun, G. Q. Lo. and D. L. Kwong. Correlation between carrier recombination and p-type doping in P monodoped and In-P codoped ZnO epilayers. Appl. Phys. Lett.,2007,90 (15):152108-1-3.
    [160]Q. P. Wang, Z. Sun, J. Du, P. Zhao, X. H. Wu, and X. J. Zhang. Structural and optical properties of P-Ga codoping ZnO thin films deposited by magnetron sputtering. Opt. Mater.. 2007,29(11):1358-1361.
    [161]H. Kim, A. Cepler, M. S. Osofsky, R. C. Y. Auyeung, and A. Pique. Fabrication of Zr-N codoped p-type ZnO thin films by pulsed laser deposition. Appl. Phys. Lett.,2007,90 (20): 203508-1-3.
    [162]J. G. Lu, Y. Z. Zhang, Z. Z. Ye, L. P. Zhu, L. Wang, B. H. Zhao, and Q. L. Liang. Low-resistivity, stable p-type ZnO thin films realized using a Li-N dual-acceptor doping method. Appl. Phys. Lett.,2006,88 (22):222114-1-3.
    [163]X. H. Wang, B. Yao, Z. P. Wei, D. Z. Shen, Z. Z. Zhang, B. H. Li, Y. M. Lu. D. X. Zhao. J. Y. Zhang, X. W. Fan, L. X. Guan, and C. X. Cong. Acceptor formation mechanisms determination from electrical and optical properties of p-type ZnO doped with lithium and nitrogen. J. Phys. D:Appl. Phys.,2006,39(21):4568-4571.
    [164]B. Y. Zhang, B. Yao, Y. F. Li, Z. Z. Zhang, B. H. Li, C. X. Shan, D. X. Zhao, and D. Z. Shen. Investigation on the formation mechanism of p-type Li-N dual-doped ZnO. Appl. Phys. Lett.. 2010,97 (22):222101-1-3.
    [165]B. Y. Zhang, B. Yao, Y. F. Li, A. M. Liu, Z. Z. Zhang, B. H. Li. G. Z. Xing, T. Wu, X. B. Qin. D. X. Zhao, C. X. Shan, and D. Z. Shen. Evidence of cation vacancy induced room temperature ferromagnetism in Li-N codoped ZnO thin films. Appl. Phys. Lett..2011,99 (18): 182503-1-3.
    [166]T. T. Zhao, T. Yang, B. Yao, C. X. Cong, Y. R. Sui, G Z. Xing, Y. Sun, S. C. Su. H. Zhu. and D. Z. Shen. Growth ambient dependent electrical properties of lithium and nitrogen dual-doped ZnO films prepared by radio-frequency magnetron sputtering. Thin Solid Films. 2010,518 (12):3289-3292.
    [167]A. Krtschil, A. Dadgar, N. Oleynik, J. Biasing, A. Diez. and A. Krost. Local p-type conductivity in zinc oxide dual-doped with nitrogen and arsenic, Appl. Phys. Lett.,2005,87 (26):262105-1-3.
    [168]T. H. Vlasenflin and M. Tanaka. p-type conduction in ZnO dual-acceptor-doped with nitrogen and phosphorus. Solid State Commun.,2007,142 (5):292-294.
    [169]B. Wang, Y. Zhao, J. H. Min, and W. B. Sang. Ag-N dual-acceptor doping for the fabrication of p-type ZnO. Appl. Phys. A,2009,94 (4):715-718.
    [170]Z. Yan, Y. P. Ma, P. R. Deng, Z. S. Yu, C. Liu, and Z. T. Song. Ag-N doped ZnO film and its p-n junction fabrication by ion beam assisted deposition. Appl. Surf. Sci.,2010,256 (7): 2289-2292.
    [171]H. Ohta, K.-I. Kawamura, M. Orita, M. Hirano, N. Sarukura, and H. Hosono. Current injection emission from a transparent p-n junction composed of p-SrCu2O2/n-ZnO. Appl. Phys. Lett.,2000,77 (4):475-477.
    [172]Y. I. Alivov, E. V. Kalinina, A. E. Cherenkov, D. C. Look, B. M. Ataev, A. K. Omaev. M. V. Chukichev, and D. M. Bagnall. Fabrication and characterization of n-ZnO/p-AlGaN heterojunction light-emitting diodes on 6H-SiC substrates. Appl. Phys. Lett.,2003,83 (23): 4719-4721.
    [173]S. F. Chichibu, T. Ohmori, N. Shibata, T. Koyama, and T. Onuma. Greenish-white electroluminescence from p-type CuGaSi heterojunction diodes using n-type ZnO as an electron injector. Appl. Phys. Lett.,2004,85 (19):4403-4405.
    [174]D. K. Hwang, S. H. Kang, J. H. Lim, E. J. Yang. J. Y. Oh, J. H. Yang, and S. J. Park. p-ZnO/n-GaN heterostructure ZnO light-emitting diodes. Appl. Phys. Lett.,2005,86 (22): 222101-1-3.
    [175]D. J. Rogers, F. Hosseini Teherani, A. Yasan, K. Minder, P. Rung, and M. Razeghi. Electroluminescence at 375 nm from a ZnO/GaNiMg/c-AloO.i heterojunction light emitting diode. Appl. Phys. Lett.,2006,88 (14):141918-1-3.
    [176]J. D. Ye, S. L. Gu, S. M. Zhu, W. Liu, S. M. Liu, R. Zhang, Y. Shi, and Y. D. Zheng. Electroluminescent and transport mechanisms of n-ZnO/p-Si heterojunctions. Appl. Phys. Lett.,2006,88(18):182112-1-3.
    [177]T. P. Yang, H. C. Zhu, J. M. Bian, J. C. Sun, X. Dong, B. L. Zhang. H. W. Liang, X. P. Li, Y. G. Cui, and G. T. Du. Room temperature electroluminescence from the n-ZnO/p-GaN heterojunction device grown by MOCVD. Mater. Res. Bull.,2008,43 (12):3614-3620.
    [178]J. W. Sun, Y. M. Lu, Y. C. Liu, D. Z. Shen. Z. Z. Zhang, B. H. Li. J. Y. Zhang, B. Yao. D. X. Zhao, and X. W. Fan. Excitonic electroluminescence from ZnO-based heterojunction light emitting diodes. J. Phys. D:Appl. Phys.,2008,41 (15):155103-1-5.
    [179]L. J. Mandalapu, Z. Yang, S. Chu, and J. L. Liua. Ultraviolet emission from Sb-doped p-type ZnO based heterojunction light-emitting diodes. Appl. Phys. Lett.,2008,92 (12): 122101-1-3.
    [180]L. Li, Z. Yang, J. Y. Kong, and J. L. Liu. Blue electroluminescence from ZnO based heteroj unction diodes with CdZnO active layers. Appl. Phys. Lett.,2009,95 (23): 232117-1-3.
    [181]H. Long, G. J. Fang, H. H. Huang, X. M. Mo, W. Xia, B. Z. Dong, X. Q. Meng, and X. Z. Zhao. Ultraviolet electroluminescence from ZnO/NiO-based heteroj unction light-emitting diodes. Appl. Phys. Lett..2009,95 (1):013509-1-3.
    [182]J. B. You, X. W. Zhang, S. G Zhang, J. X. Wang, Z. G. Yin, H. R. Tan, W. J. Zhang, P. K. Chu, B. Cui, A. M. Wowchak, A. M. Dabiran, and P. P. Chow. Improved electroluminescence from n-ZnO/AlN/p-GaN heteroj unction light-emitting diodes. Appl. Phys. Lett.,2010,96 (20): 201102-1-3
    [183]K. Nakahara, S.Akasaka, H. Yuji, K. Tamura, T. Fujii, Y. Nishimoto, D. Takamizu, A.sasaki, T. Tanabe, H. Takasu, H. Amaike, T. Onuma, S. F. Chichibu, A. Tsukazaki, A. Ohtomo, and M. Kawasaki. Nitrogen doped MgxZn,_xO/ZnO single heterostructure ultraviolet light-emitting diodes on ZnO substrates. Appl. Phys. Lett.,2010,97 (1):013501-1-3.
    [184]T. Y. Park, Y. S. Choi, S. M. Kim, G. Y. Jung, S. J. Park, B. J. Kwon, and Y. H. Cho. Electroluminescence emission from light-emitting diode of p-ZnO/(InGaN/GaN) multiquantum well/n-GaN. Appl. Phys. Lett.,2011,98 (25):251111-1-3.
    [185]T. Aoki, Y. Hatanaka, and D. C. Look. ZnO diode fabricated by excimer-laser doping. Appl. Phys. Lett.,2000,76 (22):3257-3258.
    [186]Y. R. Ryu, T. S. Lee, J. H. Leem, and H. W. White. Fabrication of homostructural ZnO p-n junctions and ohmic contacts to arsenic-doped p-type ZnO. Appl. Phys. Lett.,2003,83 (19): 4032-4034.
    [187]F. Zhuge, L. P. Zhu, Z. Z. Ye, D.W. Ma, J. G. Lu, J. Y. Huang, F. Z. Wang, and Z. G. Ji. ZnO p-n homojunctions and ohmic contacts to Al-N-co-doped p-type ZnO. Appl. Phys. Lett.,2005, 87 (9):092103-1-3
    [188]A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma. and M. Kawasaki. Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO. Nat. Mater.,2005,4(1):42-46.
    [189]S. J. Jiao, Z. Z. Zhang, Y. M. Lu, D. Z. Shen, B. Yao, J. Y. Zhang. B. H. Li, D. X. Zhao. X. W. Fan, and Z. K. Tang. ZnO p-n junction lightemitting diodes fabricated on sapphire substrates. Appl. Phys. Lett.,2006,88 (3):031911-1-3.
    [190]J. H. Lim, C. K. Kang, K. K. Kim, I. K. Park, D. K. Hwang, and S. J. Park. UV electroluminescence emission from ZnO light-emitting diodes grown by high-temperature radiofrequency sputtering. Adv. Mater.,2006,18 (20):2720-2724.
    [191]Y. R. Ryu, T. S. Lee, J. A. Lubguban, H. W. White, B. J. Kim. Y. S. Park, and C. J. Youn. Next generation of oxide photonic devices:ZnO-based ultraviolet light emitting diodes. Appl. Phys. Lett.,2006,88 (24):241108-1-3.
    [192]W. Z. Xu, Z. Z. Ye, Y. J. Zeng, L. P. Zhu, B. H. Zhao, L. Jiang, J. G. Lu, H. P. He. and S. B. Zhang. ZnO light-emitting diode grown by plasma-assisted metal organic chemical vapor deposition. Appl. Phys. Lett.,2006,88 (17):173506-1-3.
    [193]Z. P. Wei, Y. M. Lu, D. Z. Shen, Z. Z. Zhang, B. Yao, B. H. Li. J. Y. Zhang, D. X. Zhao. X. W. Fan, and Z. K. Tang. Room temperature p-n ZnO blue-violet light-emitting diodes. Appl. Phys. Lett.,2007,90 (4):042113-1-3.
    [194]J. C. Sun, J. Z. Zhao, H. W. Liang, J. M. Bian, L. Z. Hu. H. Q. Zhang. X. P. Liang, W. F. Liu, and G. T. Du. Realization of ultraviolet electroluminescence from ZnO homojunction with n-ZnO/p-ZnO:As/GaAs structure. Appl. Phys. Lett.,2007,90 (12):121128-1-3.
    [195]Z. Z. Ye, J. G. Lu, Y. Z. Zhang, Y. J. Zeng, L. L. Chen, F. Zhuge, G. D. Yuan, H. P. He. L. P. Zhu, J. Y. Huang, and B. H. Zhao. ZnO lightemitting diodes fabricated on Si substrates with homobuffer layers. Appl. Phys. Lett.,2007.91 (11):113503-1-3.
    [196]S. Chu, J. H. Lim, L. J. Mandalapu, Z. Yang, L. Li, and J. L. Liu. Sb-doped p-ZnO/Ga-doped n-ZnO homojunction ultraviolet light emitting diodes. Appl. Phys. Lett.,2008,92 (15): 152103-1-3.
    [197]H. S. Kim, F. Lugo, S. J. Pearton, D. P. Norton, and F. Yu-Lin Wang. Phosphorus doped ZnO light emitting diodes fabricated via pulsed laser deposition. Appl. Phys. Lett.,2008,92 (11): 112108-1-3.
    [198]J. Y. Kong, S. Chu, M. Olmedo, L. Li, Z. Yang, and J. L. Liu. Dominant ultraviolet light emissions in packed ZnO columnar homojunction diodes. Appl. Phys. Lett..2008,93 (13): 132113-1-3.
    [199]C. T. Lee and J. T. Yan. Ultraviolet electroluminescence from ZnO-based n-i-p light-emitting diodes. IEEE Photon. Technol. Lett.,2011,23 (6):353-355.
    [200]F. Sun, C. X. Shan, B. H. Li, Z. Z. Zhang, D. Z. Shen, Z. Y. Zhang, and D. Fan. A reproducible route to p-ZnO films and their application in light-emitting devices. Opt. Lett., 2011,36 (4):499-501.
    [201]T. Yamamoto and H. Katayama-Yoshida. Unipolarity of ZnO with a wide-band gap and its solution using codoping method. J. Cryst. Growth.,2000,214-215 (1):552-555.
    [202]E. J. Yun, H. S. Park, K. H. Lee, H. G. Nam, and M. Jung. Characterization of Al-As codoped p-type ZnO films by magnetron cosputtering deposition. J. Appl. Phys..2008.103 (7):073507-1-4.
    [203]G. D. Yuan. Z. Z. Ye, L. P. Zhu, Q. Qian, B. H. Zhao, R. X. Fan, C. L. Perkins, and S. B. Zhang. Control of conduction type in Al-and N-codoped ZnO thin films. Appl. Phys. Lett.. 2005,86 (20):202106-1-3.
    [204]D. H. Kim, E. K. Jeong, I. S. Kim. and S. Y. Choi. Effect of Al concentrations on the properties of ZnO:AI films prepared by E-beam evaporation. ECS Transactions.2007,11 (5): 277-284.
    [205]X. H. Wang, B. Yao, Z. Z. Zhang, B. H. Li. Z. P. Wei, D. Z. Shen. Y. M. Lu, and X. W. Fan. The mechanism of formation and properties of Li-doped p-type ZnO grown by a two-step heat treatment. Semicon. Sci. Technol.,2006,21 (4):494-497.
    [206]H. Kim, A. Cepler, C. Cetina. D. Knies, M. S. Osofsky, R. C. Y. Auyeung. and A. Pique. Pulsed laser deposition of Zr-N codoped p-type ZnO thin films. Appl. Phys. A,2008,93 (6): 593-598.
    [207]Y. Z. Zhang, J. G. Lu, Z. Z. Ye, H. P. He, L. L. Chen, B. H. Zhao. Identification of acceptor states in Li-N dual-doped p-type ZnO thin films. Chin. Phys. Lett..2009,26 (4):046103-1-4.
    [208]A. Miyake, T. Yamada, H. Makino, N. Yamamoto, and T. Yamamoto. Effect of substrate temperature on structural, electrical and optical properties of Ga-doped ZnO films on cycro olefin polymer substrate by ion plating deposition. Thin Solid Films,2008,517 (3): 1037-1041.
    [209]T. Yamada, A. Miyake, H. Makino, N. Yamamoto, and T. Yamamoto. Effect of thermal annealing on electrical properties of transparent conductive Ga-doped ZnO films prepared by ion-plating using direct-current arc discharge. Thin Solid Films,2009,517(10):3134-3137.
    [210]H. C. Park, D. Byun, B. Angadi. D. H. Park, W. K. Choi, J. W. Choi, and Y. S. Jung. Photoluminescence of Ga-doped ZnO film grown on c-A12O;, (0001) by plasma-assisted molecular beam epitaxy. J. Appl. Phys.,2007,102 (7):073114-1-5.
    [211]W. W. Liu, B. Yao, Z. Z. Zhang, Y. F. Li, B. H. Li, C. X. Shan, J. Y. Zhang, D. Z. Shen. and X. W. Fan. Doping efficiency, optical and electrical properties of nitrogen-doped ZnO films. J. Appl. Phys.,2011,109 (9):093518-1-5.
    [212]Y. Geng, L. Guo, S. S. Xu, Q. Q. Sun, S. J. Ding, H. L. Lu, and D. W. Zhang. Influence of Al doping on the properties of ZnO thin films grown by atomic layer deposition. J. Phys. Chem. C2011.115(12):12317-12321.
    [213]D. J. Lee, H. M. Kim, J. Y. Kwon, H. Choi, S. H. Kim, and K. B. Kim. Structural and electrical properties of atomic layer deposited Al-doped ZnO films. Adv. Funct. Mater..2011, 21 (3):448-455.
    [214]Y. Li, G. S. Tompa, S. Liang, C. Gorla, Y. Lu, and J. Doyle. Transparent and conductive Ga-doped ZnO films grown by low pressure metal organic chemical vapor deposition. J. Vac. Sci. Technol. A,1997,15(3):1063-1068.
    [215]I. Volintiru, M. Creatore, B. J. Kniknie, C. I. M. A. Spee, and M. C. M. van de Sanden. Evolution of the electrical and structural properties during the growth of Al doped ZnO films by remote plasma-enhanced metalorganic chemical vapor deposition. J. Appl. Phys..2007. 102 (4):043709-1-9.
    [216]T. Ratana. P. Amornpitoksukb, T. Ratanac, and S. Suwanboon. The wide band gap of highly oriented nanocrystalline Al doped ZnO thin films from sol-gel dip coating. J. Alloys Compd., 2009,470 (1-2):408-412.
    [217]K. J. Chen, F.Y. Hung. S. J. Chang, and Z. S. Hu. Microstructures. optical and electrical properties of In-doped ZnO thin films prepared by sol-gel method. Appl. Surf. Sci..2009. 255 (12):6308-6312.
    [218]C. Y. Zhang. The influence of substrate and annealing temperatures on electrical properties of p-type ZnO films. Physica B.2009,404 (1):138-142.
    [219]J. L. Zhao, X. M. Li, A. Krtschil, A. Krost. W. D. Yu, Y. W. Zhang, Y. F. Gu. and X. D. Gao. Study on anomalous high p-type conductivity in ZnO films on silicon substrate prepared by ultrasonic spray pyrolysis. Appl. Phys. Lett..2007,90 (6):062118-1-3.
    [220]龚丽.ZnO基透明导电膜的制备与掺杂研究[博士学位论文].杭州:浙江大学材料系.2011:39-45.
    [221]叶志镇,吕建国,吕斌,张银珠.半导体薄膜技术与物理.杭州:浙江大学出版社.2008:134-137.
    [222]姜辛,孙超,洪瑞江,戴达煌.透明导电氧化物薄膜.北京:高等教育出版社,2008:181-183.
    [223]A. Ghosh, N. G. Deshpande, Y. G. Gudage, R. A. Joshi, A. A. Sagade. D. M. Phase, and R. Sharma. Effect of annealing on structural and optical properties of zinc oxide thin film deposited by successive ionic layer adsorption and reaction technique. J. Alloys Compd.. 2009,469 (1-2):56-60.
    [224]V. Gupta and A. Mansingh. Influence of postdeposition annealing on the structural and optical properties of sputtered zinc oxide film. J. Appl. Phys.,1996,80 (2):1063-1073.
    [225]X. Zhou, D. Jiang, F. Lin, X. Ma, and W. Shi. Influence of Hf doping concentration on microstructure and optical properties of HfxZn1-xO thin films. Physica B,2008,403 (1): 115-119.
    [226]R. Cebulla, R. Wendt, and K. Ellmer. Al-doped zinc oxide films deposited by simultaneous rf and dc excitation of a magnetron plasma:Relationships between plasma parameters and structural and electrical film properties. J. Appl. Phys.,1998,83 (2):1087-1095.
    [227]R. Sharma, K. Sehrawat, A. Wakahara, and R. M. Mehra. Epitaxial growth of Sc-doped ZnO films on Si by sol-gel route. Appl. Surf. Sci.,2009,255 (11):5781-5788.
    [228]S. S. Kim and B. T. Lee. Effects of oxygen pressure on the growth of pulsed laser deposited ZnO films on Si(001). Thin Solid Films.2004,446 (2):307-312.
    [229]T. Miyata, S. Ida, and T. Minami. High-rate deposition of ZnO thin films by vacuum arc plasma evaporation. J. Vac. Sci. Technol. A,2003,21 (4):1404-1408.
    [230]H. Y. Xu, Y. C. Liu, R. Mu, C. L. Shao, Y. M. Lu. D. Z. Shen, and X. W. Fan. F-doping effects on electrical and optical properties of ZnO nanocrystalline films. Appl. Phys. Lett.. 2005,86(12):123107-1-3.
    [231]A. Maldonadoa, S. Tirado-Guerrab, M. Melendez-Lirac, and M. de la L. Olvera. Physical properties of ZnO:F obtained from a fresh and aged solution of zinc acetate and zinc acetylacetonate. Sol. Energy. Mater. Sol. Cells.,2006,90 (6):742-752.
    [232]S. S. Shinde, P. S. Shinde, S. M. Pawar. A. V. Moholkar, C. H. Bhosale, and K. Y. Rajpure. Physical properties of transparent and conducting sprayed fluorine doped zinc oxide thin films. Solid State Sci.,2008,10(9):1209-1214.
    [233]H. S. Yoon. K. S. Lee, T. S. Lee, B. Cheong, D. K. Choi, D. H. Kim, and W. M. Kim. Properties of fluorine doped ZnO thin films deposited by magnetron sputtering. Sol. Energy. Mater. Sol. Cells.,2008,92 (11):1366-1372.
    [234]Y. Z. Tsai, N. F. Wang, and C. L. Tsai. Formation of F-doped ZnO transparent conductive films by sputtering of ZnF2. Mater. Lett.,2009,63 (18-19):1621-1623.
    [235]D. H. Kim, N. G. Cho, H. G. Kim, and W. Y. Choi. Structural and electrical properties of indium doped ZnO thin films fabricated by RF magnetron sputtering. J. Electrochem. Soc., 2007,154(11):H939-H943.
    [236]A. V. Singh, R. M. Mehra, N. Buthrath, A. Wakahara, and A. Yoshida. Highly conductive and transparent aluminum-doped zinc oxide thin films prepared by pulsed laser deposition in oxygen ambient. J. Appl. Phys.,2001,90 (11):5661-5665.
    [237]C. F. Klingshirn, B. K. Meyer, A. Waag, A. Hoffmann, and J. Geurts. Zinc oxide:from fundamental properties towards novel applications. New York:Springer,2010:104-105.
    [238]G. Frank and H. Kostlin. Electrical properties and defect model of tin-doped indium oxide layers. Appl. Phys. A,1982,27 (1):197-206.
    [239]D. S. Liu, F. C. Tsai, C. T. Lee, and C. W. Sheu. Properties of zinc oxide films cosputtered with aluminum at room temperature. Jap. J. Appl. Phys.,2008,47 (4):3056-3062.
    [240]B. G. Choi. I. H. Kim, D. H. Kim, K. S. Lee, T. S. Lee, B. Cheong, Y. J. Baik, and W. M. Kim. Electrical, optical and structural properties of transparent and conducting ZnO thin films doped with Al and F by rf magnetron sputter. J. Eur. Ceram. Soc.,2005,25 (12):2161-2165.
    [241]C. Fournier, O. Bamiduro, H. Mustafa, R. Mundle, R. B. Konda, F. Williams, and A. K. Pradhan. Effects of substrate temperature on the optical and electrical properties of Al:ZnO films. Semicond. Sci. Technol.,2008,23 (8):85019-1-5.
    [242]E. Burstein. Anomalous optical absorption limit in InSb. Phys. Rev.,1954,93 (3):632-633.
    [243]T. S. Moss. The interpretation of the properties of indium antimonide. Proc. Phys. Soc. B. 1954.67 (10):775-782.
    [244]张德恒.透明导电膜光吸收边的移动.半导体杂志,1998,23(3):34-43.
    [245]Q. B. Ma, Z. Z. Ye, H. P. He, L. P. Zhu, J. R. Wang, and B. H. Zhao. Influence of Ar/O2 ratio on the properties of transparent conductive ZnO:Ga films prepared by DC reactive magnetron sputtering. Mater. Lett.,2007,61 (11-12):2460-2463.
    [246]M. Chen, Z. L. Pei, X. Wang. C. Sun, and L. S. Wen. Structural, electrical, and optical properties of transparent conductive oxide ZnO:Al films prepared by dc magnetron reactive sputtering. J. Vac. Sci. Technol. A,2001,19 (3):963-970.
    [247]S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner. Recent progress in processing and properties of ZnO. Prog. Mater. Sci.,2005,50 (3):293-340.
    [248]S. Brehme, F. Fenske, W. Fuhs, E. Nebauer. M. Poschenrieder, B. Selle, and I. Sieber. Free-carrier plasma resonance effects and electron transport in reactively sputtered degenerate ZnO:Al films. Thin Solid Films,1999,342 (1-2):167-173.
    [249]J. W. Bowers, H. M. Upadhyaya, S. Calnan, R. Hashimoto, T. Nakada. and A. N. Tiwari. Development of nano-TiO2 dye sensitised solar cells on high mobility transparent conducting oxide thin films. Prog. Photovoltaics.2009,17 (4):265-272.
    [250]J. A. Anna Selvan. A. E. Delahoy, S. Y. Guo, and Y. M. Li. A new light trapping TCO for nc-Si:H solar cells. Solar Energy Mater. Solar Cells,2006,90 (18-19):3371-3376.
    [251]G. J. Exarhos and X. D. Zhou. Discovery-based design of transparent conducting oxide films. Thin Solid Films,2007.515(18):7025-7052.
    [252]S. Bose, S. Ray, and A. K. Barua. Textured aluminium-doped ZnO thin films prepared by magnetron sputtering. J. Phys. D:Appl. Phys.,1996,29 (7):1873-1877.
    [253]K. Yim, H. W. Kim, and C. Lee. Effects of annealing on structure, resistivity and transmittance of Ga doped ZnO films. Mater. Sci. Technol.,2007,23 (1):108-111.
    [254]M. Zhu, H. Huang, J. Gong, C. Sun, and X. Jiang. Role of oxygen desorption during vacuum annealing in the improvement of electrical properties of aluminum doped zinc oxide films synthesized by sol gel method. J. Appl. Phys.,2007,102 (4):043106-1-6.
    [255]B. D. Ahn, S. H. Oh. C. H. Lee, G. H. Kim, H. J. Kim, and S. Y. Lee. Influence of thermal annealing ambient on Ga-doped ZnO thin films. J. Cryst. Growth,2007,309 (2):128-133.
    [256]M. Osada, T. Sakemi, and T. Yamamoto. The effects of oxygen partial pressure on local structural properties for Ga-doped ZnO thin films. Thin Solid Films,2006,494 (1-2):38-41.
    [257]J. A. Sans, G. Martinez-Criado, J. Pellicer-Porres, J. F. Sanchez-Royo, and A. Segura. Thermal instability of electrically active centers in heavily Ga-doped ZnO thin films:X-ray absorption study of the Ga-site configuration. Appl. Phys. Lett..2007.91 (22):221904-1-3.
    [258]G. Haacke. New figure of merit for transparent conductors. J. Appl. Phys.,1976,47 (9): 4086-4089.
    [259]S. M. Park, T. Ikegami, and K. Ebihara. Effects of substrate temperature on the properties of Ga-doped ZnO by pulsed laser deposition. Thin Solid Films,2006,513 (1-2):90-94.
    [260]R. L. Hoffman, B. J. Norris, and J. F. Wager. ZnO-based transparent thin-film transistors. Appl. Phys. Lett.,2003,82 (5):733-735.
    [261]E. M. C. Fortunato, P. M. C. Barquinha, A. C. M. B. G. Pimentel, A. M. F. Goncalves, A. J. S. Marques, R. F. P. Martins, and L. M. N. Pereira. Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature. Appl. Phys. Lett..2004.85 (13):2541-2543.
    [262]H. H. Hsieh and C. C. Wu. Scaling behavior of ZnO transparent thin-film transistor. Appl. Phys. Lett.,2006,89 (4):041109-1-3.
    [263]B. S. Ong, C. S. Li, Y. N. Li, Y. L. Wu, and R. Loutfy. Stable, solution-processed, high-mobility ZnO thin-film transistors. J. Am. Chem. Soc,2007,129 (10):2750-2751.
    [264]L. Zhang, J. Li, X. W. Zhang, X. Y. Jiang, and Z. L. Zhang. High performance ZnO-thin-film transistor with Ta2O5 dielectrics fabricated at room temperature. Appl. Phys. Lett.,2009,95 (7):072112-1-3.
    [265]A. Bashir, P. H. Wobkenberg. J. Smith, J. M. Ball, G. Adamopoulos, D. D. C. Bradley, and T. D. Anthopoulos. High-performance zinc oxide transistors and circuits fabricated by spray pyrolysis in ambient atmosphere. Adv. Mater.,2009,21 (21):2226-2231.
    [266]K. Song, J. Noh, T. Jun. Y. Jung, H. Y. Kang, and J. Moon. Fully flexible solution-deposited ZnO thin-film transistors. Adv. Mater.,2010.22 (38):4308-4312.
    [267]M. Lorenz, H. von Wenckstern, and M. Grundmann. Tungsten oxide as a gate dielectric for highly transparent and temperature-stable zinc-oxide-based thin-film transistors. Adv. Mater.. 2011,23 (45):5383-5386.
    [268]闫志巧,熊翔,肖鹏,黄伯云.化学气相沉积法制备Ta2O5薄膜的研究进展.功能材料, 2006,37(4):511-514.
    [269]J. F. Wager, D. A. Keszler. and R. E. Presley. Transparent electronics. New York:Springer, 2008:78-80.
    [270]L. L. Chen, Z. Z. Ye, J. G. Lu, and P. K. Chu. Control and improvement of p-type conductivity in indium and nitrogen codoped ZnO thin films. Appl. Phys. Lett.,2006,89 (25): 252113-1-3.
    [271]S. A. Studenikin, N. Golego, and M. Cocivera. Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis. J. Appl. Phys.,1998,84 (4): 2287-2294.
    [272]M.A. Thomas and J.B. Cui. Investigations of acceptor related photoluminescence from electrodeposited Ag-Doped ZnO. J. Appl. Phys.,2009,105 (9):093533-1-5.
    [273]赵慧芳,曹全喜,李建涛.N,Ga共掺杂实现p型ZnO的第一性原理研究.物理学报,2008,57(9):5828-5832.
    [274]A. F. Kohan, G. Ceder, D. Morgan, and C. G. Van de Walle. First-principles study of native point defects in ZnO. Phys. Rew. B,2000,61 (22):15019-15027.
    [275]P. Erhart, K. Albe, and A. Klein. First-principles study of intrinsic point defects in ZnO:Role of band structure, volume relaxation, and finite-size effects. Phys. Rev. B,2006,73 (20): 205203-1-9.
    [276]J. B. Li, S. H. Wei, S. S. Li, and J. B. Xia. Design of shallow acceptors in ZnO: First-principles band-structure calculations. Phys. Rev. B,2006,74 (8):081201-1-4.
    [277]J. S. Lee, S. N. Cha, J. M. Kim, H. W. Nam, S. H. Lee, W. B. Ko, K. L. Wang, J. G. Park. and J. P. Hong. P-type conduction characteristics of lithium-doped ZnO nanowires. Adv. Mater.,2011.23 (36):4183-4187.
    [278]陈琨.范广涵,章勇,丁少锋.In-N共掺杂ZnO第一性原理计算.物理学报,2008,57(5):3138-3147.
    [279]Y.F. Yan and S.H. Wei. Doping asymmetry in wide-bandgap semiconductors:Origins and solutions. Phys. Stat. Sol. (b).2008,245 (4):641-652.
    [280]Z. P. Wei, B. Yao, Z. Z. Zhang, Y. M. Lu. D. Z. Shen, B. H. Li, X. H. Wang, J. Y. Zhang, D. X. Zhao, X. W. Fan, and Z. K. Tang. Formation of p-type MgZnO by nitrogen doping. Appl. Phys. Lett.,2006.89 (10):102104-1-3.
    [281]Y. J. Li, Y. W. Heo, Y. Kwon, K. Ip. S. J. Pearton, and D. P. Norton. Transport properties of p-type phosphorua-doped (Zn,Mg)O grown by pulsed-laser deposition. Appl. Phys. Lett., 2005,87 (7):072101-1-3.
    [282]X. Dong, B. L. Zhang, X. P. Li, W. Zhao, X. C. Xia, H. C. Zhu, and G. T. Du. Study on the properties of MgxZn1-xO-based homojunction light-emitting diodes fabricated by MOCVD. J. Phys. D:Appl. Phys.,2007,40 (23):7298-7301.
    [283]X. H. Pan, Z. Z. Ye, Y. J. Zeng, X. Q. Gu, J. S. Li, L. P. Zhu, B. H. Zhao, Y. Che, and X. Q. Pan. Preparation of p-type ZnMgO thin films by Sb doping method. J. Phys. D:Appl. Phys.. 2007.40 (14):4241-4244.
    [284]M. X. Qiu, Z. Z. Ye. H. P. He, Y. Z. Zhang, X. Q. Gu. L. P. Zhu, and B. H. Zhao. Effect of Mg content on structural, electrical, and optical properties of Li-doped Zn1-xMgxO thin films. Appl. Phys. Lett.,2007,90 (18):182116-1-3.
    [285]X. Zhang. X. M. Li, T. L. Chen. C. Y. Zhang, and W. D. Yu. p-type conduction in wide-gap Zn1-xMgxO films grown by ultrasonic spray pyrolysis. Appl. Phys. Lett.,2005,87 (9): 092101-1-3.
    [286]L. Gong, Z. Z. Ye, J. G. Lu, L. P. Zhu, J. Y. Huang, and B. H. Zhao. Formation of p-type ZnMgO thin films by In-N codoping method. Appl. Surf. Sci.,2009,256 (3):627-630.
    [287]R.D. Shannon. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A,1975,32 (5):751-767.
    [288]H. Huang, Y. Ou, S. Xu. G. Fang, M. Li, and X. Z. Zhao. Properties of Dy-doped ZnO nanocrystalline thin films prepared by pulsed laser deposition. Appl. Surf. Sci.2008.254 (7): 2013-2016.
    [289]Y. Zhang, G. Du, X. Wang, W. Li, X. Yang, Y. Ma, B. Zhao, H. Yang, D. Liu, and S. Yang. X-ray photoelectron spectroscopy study of ZnO films grown by metal-organic chemical vapor deposition. J. Cryst. Growth,2003,252 (1-3):180-183.
    [290]E. Holmelund, J. Schou, S. Tougaard, and N. B. Larsen. Pure and Sn-doped ZnO films produced by pulsed laser deposition. Appl. Surf. Sci.,2002,197-198 (1):467-471.
    [291]R. Q. Chen, C. W. Zou, J. M. Bian, A. Sandhu, and W. Gao. Microstructure and optical properties of Ag-doped ZnO nanostructures prepared by a wet oxidation doping process. Nanotechnology,2011,22 (10):105706-1-8.
    [292]X. H. Pan, Z. Z. Ye, J. Y. Huang, Y. J. Zeng, H. P. He, X.0-Gu, L. P. Zhu. and B. H. Zhao. p-Type behavior in Li-doped Zno.9Mgo.1O thin films. J. Cryst. Growth.,2008,310 (6): 1029-1033.
    [293]P. Wang, N. F. Chen, Z. G. Yin, R. X. Dai. and Y. M. Bai. p-type Zn,.xMgxO films with Sb doping by radio-frequency magnetron sputtering. Appl. Phys. Lett.,2006,89 (20): 202102-1-3.
    [294]C. J. Ku, Z. Q. Duan, P.1. Reyes, Y. C. Lu, Y. Xu, C. L. Hsueh, and E. Garfunkel. Effects of Mg on the electrical characteristics and thermal stability of MgxZn1-xO thin film transistors. Appl. Phys. Lett.,2011,98 (12):123511-1-3.
    [295]M. A. Thomas and J.cB. Cui. Electrochemical route to p-type doping of ZnO nanowires. J. Phys. Chem. Lett.,2010,1 (7):1090-1094.
    [296]S. J. Seo, J. H. Jeon, Y. H. Hwang, and B. S. Bae. Improved negative bias illumination instability of sol-gel gallium zinc tin oxide thin film transistors. Appl. Phys. Lett.,2011.99 (15):152102-1-3.
    [297]B. Kummr, H. Gong, and R. Akkipeddi. A study of conduction in the transition zone between homologous and ZnO-rich regions in the ln2O3-ZnO system. J. Appl. Phys.,2005,97 (6): 063706-1-5.
    [298]K. E. Lee, M. Wang, E. J. Kim, and S. H. Hahn. Structural, electrical and optical properties of sol-gel AZO thin films. Curr. Appl. Phys.,2009,9 (3):683-687.
    [299]M. N. Islam, T. B. Ghosh, K. L. Chopra, and H. N. Acharya. XPS and X-ray diffraction studies of aluminum-doped zinc oxide transparent conducting films. Thin Solid Films.1996, 280 (1-2):20-25.
    [300]P. D. C. King and T. D. Veal. Conductivity in transparent oxide semiconductors. J. Phys.: Condens. Matter..2011.23 (33):334214-1-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700